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Abstract. Any image filtering operator designed for automatic shape restoration should satisfy robustness (what-
ever the nature and degree of noise is) as well as non-trivial smooth asymptotic behavior. Moreover, a stopping
criterion should be determined by characteristics of the evolved image rather than dependent on the number of
iterations. Among the several PDE based techniques, curvature flows appear to be highly reliable for strongly noisy
images compared to image diffusion processes.

In the present paper, we introduce a regularized curvature flow (RCF) that admits non-trivial steady states. It is
based on a measure of the local curve smoothness that takes into account regularity of the curve curvature and serves
as stopping term in the mean curvature flow. We prove that this measure decreases over the orbits of RCF, which
endows the method with a natural stop criterion in terms of the magnitude of this measure. Further, in its discrete
version it produces steady states consisting of piece-wise regular curves. Numerical experiments made on synthetic
shapes corrupted with different kinds of noise show the abilities and limitations of each of the current geometric
flows and the benefits of RCF. Finally, we present results on real images that illustrate the usefulness of the present
approach in practical applications.
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1. Introduction

Over the past 15 years, many algorithms to enhance and
smooth images have been developed; most of them are
governed by a parabolic partial differential equations
(PDE) having the image to be filtered as initial con-
dition. This fact confers the associated image operator
several sensible properties (causality, local comparison
principle and regularity) as well as enables the use of
mathematical tools in order to study their behavior in
terms of the differential operator involved in the equa-
tion [1, 20]. From this point of view, one can split the
current image operators into two distinct families: the
ones arising from heat diffusion processes, which can
be written in divergence form, and the ones based on
geometric flows.

The first group, that includes Gaussian filtering, edge
enhancement of Perona and Malik [19], anisotropic
diffusion [23], image selective smoothing [3] and half-

quadratic minimization [2] among others, filters an im-
age by means of a PDE that describes a physical pro-
cess of heat diffusion. Hence, they must always treat
image edge blurring. The most efficient solution up to
now consists in including a term preventing diffusion
across edges. This implies the choice of a threshold
value determining what magnitude of the image gradi-
ent is to be considered an edge and constitutes a main
problem when dealing with highly noisy images.

The other group contains the mean curvature
flow [10] and the min-max flow [14]. Its main fea-
ture consists in that the PDE that governs the image
smoothing relies exclusively on the geometry of the
level curves of the image. Hence, it does not produce
any edge blurring, which makes these techniques more
robust in very noisy images. The highly non-linearity of
the PDE and the fact of being of Hamilton-Jacobi type
[7] may imply the formation of shocks during the im-
age evolution. Therefore, solutions must be understood
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in the viscosity sense [4, 6, 7, 18], complicating the
numerical integration of the equations. In [18] it is
proved that an explicit finite difference scheme is a suit-
able way to integrate such equations. Explicit schemes
have the inconvenience of requiring possibly small time
steps to ensure convergence. In diffusion processes, for
instance, it depends on the coefficients of the diffusion
tensor [26] and large time steps are not advisable.

Another usual drawback of most of the present image
filtering techniques is that their steady-state is trivial,
that is a constant image for diffusion processes [24]
and either a point or a straight line for curvature based
ones [8, 10, 13]. This property, although desirable for a
scale-space analysis of images/shapes [1, 12], is a main
nuisance when using these techniques for segmenting
purposes, as they require a stopping time to recover
shapes of interest. Half-quadratic minimization and the
min/max flow are two recent techniques used to cope
with this problem. The technique we introduce in the
present paper is also on this line of research.

The method we propose consists of curvature evo-
lution image process where the shapes should present
minimal variation of curvature instead of penalizing
curvature magnitude. In this context, our evolution pro-
cess is called regularized curvature flow (RCF). A sec-
ond and important feature of the RCF is that it achieves
non trivial steady states (compared to other techniques
where the asymptotic solution is a point of the image).
To this purpose, we introduce a roughness function,
that measures the local irregularity of a curve in terms
of the smoothness of its tangent direction along the
curve. By incorporating the roughness measure to the
mean curvature flow, RCF succeeds in taking bene-
fit of the smoothing effect of the mean curvature flow
until the roughness function cancels. In this manner,
we obtain steady curves conserving features signifi-
cant enough to identify the original noisy shape. Nu-
merically, the equation can be integrated via the level
sets formulation using a finite difference Euler scheme
that supports large time steps compared to diffusion
processes.

The paper covers the following items. In Section 2
we give an overview on the most used recently de-
veloped techniques in image filtering, with a especial
emphasis on their properties concerning image pro-
cessing. Next, there is a detailed description of the
method proposed, the roughness measure is defined
in Section 3 and RCF is formulated in Section 4. Fi-
nally, in Section 5, we present numerical experiments
on synthetic shapes and real images.

2. Review of Existing Techniques

Let us begin with a short overview of the formulation
and properties of the most popular and recent tech-
niques for image processing. We have split them into
two main families: diffusion processes and geometric
flows.

2.1. Diffusion Processes

This group of filtering operators are based on the physi-
cal process of heat diffusion. The image to be smoothed
is the initial heat distribution, whose evolution in time
is given by the PDE:

ut = div(T · ∇u)

where T is a positive definite 2 × 2 matrix, known as
the diffusion tensor, that determines at each pixel/point
the direction towards heat spreads.

(a) Edge Enhancement Diffusion of Perona-Malik.
This method, introduced by Perona and Malik in [19],
not only overcomes edge blurring but also enhances
edges and profits from the smoothing effects of the
Gaussian filtering at image regions where contrast
changes are not significant enough. The image oper-
ator they propose follows:

ut = div(g(|∇u|)∇u) = guξξ + (g + g′|∇u|)uηη (1)

where ξ = ∇u⊥
|∇u| , η = ∇u

|∇u| and g(s) = λ2

λ2+s2 is the
edge enhancing function. In physical terms, one can
understand the function g as a stopping diffusion factor
that prevents diffusion across edges. In this sense only
edges such that |∇u| < λ are blurred and, further, at
those points where g + g′|∇u| < 0 edges are enhanced.

The above properties constitute the main draw-
backs of the technique. Backwards diffusion makes
the method potentially ill-posed [24, 28] (though fi-
nite differences work fine [25]) and produces step im-
ages (Stair-Casing Effects, [27, 28]). Incomplete edges
in real images are prone to be blurred (Pinhole Effect
[17]). The most popular solution is the anisotropic dif-
fusion [23].

(b) Anisotropic Diffusion of Weickert. This method
consists in using a regularized version of the gradient:

ut = div(D(Jρ(∇uσ ))∇u) (2)
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where the diffusion tensor D(Jρ(∇uσ )) has equal
eigenvectors than the Structure Tensor, Jρ , of the im-
age with eigenvalues depending on the structures to be
enhanced.

By general arguments on parabolic PDE’s [3, 23]
we have that, as far as D(Jρ) is positive definite, the
initial boundary problem has a unique smooth solution
which tends asymptotically [24] towards a constant
function. This is the main drawback of the method,
since it implies the need of a stopping time if any im-
age features are to be preserved.

2.2. Geometric Flows

The other family of filtering operators are those based
on the evolution of the level curves of the image under a
function of their curvature. If γ0(u) is a plane curve, its
evolution under a generic curvature flow is the solution
to the PDE given by:

γt (u, t) = g(κ)�n with γ (u, 0) = γ0(u) (3)

where �n denotes the curve unit normal and κ its cur-
vature. In order to guarantee that the original shape
γ0 will be smoothed, the total Gaussian curvature,
κ̄(t) = ∫ 1

0 |κ|
√

ẋ2 + ẏ2du, and the number of inflexion
points must decrease in time.

