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Abstract—Longitudinal motion during in vivo pullbacks ac-
quisition of intravascular ultrasound (IVUS) sequences is a 
major artifact for 3-D exploring of coronary arteries. Most 
current techniques are based on the electrocardiogram (ECG) 
signal to obtain a gated pullback without longitudinal motion 
by using specific hardware or the ECG signal itself. We pres-
ent an image-based approach for cardiac phase retrieval from 
coronary IVUS sequences without an ECG signal. A signal 
reflecting cardiac motion is computed by exploring the im-
age intensity local mean evolution. The signal is filtered by a 
band-pass filter centered at the main cardiac frequency. Phase 
is retrieved by computing signal extrema. The average frame 
processing time using our setup is 36 ms. Comparison to manu-
ally sampled sequences encourages a deeper study comparing 
them to ECG signals.

I. Introduction

a major concern during in vivo coronary intravascu-
lar ultrasound (IVUs) pullbacks is that forward and 

backward longitudinal translation along the catheter axis 
[1] results in a swinging effect on the reconstructed imag-
es. such motion produces a sequence block with spatially 
shuffled frames. The shuffled sequence does not provide a 
faithful 3-d reconstruction, hinders volumetric measure-
ments, and affects the appearance of longitudinal views.

Fig. 1 illustrates the swinging effect caused by off-plane 
dynamics at a side branch. at the top of the figure, there 
are three IVUs images at different parts of the same car-
diac cycle. The side-branch (in the second quadrant of 
images) is marked with a circle. Because of in- and out-of-
plane cardiac motion, the side branch is located at differ-
ent distances from the main artery along a given cardiac 
cycle: proximal to the main branch at frame a, distal to 
it at frame B (where it is hardly visible), and joining it at 
frame c. The longitudinal cut shown in the bottom image 
of Fig. 1 corresponds to the angle indicated with white 
solid lines in the top IVUs images. Their positions in the 
sequence are given by dashed lines (also labeled a, B, c) 
in the longitudinal cut. The swinging motion of the side-
branch is reflected in the longitudinal cut upper profile, 
which shows the characteristic saw-tooth shape.

longitudinal motion artifacts might be overcome by 
electrocardiogram (EcG)-gating approaches, which pro-

duce a static sequence synchronized with a given part of 
the cardiac cycle. synchronization can be performed either 
on-line (prospective triggering) during acquisitions [2] or 
off-line (retrospective samplings) by processing a standard 
non-gated sequence [3].

an EcG-gated system for prospective acquisition of 
images acquires only one frame per cycle, which might 
increase acquisition time up to 3 times [4]. Furthermore, 
on-line EcG-gating provides only one single sequence at 
a given cardiac phase. This reduces the potential of IVUs 
for studying bio-mechanical vessel properties (such as 
elastography), because they require analysis of vessel de-
formation at different times of the cardiac cycle [5]–[8].

These issues have motivated development of retro-
spective sampling of sequences. sequence stabilization is 
achieved by sampling sequences always at the same part 
of the cardiac phase. cardiac phase is usually defined by 
means of the interval between two consecutive r-waves in 
EcG signals [9]. However, EcG-signals are usually reg-
istered externally, by placing electrodes on the patient’s 
chest. a single catheter for registering ultrasound and 
EcG-signal cannot be introduced because there is a po-
tential differential and a reference signal on another point 
is needed. It follows that synchronized acquisition of IVUs 
frames and EcG-signal is not feasible in clinical practice 
[9]. also, to our knowledge, there is not a clear criterion 
for determining the optimal part of the cardiac cycle for 
getting maximal inter-frame stability in IVUs [9], [10]. 
although most approaches use the 0% point, which cor-
responds to end-diastole, it is still controversial whether 
this fraction provides the most stable sequences [9], [11]. 
This has recently motivated exploration of the potential of 
image processing techniques for retrieving cardiac phase 
[12]–[15] from non-gated sequences without EcG-signal.

