|
Records |
Links |
|
Author |
Jaume Garcia; Debora Gil; Luis Badiella; Aura Hernandez-Sabate; Francesc Carreras; Sandra Pujades; Enric Marti |


|
|
Title |
A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function |
Type  |
Journal Article |
|
Year |
2010 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
TMI |
|
|
Volume |
29 |
Issue |
3 |
Pages |
733-745 |
|
|
Keywords |
|
|
|
Abstract |
A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0278-0062 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGH2010b |
Serial |
1507 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jose Maria-Carazo; Roberto Marabini |


|
|
Title |
On the nature of 2D crystal unbending |
Type  |
Journal Article |
|
Year |
2006 |
Publication |
Journal of Structural Biology |
Abbreviated Journal |
|
|
|
Volume |
156 |
Issue |
3 |
Pages |
546-555 |
|
|
Keywords |
Electron microscopy |
|
|
Abstract |
Crystal unbending, the process that aims to recover a perfect crystal from experimental data, is one of the more important steps in electron crystallography image processing. The unbending process involves three steps: estimation of the unit cell displacements from their ideal positions, extension of the deformation field to the whole image and transformation of the image in order to recover an ideal crystal. In this work, we present a systematic analysis of the second step oriented to address two issues. First, whether the unit cells remain undistorted and only the distance between them should be changed (rigid case) or should be modified with the same deformation suffered by the whole crystal (elastic case). Second, the performance of different extension algorithms (interpolation versus approximation) is explored. Our experiments show that there is no difference between elastic and rigid cases or among the extension algorithms. This implies that the deformation fields are constant over large areas. Furthermore, our results indicate that the main source of error is the transformation of the crystal image. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1047-8477 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GCM2006 |
Serial |
1519 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Oriol Rodriguez; J. Mauri; Petia Radeva |


|
|
Title |
Statistical Strategy for Anisotropic Adventitia Modelling in IVUS |
Type  |
Journal Article |
|
Year |
2006 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
25 |
Issue |
6 |
Pages |
768-778 |
|
|
Keywords |
Corners; T-junctions; Wavelets |
|
|
Abstract |
Vessel plaque assessment by analysis of intravascular ultrasound sequences is a useful tool for cardiac disease diagnosis and intervention. Manual detection of luminal (inner) and mediaadventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts, and blurred signal response due to ultrasound physical properties trouble automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of interobserver variability regardless of plaque nature, vessel geometry, and incomplete vessel borders. Index Terms–-Anisotropic processing, intravascular ultrasound (IVUS), vessel border segmentation, vessel structure classification. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GHR2006 |
Serial |
1525 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta |


|
|
Title |
Structure-preserving smoothing of biomedical images |
Type  |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
9 |
Pages |
1842-1851 |
|
|
Keywords |
Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography |
|
|
Abstract |
Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GHB2011 |
Serial |
1526 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |


|
|
Title |
Inhibition of false landmarks |
Type  |
Journal Article |
|
Year |
2006 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
27 |
Issue |
9 |
Pages |
1022-1030 |
|
|
Keywords |
|
|
|
Abstract |
Corners and junctions are landmarks characterized by the lack of differentiability in the unit tangent to the image level curve. Detectors based on differential operators are not, by their own definition, the best posed as they require a higher degree of differentiability to yield a reliable response. We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above requirements. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition produce our inhibition orientation energy (IOE) landmark locator. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Inc. |
Place of Publication |
New York, NY, USA |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-8655 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GiR2006 |
Serial |
1529 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |


|
|
Title |
Extending anisotropic operators to recover smooth shapes |
Type  |
Journal Article |
|
Year |
2005 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
|
|
|
Volume |
99 |
Issue |
1 |
Pages |
110-125 |
|
|
Keywords |
Contour completion; Functional extension; Differential operators; Riemmanian manifolds; Snake segmentation |
|
|
Abstract |
Anisotropic differential operators are widely used in image enhancement processes. Recently, their property of smoothly extending functions to the whole image domain has begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures existence of a unique solution. This condition is too restrictive for operators designed to extend image level sets: their own functionality implies that they should restrict to some vector field. The diffusion tensor that defines the diffusion operator links anisotropic processes with Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties generated by the vector fields of positive eigenvalues, provided that an integrability condition is satisfied. We will use that any smooth vector field fulfills this integrability requirement to design line connection algorithms for contour completion. As application we present a segmenting strategy that assures convergent snakes whatever the geometry of the object to be modelled is. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1077-3142 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GIR2005 |
Serial |
1530 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |


|
|
Title |
Shape Restoration via a Regularized Curvature Flow |
Type  |
Journal Article |
|
Year |
2004 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
|
|
|
Volume |
21 |
Issue |
3 |
Pages |
205-223 |
|
|
Keywords |
|
|
|
Abstract |
Any image filtering operator designed for automatic shape restoration should satisfy robustness (whatever the nature and degree of noise is) as well as non-trivial smooth asymptotic behavior. Moreover, a stopping criterion should be determined by characteristics of the evolved image rather than dependent on the number of iterations. Among the several PDE based techniques, curvature flows appear to be highly reliable for strongly noisy images compared to image diffusion processes.
In the present paper, we introduce a regularized curvature flow (RCF) that admits non-trivial steady states. It is based on a measure of the local curve smoothness that takes into account regularity of the curve curvature and serves as stopping term in the mean curvature flow. We prove that this measure decreases over the orbits of RCF, which endows the method with a natural stop criterion in terms of the magnitude of this measure. Further, in its discrete version it produces steady states consisting of piece-wise regular curves. Numerical experiments made on synthetic shapes corrupted with different kinds of noise show the abilities and limitations of each of the current geometric flows and the benefits of RCF. Finally, we present results on real images that illustrate the usefulness of the present approach in practical applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GiR2004c |
Serial |
1532 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Rodriguez-Leor; Petia Radeva; J. Mauri |


|
|
Title |
Myocardial Perfusion Characterization From Contrast Angiography Spectral Distribution |
Type  |
Journal Article |
|
Year |
2008 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
27 |
Issue |
5 |
Pages |
641-649 |
|
|
Keywords |
Contrast angiography; myocardial perfusion; spectral analysis. |
|
|
Abstract |
Despite recovering a normal coronary flow after acute myocardial infarction, percutaneous coronary intervention does not guarantee a proper perfusion (irrigation) of the infarcted area. This damage in microcirculation integrity may detrimentally affect the patient survival. Visual assessment of the myocardium opacification in contrast angiography serves to define a subjective score of the microcirculation integrity myocardial blush analysis (MBA). Although MBA correlates with patient prognosis its visual assessment is a very difficult task that requires of a highly expertise training in order to achieve a good intraobserver and interobserver agreement. In this paper, we provide objective descriptors of the myocardium staining pattern by analyzing the spectrum of the image local statistics. The descriptors proposed discriminate among the different phenomena observed in the angiographic sequence and allow defining an objective score of the myocardial perfusion. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRR2008 |
Serial |
1541 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti |


|
|
Title |
Approaching Artery Rigid Dynamics in IVUS |
Type  |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
TMI |
|
|
Volume |
28 |
Issue |
11 |
Pages |
1670-1680 |
|
|
Keywords |
Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation. |
|
|
Abstract |
Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0278-0062 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGF2009 |
Serial |
1545 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti |


|
|
Title |
Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences |
Type  |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control |
Abbreviated Journal |
T-UFFC |
|
|
Volume |
58 |
Issue |
1 |
Pages |
60-72 |
|
|
Keywords |
3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging |
|
|
Abstract |
Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0885-3010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGG2011 |
Serial |
1546 |
|
Permanent link to this record |