Since the quantities involved in (3) are geometrically
intrinsic and a change of parameter does not affect the
shape of the solution, geometric flows can be applied
to image filtering via an implicit level-sets formulation
[15, 21]:

ut = |∇u|g
(

div

( ∇u

|∇u|
))

= |∇u|g(uξξ )

Due to the absence of the second derivative uηη, cur-
vature flows are contrast preserving [1]. This is their
main advantage over diffusion processes [11, 15], as
they modify the shapes of edges without blurring.

(a) Mean Curvature Flow. This flow, also known as
Geometric Heat Equation, is one of the most widely
studied geometric flows. We remit the reader to [8,
10, 13] for a detailed study of the properties, we will
enumerate. Its formulation for curves is given by:

γt (u, t) = κ�n (4)

In [10] it is shown that, as far as the curvature remains
bounded, a smooth solution exists. This solution fulfills
the necessary conditions to smooth irregularities:

Proposition 2.1 [13]. Let γ (u, t) be a solution of (4)
for t ∈ [0, T ) and u ∈ [0, 1]. Then, the total Gaussian
curvature, κ̄(t) = ∫ 1

0 |κ|
√

ẋ2 + ẏ2du is a decreasing
function of time,

κ̄(t) ≤ κ̄(0)

The equality holds if and only if the initial curve is
convex.

Proposition 2.2 [10]. The number of inflexion points
(i.e. zeros of the curvature) of a family of curves, γ

(u, t), satisfying (4) for t ∈ [0, T ) is a non-increasing
function of time.

Besides, we have a complete description of the
asymptotic behavior for the family fulfilling (4) in this
Proposition:

Proposition 2.3 [8, 10]. The solution to (4) becomes
a circle and finally collapses to a point.

This Proposition supplies images and curves evolv-
ing under the curvature flow with a desirable property
for a scale-space analysis [1, 12], which studies im-
ages/shapes at different level of detail by means of a
progressive simplification of their shapes and features.
However, as in the case of diffusion processes, this
property represents a main drawback because it implies
a stopping time in order to preserve enough features as
to recognize the original shapes in the image.

The first ones to address successfully the problem
were Malladi and Sethian [14] with their:

(b) Min/Max Flow.

ut =
{

min(κ, 0) if �(x, y) < υ

max(κ, 0) if �(x, y) ≥ υ
(5)

where �(x, y) is the average of all pixel values in a
window centered at (x, y) and υ is the mean value in
the window on the level curve to be smoothed. The
steady state of the equation is a polygonal curve.

The former theoretical analysis of recent filtering
techniques points out that if an image smoothing op-
erator is to be robust against strong noisy images, it
should be independent of image intensity. Essential
advantage in this context is represented by geometric
flows. However, curvature based flows penalize high
curvature regardless of their regularity. Notice that de-
scriptors of shapes depend significantly on the extreme
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values of the curvature of the contours. Only points
lying in a neighborhood of high variability in the cur-
vature are prone to be consequence of noise and should
be smoothed. Hence, an operator designed with shape
recognition purposes should include a term penalizing
irregularity in the curvature rather than its magnitude.
We propose a geometric flow that includes a function
that measures the degree of local irregularity present in
the curve.

3. A Measure of Shape Irregularities

We model noise or lack of regularity in a curve by
means of the variability of its normal unit vector �n
around each point. We compute this variability as the
projection of the unit normal onto a robust mean of the
unit normal in a neighborhood of each point. In order to
obtain a robust mean of the normal unit vector we use
the structure tensor. We define the structure tensor Jρ

of the unit normal as the convolution of the projection
matrices onto the vector space generated by �n with an
one dimensional gaussian, Gρ , of variance ρ and zero
mean:

Jρ(u) = (Gρ ∗ (�n ⊗ �n))(u) = (Gρ ∗ (�n�nT ))(u)

=
(

a11(u) a12(u)

a12(u) a22(u)

)

Jρ(u) =
∫ ∞

−∞
Gρ(ũ − u)(n(ũ) ⊗ n(ũ)) dũ (6)

The above quantity hinges on the parameter u taken
along the curve. This is a natural consequence of con-
sidering any smooth approximation of a function. How-
ever, as it stands, Jρ is nothing but the solution to the
heat equation with initial condition the projection ma-
trix n ⊗ n at time t = ρ. This confers a geometric flow
including the roughness measure as stopping term in-
teresting properties from an image processing point of
view because it ensures convergence to non trivial im-
ages. Furthermore, these properties are not altered
by a change of parameter. Since RCF asymptotic be-
havior depends on them, our measure of irregularity
will be based on the structure tensor given by (6).

We recall that the symmetric matrix Jρ is positive
semi definite, and therefore it diagonalizes in a ba-
sis of orthonormal vectors, v1, v2. The eigenvector of
maximum eigenvalue, v1 = (cos ψ, sin ψ), is a robust
mean of the unit normal. In the absence of noise, the
scalar product 〈v1, �n〉 is close to one. Since, in fact, it

is the cosine of the angle between v1 and �n, the sine,
sin(ψ − θ ), is close to zero on smooth areas. Notice
that this last quantity simply measures the disparity
between the angles that �v1 and the unit normal form
with a fixed axis. By the former considerations, any
non-decreasing function of sin(ψ − θ ) with g(0) = 0
and g(1) = 1 will serve as stopping term. For numer-
ical stability reasons, we compute the eigenvector of
maximum eigenvalue in terms of the coefficients of Jρ .
If the tensor Jρ equals:

(
Gρ ∗ cos2(θ ) Gρ ∗ cos(θ ) sin(θ )

Gρ ∗ cos(θ ) sin(θ ) Gρ ∗ sin2(θ )

)

=
(

a11(u) a12(u)

a12(u) a22(u)

)

Then the tangent of twice the angle, 2ψ , is given by:

A = A(θ (u), u) := tan 2ψ = sin(2ψ)

cos(2ψ)
= 2a12

a11 − a22

= 2Gρ ∗ cos(θ ) sin(θ )

Gρ ∗ cos2(θ ) − Gρ ∗ sin2(θ )
= Gρ ∗ sin(2θ )

Gρ ∗ cos(2θ )

(7)

Noting the vector product with an ×, the measure of
irregularity, we propose, is as follows:

g(θ (u), u) = ‖v1 × �n‖2 = sin2(0.5 arctan(A) − θ )

= sin2(ψ − θ ) (8)

First notice that the discrete numeric implementation
of a convolution with a gaussian is approximated by
means of a windowed (squared) kernel or mask. This
implies that discrete gaussians are functions of com-
pact support. Second, even in the continuous domain,
gaussian kernels are approximations of the identity for
the convolution product. That is they converge to the
dirac delta as the variance tends to zero. For this (among
others) reason they are commonly used in the area of
Fourier analysis as a tool to study the “local” behav-
ior of functions [5, 16]. Based on the above consid-
erations, we will refer to the Roughness Measure as
local measure of irregularity, in spite of being just an
approximation to the local behavior of a function in
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the continuous domain. These are the main properties
of g:

3.1. Properties of the Roughness Measure

This section is devoted to the analysis of those points
that cancel the roughness measure. We will prove that
g measures the degree of symmetry of the curve around
each point and, thus, it cancels on circles. This prop-
erty is essential for the convergence of RCF to a non
trivial steady state. Now, the function g cancels if and
only if ψ − θ = 0, which is nothing but the angle
of v1 with respect to the unit normal at each point.
This fact motivates, for the sake of notational simplic-
ity, using ‘gauge’ coordinates, �t(u0), �n(u0), in order to
determine what characterizes those points γ (u0) such
that g(θ (u0), u0) = 0. By taking angles with respect
the axis given by �n(u0), the roughness measure equals
sin2(arctan(A)). Thus if one is to prove that g cancels in
symmetric situations it suffices to check that the quan-
tity A computed with respect to �n(u0) cancels.