Existing strategies for image-based gating follow the 
scheme outlined in Fig. 2. First, a signal reflecting car-
diac motion is extracted from IVUs sequences. second, 
the signal is filtered (in the Fourier domain) to remove 
non-cardiac phenomena and artifacts. Finally, a suitable 
sampling of the filtered signal is used to retrieve cardiac 
phase. all authors agree on using the extrema of a signal 
reflecting cardiac motion for sampling it at the same part 
of the cardiac phase. The main differences among exist-
ing algorithms and, thus, the clue for an accurate cardiac 
phase retrieval, are on the computation of the cardiac sig-
nal and its further filtering.

cardiac phase is obtained by exploring temporal 
changes of either vessel structures (lumen size) [12], [13] 
or image gray-level [14], [16], [17]. Given that segmen-
tation of IVUs images is not straightforward, exploring 
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vessel structures requires manual intervention. nadkarni 
et al. [12] compute the changes of lumen size by means 
of the area enclosed by a manual segmentation of vessel 
lumen. Zhu et al. [13] explore lumen size evolution by 
computing gray-level statistics inside a manually defined 
roI. Image intensity methods do not require user inter-
vention, because they do not need identification of vessel 
structures. However, the choice of the similarity measure 
detecting changes between consecutive frames is a delicate 
step. current approaches use (global) similarity measures 
taking into account all image pixels. We remit the reader 
to [14] for a report exploring the performance of differ-
ent similarity measures. such study points that measures 
based on information theory are better suited to the prob-
lem. The methods presented in [16] and [17] use cross-
correlation to compute dissimilarity matrices, which are 
used to find corresponding frames. a main limitation is 

the complexity in algorithms caused by the construction 
of dissimilarity matrices or measures coming from infor-
mation theory. Furthermore, although the first quantita-
tive results reported in [14] and [16] are very promising, 
we consider that global similarity measures are sensitive 
to texture changes and motionless regions [18].

regarding the filter used, all approaches agree on using 
a band-pass filter for discarding frequencies not contrib-
uting to cardiac motion. current approaches use wave-
let filters such as Butterworth [13] and daubechies [14]. 
Heart rate variability spreads (cardiac) frequencies around 
the main cardiac frequency in the Fourier domain. The 
more irregularities in periodicity we have, the more spread 
around the theoretic harmonic the Fourier development 
is. It follows that decay and support of the filter is crucial 
for a proper image-based EcG sampling in pathological 
cases and large segments. an analysis of the best filter 
and band-width is the first step for a robust cardiac phase 
retrieval in pathological cases and segments of different 
lengths, but has not been addressed so far.

In this paper, we contribute to image-based cardiac 
phase retrieval in two aspects: computation of the signal 
reflecting cardiac motion and exploring, for the first time, 
the impact of the band-pass filter shape on the sampling 
accuracy. The proposed signal reflecting cardiac motion 
is based on the changes that the gray-level local mean 
undergoes along the sequence. such local approach mini-
mizes the impact of texture and motionless regions and 
provides a fully automated method close to real time. re-
garding the band-pass filter, two families (with different 
decays and support) are proposed: Gaussian and Butter-
worth. We present a statistical methodology for determin-
ing which band-pass filter profile is better suited for car-
diac phase retrieval.

The remainder of the paper is structured as follows. 
In section II, we describe our process for extracting the 
cardiac signal. In section III, we describe the validation 
protocol and the test to determine which of the proposed 
filters is the best for cardiac phase retrieval in terms of 
a significant statistical difference. Experiments on in vivo 
sequences are described in section IV. Finally, discussions 
and conclusions are explained in sections V and VI.

II. cardiac Phase retrieval

according to clinical reports [19], maximum and mini-
mum lumen areas correspond to end-systole and end-dias-
tole. Following the general scheme of Fig. 2, we split our 
method into three steps:

 1)  Extraction of a signal reflecting cardiac motion. By 
the physical coupling [20], luminal area evolution is 
synchronized to other vessel cardiac phenomena, 
such as tissue motion. We propose using the latter to 
retrieve a signal reflecting motion. By the properties 
of ultrasonic images, pixel intensity is related to the 
density of mass which we approximate by the image 
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Fig. 1. swinging effect in longitudinal cuts. White lines at the same angle 
in frames a, B, c (top images) correspond to the vertical white lines in 
the longitudinal cut (bottom image). The swinging bifurcation can be 
clearly noticed in both cross-sections and longitudinal cut.

Fig. 2. Pipeline for image-based cardiac phase retrieval.



local mean (lM). The evolution of the lM along the 
sequence provides, for each pixel, a 1-dimensional 
signal. Vessel motion is not reflected in the whole 
vessel section, but only at regions presenting (abrupt) 
changes in image intensity. In the context of IVUs 
images, such points correspond to transition areas 
across tissue and structures of different nature (e.g., 
lumen-vessel wall interface or calcium plaque bor-
ders). However, arterial morphologic and geometric 
changes and breathing might corrupt the lM peri-
odic profile induced by heart beats. It follows that 
the signal reflecting cardiac motion should only com-
bine lM signals extracted at pixels properly reflect-
ing cardiac dynamics. such signals are selected by 
optical filtering [21] of the lM Fourier transform, 
LM.

 2)  signal filtering for cardiac profile extraction. cardiac 
phase is not constant along the pullback. as well, 
the cardiac profile contains cardiac information, but 
also contains other non-cardiac phenomena. This 
suggests that the profile reflecting cardiac motion 
should be filtered. Following the literature, we use a 
band-pass filter to control the regularity of the sig-
nal. Because of heart rate variability, the decay and 
support of the filter is crucial for a proper image-
based EcG sampling. We consider several filters cov-
ering different supports and decays to explore which 
one is better suited for cardiac phase retrieval.

 3)  cardiac phase retrieval. Minimums and maximums 
of the filtered signals retrieve cardiac phase at the 
same fraction (not necessarily end-diastole) of the 
cardiac cycle [9], [14]. We would like to note that 
sampling synchronized to a cardiac phase different 
from end-diastole might be beneficial for producing 
stable sequences in two aspects [9], [11]. First, given 
that sequences include frames covering all cardiac 
phases, we can retrieve segments at any cardiac 
phase (in particular end-diastole) by means of a shift 
representing the same fraction of the cycle. second, 
a sampling corresponding to extreme phenomena in 
images might yield better inter-frame stabilization of 
the static model of the vessel.

The extraction of the cardiac frequency is necessary for 
the first two steps. In the case of a constant heart rate, the 
lM would be a pure periodic signal. Pure periodic signals 
have a discrete Fourier series given by multiples (called 
harmonics) of a principal frequency. It follows that, in 
such case, the cardiac frequency is uniquely defined by the 
principal frequency. any variation in heart rate spreads 
frequencies of the Fourier series around the theoretic har-
monic. This produces a harmonic peak including all fre-
quencies that contribute to the principal periodic motion 
along its sequence. For each Fourier series, LM, we define 
its cardiac frequency as the maximum of the first har-
monic peak in the interval (45, 200) rpm [22]. For the sake 
of an efficient algorithm, the local maximum is approxi-
mated by the global maximum in such interval [23]. For 

each pixel, the lM profile is a combination of several con-
tributions [18]. Heart beat and breathing induce a peri-
odic variation of different principal harmonics. addition-
ally, morphologic and geometric arterial changes have a 
broad and wide spectrum with principal amplitudes at 
low-band frequencies. It follows that for those lM signals 
presenting predominantly breath and morphologic compo-
nents, our estimation of the cardiac frequency is biased. 
Because they constitute a small set of all image pixels, the 
average of lM cardiac frequencies for a uniform sampling 
of pixels constitutes a reliable approximation to cardiac 
frequency, which we denote ωc.

A. Step 1—Extraction of a Signal Reflecting  
Cardiac Motion

Following [24], we compute lM images by 2-d convo-
lution of the original sequence frames with an nP × nP 
averaging kernel, κ:

 LM x y t x y I x y t( , , ) := ( , ) ( , , )k * , 

where I(x, y, t) denotes the original sequence and the ker-
nel κ is an nP × nP matrix with entries (κij)ij = 1 ( )2/ nP . In 
our case, we used an (empirically set) 9 × 9 kernel. The 
local average lM is a sequence reflecting the density of 
mass of the underlying tissue. Because of cardiac motion 
(both longitudinal and in-plane) and other dynamics (such 
as breathing), an image pixel does not necessarily corre-
spond to the same material point on the artery. It follows 
that the time-dependant 1-d signal, defined by fixing the 
position of a pixel, reflects the changes in the material 
point’s mass density.