Proposition 3.1. If the angle of the tangent does not
turn more that π/2, the function g measures the degree
of symmetry of the curve around each point.

Proof: Using ‘gauge’ coordinates, it suffices to check
that A(u0) = 0. We assert that the latter equality is sat-
isfied if and only if a12(u0) = 0. This follows because,
by hypothesis, θ does not turn more that π/2 and we
can assure that a11−a22 = ∫ ∞

−∞ Gρ(u) cos(2θ (u)) �= 0.
If we further take u0 = 0, the coefficient a12 equals:

a12(0) = 1

2

∫ ∞

−∞
Gρ(u) sin(2θ (u)) du

= 1

2

∫ 0

−∞
Gρ(u) sin(2θ (u)) du

+ 1

2

∫ ∞

0
Gρ(u) sin(2θ (u)) du

By changing the integration variable of the second in-
tegral by −u, we obtain:

a12(0) = 1

2

∫ 0

−∞
Gρ(u) sin(2θ (u)) du

+ 1

2

∫ 0

−∞
Gρ(−u) sin(2θ (−u)) du

Now, by assumption, the curve is symmetric around
zero (i.e. θ (−u) = −θ (u)), so that by symmetry of the
gaussian we obtain:

a12(0) = 1

2

∫ 0

−∞
Gρ(u) sin(2θ (u)) du

− 1

2

∫ 0

−∞
Gρ(u) sin(2θ (u)) du = 0

�

In the discrete version of RCF, since gaussian kernels
are of compact support, the above result implies that
g measures the local degree of symmetry in a curve.
That is, for a given scale ρ, it cancels at those points,
u = u0 where the curve is symmetric in a neighborhood
of length 2ρ+1 centered at u0. The former Proposition
and symmetry of circles yields:

Corollary 3.1. At whatever scale, ρ, the function (8)
cancels on circles.

4. Formulation for the Regularized Curvature
Flow (RCF)

For a fixed parameter u of a curve, γ0, embedded in the
plane, we define:

Definition 4.1 (The regularized curvature flow). We
suggest is the geometric flow given by:

γt = g(θ (u), u)κ�n with initial condition
(9)

γ (u, 0) = γ0(u)

with the function g given by formula (8), κ denoting
the curve curvature and θ the angle of the unit tangent
with a fixed axis.

When we consider a parameter change, u = u(ũ),
the function g will be assumed to be computed
over the convolution given by

∫
Gρ(u)F(u) du =∫

Gρ(ũ)F(ũ)uũdũ. Since a curve in the plane is de-
termined by its curvature, by means of the properties
of the PDE associated to κ and θ we can infer proper-
ties of the family of curves solving (9). Missing proofs
in the next pages can be found in the Appendix at the
end of the paper.
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4.1. Existence of Solutions

Proposition 4.1. The curvature of the solution to (9)
parameterized by the angle θ satisfies:

κT = gκ + ∂θθ (gκ)

for a new time T given by dT
dτ

= κ2.

Notice that the angle is a proper parameter if and
only if θu �= 0, hence the above Proposition only makes
sense if the curve is convex or between two consecu-
tive inflexion points. Further it ensures, by boot-strap
arguments on PDE’s [7], existence and uniqueness of
solutions for convex curves, as long as the total gaus-
sian curvature remains bounded.

Proposition 4.2. Let θ0(s, t) be the angle between
the tangent to the initial curve γ0(s, t) and a fixed axis.
Then the problem given by (9) is equivalent to:

θτ (s, τ ) = ∂s(gθs) +
( ∫ s

0
gθ2

s ds

)
θs (10)

with initial condition θ (s, 0) = θ0(s) and periodic
boundary conditions θ (0, τ ) = θ (L , τ )

As in the case of the mean curvature flow, a weak
solution to (10) exists as long as the curvature remains
bounded in L2.

Theorem 4.1. For any C2 periodic function θ0(s),
there exists a unique periodic weak solution to:

θτ (s, τ ) = ∂s(gθs) +
( ∫ s

0
gθ2

s ds

)
θs with

θ (s, 0) = θ0(s)

The solution to (10) is, at least, as differentiable as
the initial angular function [9]. Hence RCF has a unique
Ck solution.

4.2. Properties of RCF

Let us enumerate those properties of RCF that are rel-
evant to image filtering. We will distinguish between
those ensuring simplification of shapes and the ones
describing the asymptotic behavior.

A. Shape Simplification.

Lemma 4.1. Let κ(θ, t), t ∈ [0, T ), be the solution
to (10) with initial condition κ0(θ ) and assume that
gθθ is bounded by a constant M. Then, the following
inequality holds:

max
0<t<T

|κ(θ, t)| ≤ eT (M+1) max |κ0|
Proof: The function v = e−(M+1)tκ fulfills the PDE:

vt = −(M + 1)v + e−(M+1)tκt = −(M + 1)v + gv

+ ∂θθ (gv)

If the function v had an interior extremum at the set
where κ is positive, then:

0 = (g − (M + 1) + gθθ )v + g∂θθ (v) ≤ g∂θθ (v)

Since g ≥ 0, we get that the extremum is, indeed, a
minimum. A similar argument at points with negative
κ , yields that |v(θ, t)| ≤ max |v(θ, 0)| = max |κ0|. We
conclude that |κ| ≤ e(M+1)t |v| and, thus, max0≤t<T

|κ| ≤ e(M+1)T max0≤t<T |v| = e(M+1)T max |κ0|. �

Proposition 4.3. The number of inflexion points (i.e.
zeros of the curvature) of a family of curves, γ (u, t),
satisfying (9) for t ∈ [0, T ) is a non-increasing function
of time.

Proof: We will prove that between two consecu-
tive inflexion points the curvature does not change its
sign. In an arc joining two consecutive inflexion points
Lemma 4.1 holds and, so, we have that:

eT (M+1) min κ0 ≤ κ ≤ eT (M+1) max κ0

It follows that κ keeps the sign of κ0 between consec-
utive inflexion points. �

Proposition 4.4. Let γ (u, t) be a family of curves
solving (9), for (u, t) ∈ [0, 1] × [0, T ). Then the en-
ergy of the curvature ‖κ(t)‖L2 := ∫ 1

0 κ2
√

ẋ2 + ẏ2du =∫ 1
0 κ2νdu is a decreasing function of time,

‖κ(t)‖L2 ≤ ‖κ(0)‖L2

Remarks.

1. It can be proved that the length, L(t), of a curve
satisfying (9) decreases in time at the rate Lt =
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− ∫
gκ2νdu. It follows that the total curvature also

decreases in time:

κ̄(t) =
∫

|κ|
√

ẋ2 + ẏ2du ≤ L(t)‖κ(t)‖L2

≤ L(0)‖κ(t)‖L2

which is one of the requirements for curve simpli-
fication.

2. The above Proposition ensures existence of weak
solutions of the curvature equation for all time,
hence we can assure that C∞ piece-wise curves exist
for all time.

B. Convergence to Smooth Non-trivial Curves. So-
lutions to the RCF tend asymptotically to a C∞ curve,
which is the fixed point of Eq. (9) given by g ≡ 0. We
can summarize this asymptotic behavior in the follow-
ing results:

Proposition 4.5. Steady states of (9) are simple
closed curves.

Proof: First notice that existence of a Lyapunov func-
tional (the length functional, for instance) ensures that
RCF has not periodic orbits. It follows that the limit of
any orbit γ (u, t) must be a steady point of Eq. (9). The
inclusion principle [10] and stability of circles for RCF
yield the statement as follows. Let C1 be a circle con-
taining γ0 and C2 a circle included in γ0. By the inclu-
sion principle, we have that evolutions of these curves
under RCF fulfill C2(u, t) ⊂ γ (u, t) ⊂ C1(u, t). The
fact that any circle is a steady point yields the result.

�

Theorem 4.2. The roughness measure g tends to zero
over the solutions to RCF.

Proof: See Appendix B for a detailed proof. �

The above Theorem constitutes the main property of
RCF, since, on one hand, it ensures that the orbits of
RCF converge to a curve conforming to our criterion of
regularity. It, further, provides the method with a stop
criterion in terms of the magnitude of g which proves to
be extremely efficient in practical applications because
it stabilizes curves preserving (see Section 5) enough
extreme of curvature as to identify the original noisy
shapes.

4.3. Numeric Implementation via Level
Sets Formulation

The level sets implicit formulation of RCF is given by:

ut = g

( ∇u

|∇u|
)

|∇u| div

( ∇u

|∇u|
)

(11)

The exact implementation would imply tracking, for
each image pixel, the level curve though it in order to
perform the convolution with a one dimensional gaus-
sian kernel along the level-line. Since this is compu-
tationally unfeasible we propose an approximate al-
gorithm, which consists in computing the roughness
measure using a gaussian in two variables, Gρ(x, y) =

1
2πρ2 e−(x2/2ρ2)−(y2/2ρ2). That is, the structure tensor is
computed by means of the formula:

J̃ ρ(�n) = J̃ ρ

( ∇u

|∇u|
)

=
∫

Gρ(x̃ − x, ỹ − y)

·
[( ∇u

|∇u|
)

⊗
( ∇u

|∇u|
)]

dx̃d ỹ

We assert that if u(x, y, 0) is the signed distance map,
d, to the initial curve, then J̃ ρ approximates Jρ locally.
For the sake of notational simplicity the scale ρ will be
dropped, the projection matrix onto a vector v will be
noted by Pv and convolutions will be evaluated at the
origin.

Firstly, we have that, in the case of evolving the
signed distance map, it exists a neighborhood of γ0

given by � = {(x, y) ; |d(x, y)| < ε}, such that the
curves of level |δ| ≤ ε are:

γδ(u) = γ0(u) + δ�n0(u)

This follows by existence of tubular neighborhoods.
Since the curve γ0 is diffeomorphic to the unit circle
(i.e. a compact manifold with trivial normal bundle), a
tubular neighborhood [22] of size ε exists. Besides it
can be parameterized by:

[a, b] × [−ε, ε] → � ⊂ R
2

(u, δ) �→ γ0(u) + δ�n0(u)

Hence, in the parameter space of the tube (Fig. 1(c)),
the normal vectors, �n(u, δ), coincide with �n0, that is,
�n(u, δ) = �n(u) = �n0(u), ∀δ ∈ (−ε, ε). In the image
domain, this coincidence corresponds to equal normal
vector for the level curves in � when we move in the
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Figure 1. Tubular neighborhood in the image domain (a), narrow band (b) and normal vectors in the tube parameter space (c) and in the image
domain (d).

normal direction to γ0 (see the drawings in Fig. 1(a)
and (d)). The curves of Fig. 1(a) are level curves of
the signed distance map to the bold face curve inside
a tube represented by the dotted boundary curves. Co-
incidence of normal vectors for the level curves inside
the square is illustrated in Fig. 1(d).

By the above considerations, we conclude that if
we computed our approximation J̃ in the parame-
ter space of the tube it would be proportional to the
exact J :

J̃ = G(u, δ) ∗ Pn(u, δ) =
∫ ε

−ε

∫ ∞

−∞
e
− u2

ρ2 e
− δ2

ρ2

· Pn(u) dudδ =
∫ ε

−ε

e
− δ2

ρ2 dδ

∫ ∞

−∞
e
− u2

ρ2

· Pn0 (u) du = K · J

It follows that the roughness measure computed over
J̃ equals the true g. When we, instead, convolve in the

image domain, J̃ splits into the integrals:

J̃ =
∫

�

G · Pn0 dx dy +
∫

�c

G · Pn dx dy = I� + I�c

The first integral approaches the convolution in the pa-
rameter space (u, δ), meanwhile the magnitude of the
second is as tiny as the remains of the two dimensional
gaussian. The latter error vanishes if one uses a nar-
row band strictly included in the tube. That is, by forc-
ing the function u representing the curve evolution to
be constant outside the tube. Notice that this is equiv-
alent to considering that J̃ solves the heat equation
for initial condition Pn · χBand, where χBand denotes
the characteristic function of the narrow band. From
now on, we will assume that Pn = Pn · χBand. The
mesh shown in Fig. 1(b) corresponding to the abso-
lute value of the signed distance map to the bold face
curve in Fig. 1(a) is an example of the way a narrow
band works. We notice the reader that in the discrete
numeric implementation, no band is needed, since a
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discrete gaussian is of compact support. The only re-
quirement that is to be satisfied is that, for each point
of γ0, the support of the discrete gaussian is included
in the tube. This gives a bound on the maximum scale
ρ supported by the discrete level sets formulation in
terms of the initial curve.

It only remains to derive a formula for the error intro-
duced by the coordinate change in the tube. In a level
sets formulation, the parameter of a curve is the im-
plicit one, namely the one given by the x-coordinate.
We notice that, although the latter is a local parameter
and, so, the formula we are about to give only applies
to bounded domains of integration, K , there is no loss
of generality as this is the case in the numeric imple-
mentation. Hence, let us assume that the curves γδ are
implicitly given by γ I m

δ (x) = (x, yδ(x)), in particular
the tubular coordinates are determined by the implicit
parameter of γ0 = (x, y0(x)). Now, the integral IK

would yield the exact value of J |�−1(K ) if for a fixed
x = x0, the implicit parameterization γ I m

δ was equal
to the tubular one, as in this case, we would have:

e−x2
0 Pn(x0, y) = e−x2

0 Pn(x0, yδ(x0))

= e−x2
0 Pn(�(x0, δ)) = e−x2

0 Pn(�(x0, 0))

= e−x2
0 Pn(x0, y0(x0))

so that integrating over the domain K = [−a, a] × R

supporting the implicit parameter:∫
e−y2

∫ a

−a
e−x2

Pn(x, y) dx dy

=
∫

e−y2
∫ a

−a
e−x2

Pn0 (x, y0(x)) dx dy

=
∫

e−y2
∫ a

−a
e−x2

Pn0 (x) dx dy
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Figure 2. Tube parameterization versus implicit (a) and coordinate change (b).

Unfortunately this is not the case, in general, as the
polygonal curve of Fig. 2 illustrates. The implicit pa-
rameterization corresponds to cuts of the curves γδ with
the horizontal lines, meanwhile the parameterization
induced by the tube is given by the cuts with the nor-
mal lines to γ0. It follows that e−x2

0 does not weight
the matrix Pn(�(x0, δ)), but the matrix correspond-
ing to a point x̄0 obtained by projecting onto γ0 the
point (x0, yδ(x0)) along its normal direction (Fig. 2(a)).
This implies that e−x2

Pn(x, y) = e−x2
Pn(x, yδ(x)) =

e−x2
Pn(x̄, y0(x̄)) = e−x2

Pn(x̄). The explicit change of
coordinates in γ0 that makes values match (see Fig. 2(b)
for a graphical representation) is derived using trigono-
metric arguments:

x̄ = x + δ sin(θ (x̄)) ⇒ x̄ = x + δ(sin(θ (x))

+ cos(θ (x))θx (x)(x − x̄) + O((x − x̄)2)

Since |x − x̄ | = δ sin(θ (x̄)) = O(δ), it follows that the
change of coordinates x̄ is given by:

x̄ = x + δ sin(θ (x)) + O(δ2)

Finally the Taylor development of Pn0 (x̄) = Pn0 (x +
δ sin(θ (x)) + O(δ2)) yields that J̃ equals:

J̃ =
∫

e−y2
∫

e−x2
Pn0 (x) dx dy

+
∫

e−y2
∫

e−x2
δ sin(θ (x))∂x (Pn0 ) dx dy

+O(δ2) = C · J |�−1(K ) + Error

It is not difficult to check that the error introduced does
not alter the essential properties of the roughness mea-
sure given in Section 3. Furthermore, we notice that
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in a discrete implementation, curves are polygonal so
that the error introduced is nearly zero (as ∂x (Pn0 ) ≡ 0
except at junctions).

Notice that images with irregular level curves on
a textured or noisy background may evolve so that
motion of level curves does not agree with RCF. The
roughness measure could cancel on the regular curve
but not in the noisy neighborhood. However, other cur-
vature based techniques, successfully used in image
processing present a similar pathology. The min/max
flow [14], for instance, bases motion on the image aver-
age around each point. Moreover our numerical exper-
iments show that the dependency upon the embedding
function does not affect the final shapes achieved with
RCF.

5. Numerical Experiments

Two different kinds of experiments are presented:

• Tests on synthetic curves with regular and irregular
shapes in order to determine the asymptotic behavior
of the different geometric flows.

• Tests on noisy and real images illustrating the ro-
bustness of the numeric approximation of Section
4.3 against different embedding functions as well as
its applicability in practical situations.

5.1. Tests on Synthetic Shapes

This first experiment is designed to assess the asymp-
totic behavior and properties of RCF and to compare
it to the geometric flows of Section 2, Mean Curva-
ture Flow (MCF) and Min/Max Flow (MMF). All tech-
niques are implemented using a finite difference Euler
scheme for their level sets formulations. Images show-
ing distance maps plot negative values in black and
positive ones in white. Noise removal capabilities will
be checked by running the algorithms on a corrupted
version of a set of test curves. The graphics of the speeds
of the evolutions, as well as the roughness measure g
are illustrative of the asymptotic behavior of each of the
flows. We assume evolutions have reached their steady
states when either speeds are under a given epsilon (cri-
terion A) or they stabilize (criterion B). In the particular
case of RCF, by Theorem 6.2, we take the roughness
measure as speed of the evolution.

Figure 3 shows the set of test shapes used to an-
alyze the asymptotic behavior of the different flows.
The result of applying the different geometric flows

Figure 3. Synthetic shapes of test: (a) M-shape, (b) square, (c) circle
and (d) petal.

are shown in Fig. 4 for the case of the circle and the
square and in Fig. 5 for the petal and M-shape. Cir-
cles and squares (Fig. 4(a) and (d)) are, as the theory
stated, steady curves of RCF. Furthermore, any initial
curve tends asymptotically towards a steady curve that
keeps the same number of inflexion points and curva-
ture extreme than the original shape (petal and M-shape
in Fig. 5(a) and (d)). Evolution under MMF stabilizes
polygonal curves (square in Fig. 4(e)), prone to signifi-
cantly differ from the original curve (circles in Fig. 4(b)
and M-shape in Fig. 5(e)). In fact, we have observed
that MMF tends to produce convex polygonal curves,
as the evolution of the M-shape in Fig. 5(e) illustrates.
In the case of MCF, a stop criterion based exclusively
on the magnitude of the curvature makes shapes reach
their trivial steady state. Besides, although MCF speed
(Fig. 7(b)) is the smoothest one, stop criterion B stabi-
lizes the evolution at curves (the ones shown in Fig. 4(c)
and (f) and Fig. 5(c) and (f)) that hardly keep relevant
geometric features from the original shapes. This is
due to the fact that evolution under MCF converges
rapidly to the convex (round in the limit) final state as
the M-shape, the petal (Fig. 5(c) and (f)) and the square
(Fig. 4(c)) illustrate.

Our tests on noisy curves show that all methods have
similar noise removal properties and only differ in the
final shape obtained, which depends on the asymptotic
behavior of the underlying shape. Since MCF con-
verges to trivial states, only results for RCF and MMF
are displayed. The shapes recovered with RCF are the
ones shown in Fig. 6(b) and (e). Notice that they are
the only ones that produce a smooth curve capturing
the essential geometry of the original free noise shape.
In fact, the final curves obtained do not significantly
differ from the steady states of the noisy free shapes
of Figs. 4 and 5. Evolution under MMF failed to stabi-
lize for any of the two stop criteria, essentially by the
highly oscillating nature of the evolution speed (plot
in Fig. 7(b)). Images shown in Fig. 6(c) and (f) were
obtained after 3000 iterations. Comparing with RCF
we observed that the model of the shapes that MMF
recovers is worst, especially in the case of the circle
(Fig. 6(c)), where it restores a square.
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Figure 4. Asymptotic Behavior of circle and square: RCF steady states (a), (d), images obtained with MMF (7500 iterations) (b) and (e) and
stabilization of MCF (c) and (f).

Figure 5. Asymptotic Behavior of petal and M-shape: RCF steady states (a) and (d), images obtained with MMF (7500 iterations) (b) and (e)
and stabilization of MCF (c) and (f).

Figure 6. Irregular curves, circle (a) and M-shape (d). RCF smoothing of circle (b) and the M-shape (e) and MMF (3000 iterations) over circle
(c) and the M-shape (f).
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Figure 7. Graphics for the roughness measure, (a) and speeds for MMF (b) and MCF (c).

Graphics for the roughness measure (Fig. 7(a))
illustrate that not only does g decrease in time
(Theorem 6.2) but also that it tends asymptotically
to zero. This motivates choosing stabilization of the
roughness measure as the stop criterion when we deal
with highly noisy images. We also notice the reader
the irregular plot of MMF speed (Fig. 7(b)), since it re-
flects the limited efficiency of the method for practical
applications. A stop criterion in terms of speed stabi-
lization fails to stabilize evolutions under MMF and

only by fixing the number of iterations it is possible to
restore shapes. Finally, although the graphic for MCF
(Fig. 7(c)) is the smoothest one, rapid convergence to a
convex curve, makes any stop criterion useless to shape
restoration.

5.2. Tests on Real Images

This part is devoted to results on real images ob-
tained with RCF. We first present a comparison
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Figure 8. Noisy numbers. Noisy number (a), smoothing with MMF (b), reconstruction with MMF (c), smoothing with RCF (d) and restoration
(e).

Figure 9. Cross Sections of IVUS sequences. Original IVUS images (a) and segmenting surface (b), steady state attained with RCF (c) and
the resulting segmenting surface (d).

to images filtered with MMF in order to il-
lustrate the better quality of the shapes recov-
ered. We also show medical images filtered with
RCF that show the efficiency of RCF in practical
situations.

5.3. Noisy Numbers

We have used our method to reconstruct numbers ex-
tracted from real noisy images. Reconstructions result
from applying a threshold of 0.5 to the filtered images.
In Fig. 8, we can find the reconstructions of a noisy
nine (Fig. 8(a)) obtained with MMF (Fig. 8(c)) and
RCF (Fig. 8(f)). The smoothed images of Fig. 8(b)
and (e) are the steady states attained by MMF and
RCF, respectively. Both techniques succeeded in re-
moving noise from the original image and recovering
a number that can be identified as a nine. Although
the filtered image obtained with MMF presents a bet-
ter visual quality than the one produced by RCF, the
model of the number extracted from the image that
RCF yields is, clearly, smoother than the representa-
tion obtained with MMF. Notice also that images fil-
tered with MMF present small black artifacts near their
boundaries.

5.4. Application to Medical Images Smoothing

We have applied our technique to segment the lumi-
nal area in intravascular ultrasound sequences (IVUS).
Since the grey level of ultrasound images expresses the
material impedance, black pixels correspond to blood
and white ones to tissue. The aim was to obtain a model
of the artery reflecting its geometry by means of a pro-
cedure requiring the minimal manual intervention as
possible. Artifacts caused by blood flow and the speck-
led nature of ultrasound images force some kind of
smoothing of the level surfaces.

The technique proposed has been applied to cross
sections and longitudinal cuts. Figure 9(a) shows a
cross section and Fig. 9(b) the level surface segment-
ing blood from tissue. The inner border of the largest
white shape is the curve segmenting blood and tissue.
Isolated white areas in the interior of the black circle
are product of noise. The image achieved by RCF is
displayed in Fig. 9(c) and the corresponding segment-
ing surface in Fig. 9(d). Notice that small artifacts have
been removed while the segmenting curve is preserved.
In Fig. 10 we find a longitudinal section (Fig. 10(a))
and the segmenting curve (Fig. 10(c)). The wavy
shape, characteristic of IVUS longitudinal cuts, reflects
cardiac motion and is of clinical interest. Smoothed
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Figure 10. Longitudinal cut of IVUS (a), images smoothed with
RCF (b). Shape segmenting blood and tissue in (c) the original cut
and RCF (d).

versions using RCF and the resulting segmenting level
surfaces are shown in Fig. 10(b) and (d), respectively.
Notice that RCF recovered a smooth shape keeping
the same number of undulations than the original
cut.

6. Conclusions

In the present paper, we have developed the theoreti-
cal background for a method focused on obtaining a
geometric flow guaranteing convergence to non trivial
smooth curves. Our numerical experiments show its
ability to restore smooth models of the level curves in
noisy images.

Based on the former limitations and advantages of
each of the actual filtering techniques, we have de-
veloped an image filtering operator that benefits from
the smoothing effects of mean curvature flow limit-
ing its trivialization of shapes. The key point of the
proposed technique is the introduction of a local mea-
sure of curve smoothness dependent on the curvature
variation along the level set curves, rather than on the
magnitude of the curvature or image intensity. We show
that this roughness measure is useful to define a stop-
ping term in a curvature flow. Furthermore, the fact
that the measure of irregularity decreases on the orbits
of the flow, provides us with a stopping criterion that
produces a smooth steady state keeping enough signif-
icant characteristics as to identify the original shape.
The results obtained on synthetic shapes, point out that
the RCF succeeds in recovering a smoothed version
of the original curve that keeps significant inflexion
points and curvature extreme. Hence, it makes a later
recognition of shapes easier. Experiments performed
on real images illustrate its efficiency in practical
applications.

Appendix A: Existence of Solutions to RCF

Proposition 6.1. The curvature of the solution to (9)
parameterized by the angle θ satisfies:

κT = gκ + ∂θθ gκ wi th
dT

dτ
= κ2

Proof: The change to the angular parameter induces
a coordinate change in the domain of definition of the
equation, (u, t) �→ (θ (u, t), τ (t)), given by the partial
derivatives ∂u = θu∂θ and ∂t = θt∂θ + τt∂τ . Now,

following [8, 10], we have that the angle, θ, and the
curvature satisfy:

θt (u, t) = ∂s(gκ) and κt (u, t) = gκ3 + ∂ss(gκ)

Since, without loss of generality we can take τt = 1,

differentiating with respect to the new time variable,
we have that the curvature fulfills:

κτ = −θtκθ + κt = −κθ∂s(gκ) + gκ3 + ∂ss(gκ)

Using the relation between partial derivatives ∂s =
κ∂θ , we get that:

κτ = gκ3 + κ3∂θθ (gκ)

Finally, consider a new time derivative, dT defined by
dT
dτ

= κ2 to obtain:

κT = ∂T (κ(θ, t(T ))) = κt
dt

dT
= gκ + ∂θθ (gκ)

�

Proposition 6.2. Let θ0(s, t) be the angle between
the tangent to the initial curve γ0(s, t) and a fixed axis.
Then the problem given by (9) is equivalent to:

θτ (s, τ ) = ∂s(gθs) +
( ∫ s

0
gθ2

s ds

)
θs (12)

with initial condition θ (s, 0) = θ0(s) and periodic
boundary conditions θ (0, τ ) = θ (L , τ ).

Proof: In the case of the arc-length parameter and
also taking τt = 1, the coordinate change [8, 10] in the
domain of definition of the solutions to (9) is given by
∂u = ‖γu‖∂s and ∂t = −(

∫ s
0 gθ2

s ds)∂s + ∂τ Therefore,
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we have that:

θτ (s, τ ) = θt +
( ∫ s

0
gθ2

s ds

)
θs = ∂s(gθs)

+
( ∫ s

0
gθ2

s ds

)
θs

where the last equality follows from the expression of
θt ([8, 10]). This yields that angles of solutions to (9)
satisfy (12). Conversely, for any solution to (12) the
curves:

γ (s, t) =
( ∫ s

0
cos(θ ) ds̃,

∫ s

0
sin(θ ) ds̃

)

are closed curves that satisfy an equation that, up to a
change of parameter, equals (9). �

For the next theorem, we give a sketch of proof and
refer the reader to [6] for further details.

Theorem 6.1. For any C2 periodic function θ0(s),
there exists a unique periodic weak solution to:

θτ (s, τ ) = ∂s(gθs) +
( ∫ s

0
gθ2

s ds

)
θs with

θ (s, 0) = θ0(s)

Proof: Let X = C([0, T ], H 1(I, R)) be the space of
continuous functions from [0, T ] to the Sobolev space
of periodic real functions with first derivatives square
integrable. Each function, ψ ∈ X , defines the linear
parabolic PDE:

θt (s, t) = ∂s(a(s, t)θs) + b(s, t)θs

with initial condition θ (s, 0) = θ0(s)

with b(s, t) := (
∫ 2

0 g(ψ)ψ2
s ds) and a(s, t) := g(ψ).

By general theory on parabolic differential equations
([5]), we know that, at least, a C2 solution satisfying
the maximum principle exists. Furthermore, by virtue
of the equation associated to its first derivative, θs = κs ,
we have that

max
0<t<T

‖κ‖L2 ≤ eT max ‖κ0‖ (13)

Consider the sequence in H 1 defined as:

θ1 := A(θ0); θ k := A(θ k−1) k > 1

We claim that the sequences θ k and θ k
t are bounded

in L2([0, T ], H 1(I, R)) and L2([0, T ], H (I, R)−1), re-
spectively, where H (I, R)−1 denotes the topologi-
cal dual space of H 1(I, R). Then, since the spaces
are reflexive, there exists subsequences, θ km and θ

km
t

and a function θ ∈ L2([0, T ], H 1(I, R)) with θt ∈
L2([0, T ], H (I, R)−1) such that:

θ km ⇀ θ weakly in L2([0, T ], H 1(I, R)) and

θ
km
t ⇀ θt weakly in L2([0, T ], H 1(I, R)∗)

This function θ is a weak solution [7] (by virtue of
Lipschitzity of g) to the initial boundary problem of
Proposition 6.2 and produces a piece wise smooth curve
that solves Eq. (9)

The maximum principle for solutions to (12) and the
inequality (13), gives a bound for ‖θ k‖2

L2([0,I ],H 1(I,R))).
For a bound on θ k

t in H−1, consider, for each ω ∈ H 1,
the following:∣∣∣∣∣

∫
θ k

t ω

∣∣∣∣∣ =
∣∣∣∣∣ −

∫
a(s, t)θsωs +

∫
b(s, t)θsω

∣∣∣∣∣
≤ ‖θs‖L2‖ωs‖L2 + C‖θs‖L2‖ω‖L2

≤ (eT ‖κ0‖L2 + C‖κ0‖L2 )‖ω‖H 1

where we have applied Holder to obtain the first in-
equality. It follows that ‖θ k

t )‖H−1 ≤ eT ‖κ0‖L2 +
C‖κ0‖L2 . Weakly convergence for bounded sequences
in reflexive spaces yields existence of weak solutions
for finite time. Uniqueness can be proved by means of
Gronwall’s inequality. �

In [9] it is shown that solutions to (6.2) are as differ-
entiable as the initial function. It follows that θ is, at
least, a C2 classic solution.

Appendix B: Properties of RCF

Energy Bounds

Proposition 6.3. Let γ (u, t) be a family of curves
solving (9), for (u, t) ∈ [0, 1] × [0, T ). Then the en-
ergy of the curvature ‖κ(t)‖L2 := ∫ 1

0 κ2
√

ẋ2 + ẏ2du =∫ 1
0 κ2νdu is a decreasing function of time,

‖κ(t)‖L2 ≤ ‖κ(0)‖L2

Proof: We will see that the inequality is fulfilled be-
tween two consecutive inflexion points, θi , θi+1. Since
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κ belongs to the Sobolev space H 1
0 (R) of functions with

compact supports with first derivatives in L2, it can be
expressed as κ = ∑

dn(t)ωn , where the functions ωn

are the eigenvectors of the Laplacian operator −� and
we may assume they are positive. We will prove that the
coefficients dn(t) = ∫ θi+1

θi
ωnκ decrease in time. Let η

denote dn for an arbitrary n. If we differentiate with re-
spect to time and integrate by parts, as κ = 0 at θi , θi+1,
by Proposition 6.1, we obtain:

ηt =
∫ θi+1

θi

ωn∂θθ (gκ) dθ +
∫ θi+1

θi

ωngκdθ

If ∂θθ (gκ) �= 0, integrating again by parts the first inte-
gral we get

ηt =
∫ θi+1

θi

∂θθ (ωn)(gκ)dθ +
∫ θi+1

θi

ωngκ dθ

= (1 − λn)
∫ θi+1

θi

ωngκ dθ

where λn = (nπ )2 are the eigenvalues of the Laplacian
operator −�. Since (1−λn) < 0 and ωngκ is positive,
if κ > 0, and negative otherwise, we have that ηt < 0
when κ > 0 and ηt > 0 when κ < 0. This fact implies
(η(t)) that decreases in time, which proves the result if
∂θθ (gκ) �= 0.

In the case that ∂θθ (gκ) ≡ 0 we are going to show that
either the arc remains steady or we have a circle. In any
case, since circles are steady curves we have that η(t) ≡
η(0). The fact that ∂θθ (gκ) ≡ 0 implies that ∂θ (gκ) =
f (t). Now, since at the boundary points, we have that
gκ(t, θi ) = gκ(t, θi+1) = 0, there exists an interior
extremum, that is the first derivative ∂θ (gκ) cancels at
some point. This implies that, indeed, ∂θ (gκ) ≡ 0 on
the whole arc, hence we have that is gκ is constant
and equal to zero, by virtue of the cancellation of κ at
the boundary points. So let us assume that we have a
convex curve and check that it necessarily must be a
circle. Since in this case θi = θi+1 the first derivative
∂θ (gκ) must cancel in the whole curve. Developing
the derivative, we obtain that −gθ

g = κθ

κ
. Integrating

this equation, we can write the curvature in the form
κ = F(t)e1/g . Substituting this expression in the PDE
for the curvature, we get:

κt = F ′e
1
g − F

gt

g2
e

1
g = gFe

1
g

Now, because θt = ∂s(gκ) = κ∂θ (gκ), we have that
the derivative with respect to time of the factors of the

function A given by (7) cancel:

∂t (a12) = Gρ ∗ (2θt cos(2θ )) and

∂t (a11 − a22) = Gρ ∗ (2θt sin(2θ )))

It follows that gt ∼ sin(0.5 ∗ arctan(A) − θ )(At/(1 +
A2) − θt ) = 0. and F ′e

1
g = gFe

1
g . Hence F satis-

fies the differential equation F ′
F = g. Finally, since g

is independent of time, this last equality implies that,
indeed, g = C1 is constant. Thus κ = F(t)e

1
C1 and the

curve is a circle. �

Asymptotic Behavior

Before proceeding to the proof of the main property of
RCF concerning convergence to zero of the roughness
measure (Theorem 6.2), let us begin with some nota-
tions and considerations. The norm of the first derivate
of a curve solving (9) will be noted by ν =

√
ẋ2 + ẏ2.

Following [7, 8] it is easy to check that ν solves:

νt = −gκ2ν with initial condition ν(u, 0) = ν0(u)

since ν is a decreasing function of time, it is bounded
above by ν0. Furthermore, non trivality of steady states
of curves following RCF (Proposition 5) yield that ν is
also bounded from below by the minimum, νmin > 0,
of the norms corresponding to the limit curve. Also by
Proposition 5, we know that the orbits of (9) converge
to a curve fulfilling gκ ≡ 0. Since the latter quantity
is continuous (g is Lipschitz [9]) with respect the L2-
norm, it follows that:∫

gκ2 =
∫

gκ · κ ≤ ‖gκ‖L2‖κ‖L2

≤ ‖gκ‖L2‖κ(s, 0)‖L2
t→∞−→ 0

We will note t0 a time such that
∫

gκ2 < ε. The lower
bound νmin and the former asymptotic behavior will be
used in the proof of Theorem 6.2. Let us begin with a
preliminary Lemma:

Lemma 6.1. The norm, ν, satisfies:

max
t≤T

|∂u(ν2)| ≤ TMν2(u, 0) + ν2
u (u, 0)

Proof: Recall that solutions to (6.2) are C2 clas-
sic solutions that converge to a smooth function θlim
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by existence of Lyapunov functionals. It follows that
∂u(gκ2) → ∂u(glimκ2

lim) and, hence, ∂u(gκ2) is uni-
formly bounded by a constant M/2. Integrating (14)
and noting I = ∫

gκ2dt , we get that ν = e−I ν(u, 0),
so that the first derivative:

|∂u(ν2)| = |−2ν2
∫

∂u(gκ2)dt | + |e−2I ν2
u (u, 0)|

≤ Mtν2(u, 0)| + v2
u(u, 0)

�

Theorem 6.2. The roughness measure g tends to zero
over the solutions to RCF.

Proof: We recall that one of the definitions of the
roughness measure is the square norm of the vector
product:

g(θ ) = ‖�v1 × �n‖2

where the vector �v1 (cos ψ, sin ψ) is given by the quan-
tity:

A := tan 2ψ = 2a12

a11 − a22
= Gρ ∗ sin(2θ )

Gρ ∗ cos(2θ )

Therefore, by the above definition of A, g is close
to zero in the measure that the vectors �v1 = T̃ρ

= (Gρ ∗ sin(2θ ), Gρ ∗ cos(2θ )) and T = (sin(2θ ),
cos(2θ )) coincide. We will check that in the limit, when
t goes to infinity, T converges to T̃ρ . To such purpose
we will study the asymptotic behavior of the PDE’s that
the former vectors follow.

For a given parameter u for a curve following (9),
we have that T solves the PDE:

Tt (u, t) = ∂s(gTs(u, t)) = 1

ν
∂u

(
g

Tu

ν

)
with

(15)
T (s, 0) = T0

where ν =
√

ẋ2 + ẏ2. On the other hand, T̃ρ corre-
sponds to the solution at time t = ρ of:

T̃t = T̃uu with T̃ (u, 0) = T (u, t) (16)

If we change to the arc length parameter of γ (u, t), the

above PDE’s convert to:

Tt = ∂s(gTs) +
( ∫

gκ2

)
Ts

with T (s, 0) = T0 (17)

T̃t = ν∂s(νT̃s) +
( ∫

gκ2

)
T̃s

with T̃ (s, 0) = T (s, t) (18)

where ν = 1/us = ν(s) denotes the derivative of the
inverse change from parameter u to parameter s. First,
notice that in (18) s does not need to correspond to the
arc length of T̃ . Second, the quantity gκ2 is computed
over the solution to RCF wiht the function g given by
the parameter u. For a better handling of (18), we will
develop the term of the second derivative and use the
formulation:

T̃t = ν2T̃ss + 1

2
∂s(ν2)T̃s +

( ∫
gκ2

)
T̃s (19)

Let t0 be a time such that
∫

gκ2 < ε, and consider the
solutions to (17), (19) with initial condition T (s, t0).Let
(T − T̃ )2 be the square of the norm of the difference
vector and define η(t) to be:

η(t) =
∫

(T − T̃ )2ds for times t > t0 (20)

If we note Ig = ∫
gκ2, differentiate (20) with respect

to time and integrate by parts we get:

ηt =
∫

(∂s(gTs) − ν2∂s(T̃s))(T − T̃ )

+
∫

Ig(Ts − T̃s)(T − T̃ ) − 1

2

∫
∂s(ν2)T̃s(T − T̃ )

=
∫

∂s(gTs − T̃s)(T − T̃ ) +
∫

(1 − ν2)T̃ss(T − T̃ )

+ 1

2

∫
Ig∂s((T − T̃ )2) − 1

2

∫
∂s(ν2)T̃s(T − T̃ )

= −
∫

(gTs − T̃s)(Ts − T̃s)−
∫

∂s(1 − ν2)T̃s(T −T̃ )

−
∫

(1 − ν2)T̃s(Ts − T̃s) − 1

2

∫
gκ2(T − T̃ )2

− 1

2

∫
∂s(ν2)T̃s(T − T̃ ) ≤ −

∫
g(Ts − T̃s)2

−
∫

(g − 1)T̃s(Ts − T̃s) −
∫

(1 − ν2)T̃s(Ts − T̃s)
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+ 1

2

∫
∂s(ν2)T̃s(T − T̃ ) ≤

∫
(ν2 − g)T̃s(Ts − T̃s)

+ 1

2

∫
∂s(ν2)T̃s(T − T̃ ) = −

∫
(ν2 − g)T̃ 2

s

+
∫

(ν2 − g)T̃s Ts + 1

2

∫
∂s(ν2)T̃s(T − T̃ )

≤
∫

|ν2 − g|T̃ 2
s +

∫
(ν2 − g)T̃s Ts

+ 1

2

∫
∂s(ν2)T̃s(T − T̃ ) ≤

∫
|ν2 − g|T̃ 2

s

+
∫

(ν2 − g)T̃s Ts + 1

4
P2(t)

∫
T̃ 2

s + 1

4
η

The last inequality follows from Cauchy’s inequality
combined with Lemma 6.1, provided that P2(t) de-
notes the polynomial of degree 2 given by the bound
on (∂s(ν2))2 = (∂u(ν2)/ν)2. Since s is the arc length,
we have that Ts = κT ⊥, where κ is the curvature of
the underlying solution to RCF. Thus, by Proposition
6.3, its L2-norm is bounded by ‖Ts‖2

L2 = ‖κ‖2
L2 ≤

‖κ(s, 0)‖2
L2 = ‖κ0‖2

L2 . Applying Cauchy-Schwarz to∫
(ν2 − g)T̃s Ts , it follows that ηt fulfills:

ηt ≤
∫

|ν2 − g|T̃ 2
s + ‖(ν2 − g)T̃s‖L2‖Ts‖L2

≤ K‖T̃s‖2
L2 + K‖κ0‖L2‖T̃s‖L2

+ 1

4
P2(t)‖T̃s‖2

L2 + 1

4
η

where K is a bound on (g − ν2)2. Further, because
Eq. (18) is of elliptic type with initial condition T (s, t0)
it can be shown that:

ν2
min max

t

∥∥T̃s

∥∥2
L2 ≤ max

t

∥∥gκ2
∥∥2

L2

These considerations yield that ηt ≤ ε(C1‖κ0‖2
L2 +

C2ε+C3εP2(t))+C4η for suitable constants C1 . . . C4.

Finally, applying Gronwalls’s Lemma we obtain that η

is bounded by:

η(t) ≤ eC4t

(
η(0) + ε

∫ t

0
C1‖κ0‖2

L2

+ C2ε + C3εP2(t)dt

)

≤ εT (C1‖κ0‖2
L2 + C2ε + C3εP2(T ))eC4T

That is, it exists a time t0 ensuring that solutions to (17)
and (19) with initial condition T (s, t0) differ less than

ε in L2, for finite times 0 ≤ t ≤ T . Finally, Proposition
5 ensures that solutions to (15) and (16) computed over
the parameter u also converge to each other in the latter
sense since:

η(s, t) =
∫

(T (s, t) − T̃ (s, t))2ds

=
∫

(T (u, t) − T̃ (u, t))2ν(u, t) du

≥ νminη(u, t)

This asymptotic behavior, yields the following:

‖T̃ρ − T ‖L2 = ‖T̃ (ρ) − T (t)‖L2 ≤ ‖T̃ (ρ)

− T (ρ + t)‖L2 + ‖T (ρ + t) − T (t)‖L2
t→∞−→ 0

The first summand converges to zero because T (ρ+t) is
the solution to (17) for initial condition T0 = T (s, t) at
time t = ρ. Hence, ‖T̃ (ρ) − T (ρ + t)‖L2 = η(ρ) ≤ ε,
if t is large enough. The second, because solutions to
Eq. (17) are Cauchy, as they converge to a curve in
time. �

Remark. We would like to clarify that the proof of the
former Proposition does not mean that T (u, t) solves
the heat equation in the limit (this would imply con-
vergence to a trivial state!). It rather points out that the
soultion to the heat equation:

T̃t = T̃uu with T̃ (u, 0) = T (u, t0) (21)

is a sort of first order approximation of T (u, t), in the
sense that, if we note by T̃ t0 = T̃ (0, ρ, t0) the solution
to (21) for times 0 ≤ t ≤ ρ, then the collection of
functions {T̃ t0 , T̃ t0+ρ, . . . , T̃ t0+nρ . . . }n approximates
T (u, t) for times, t0, large enough.
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