Fig. 3 shows lM evolution for three different pixels: 
from left to right, a pixel on a calcified plaque (identi-
fied in red), a pixel at luminal cavity close to lumen-ves-
sel interface (identified in green), and a motionless pixel 
(identified in magenta). Images on the left-hand side show 
the original IVUs sequence (top image) and the one cor-
responding to lM (bottom image). The positions of the 
three pixels are marked with asterisks. Points reflecting 
cardiac motion correspond to the projection of such points 
onto the image plane (usually the first sequence frame). 
It follows that they might not be on a transition border 
on the image chosen, but later on in the sequence. The 
graphs on the right side of Fig. 3 plot lM profiles along 
the pullback for (from top to bottom) calcified plaque 
(longitudinal) transition, lumen-vessel interface, and mo-
tionless pixels. The red pixel on the calcified plaque re-
flects longitudinal motion by the 3-d transition between 
calcfied and non-calcified structures along the pullback 
(the plaque crosses the position of the red pixel because 
of cardiac motion). This is reflected in the top plot on the 
right-hand side. The green pixel is close to the lumen-
wall interface, though located inside the luminal cavity. 
Therefore, in the original IVUs sequence, the lumen-wall 
interface does not cross its position at any frame. In the 
lM sequence, the 9 × 9 window used for its computation 
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extends the scope of interface regions. This is reflected in 
a periodic pattern (although weaker than the calcium pix-
el) in the middle lM plot on the right-hand side. Finally, 
the motionless pixel located in a background shadow does 
not reflect any persistent pattern in any of the sequences 
(original or lM).

The impact of background noise and textured areas, 
as well as non-cardiac dynamic phenomena (breathing, 
artery torsion, etc.) is reduced in two stages. First, we 
discard motionless pixels and, then we select pixels pre-
senting a clear cardiac periodic motion.

Motionless pixels are discarded by considering those 
points with LM cardiac amplitude over the 80% percentile 
of all LM cardiac amplitudes [24]. The amplitude filter 
removes those lM signals in which cardiac amplitude was 
biased from the true one. The remaining lM signals, after 
motionless pixels removal, should present a periodic pro-
file. Therefore, their Fourier transform LM should be as 
close to a discrete series (given by ωc multiples) as possi-
ble. However, other dynamic phenomena, such as breath-
ing, morphological changes along the sequence, as well as 
irregularities in heart beat are prone to reduce the cardiac 
amplitude and, thus, might distort the ideal discrete pro-
file. such signals do not properly reflect cardiac motion 
and should be excluded. Irregularities in periodic profiles 
make the theoretic harmonic peaks spread around ωc har-
monics. The more irregular the profile is, the more spread 

the frequencies are. We remove such signals by means of 
an optical filtering [21] centered at the principal harmonic 
ωc. optical filtering is a technique widely used in electron 
crystallography to discard harmonics corrupted with noise. 
optical filtering selects only those harmonics presenting a 
prominent peak. The degree of peak of the harmonic is 
given by the normalized difference between the amplitude 
achieved at the harmonic and an average of amplitudes in 
a neighborhood I wc  centered at the principal harmonic:

 OF
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w

 and N is the number of harmon-

ics in I wc. only lM signals with oF above a given thresh-
old [18] contribute to the average defining the signal re-
flecting cardiac motion. The length of Iω should not be 
larger than the distance between consecutive harmonics, 
which is given by kωc − (k + 1)ωc = ωc, in our case. To 
take into account all possible contributions, we consider 
the full interval I wc  = (ωc − ωc/2, ωc + ωc/2).

Fig. 4 illustrates the removal of those pixels with a non-
cardiac profile. The top graphics show the result of remov-
ing pixels with a low lM signal. on the left hand side, we 
show the uniform sampling of pixels considered to com-
pute lM along the sequence. The Fourier development 
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Fig. 3. local mean evolution of different pixels. on the left, the original intravascular ultrasound sequence (top image) and the one corresponding 
to local mean (bottom image). on the right, the graphics of the evolution of three pixels, a pixel at a salient feature (top), a pixel at lumen-tissue 
transition (middle), and a motionless pixel (bottom).



LM for three representative pixels (circled in red on the 
left image) are shown in the central plots. The top plot 
corresponds to a background pixel with no motion infor-
mation. Plots in the black box correspond to pixels reflect-
ing motion; the one in the middle shows a well-defined 
motion pattern and the one at the bottom shows an er-
ratic motion profile. The selection of pixels over the 80% 
percentile of all LM( )wc  is given on the right side image. 
We would like to note that transition pixels form a 3-d 
surface along the vessel. Points reflecting cardiac motion 
correspond to the projection of such points onto the image 
plane shown in the figure. It follows that they might not 
be on a transition border on the image chosen, but later 
on in the sequence. Because the Fourier spectrum takes 
into account all frames, their cardiac peak is well defined 
as long as they belong to lumen-wall interface in a large 
enough number of frames. Graphics at the bottom of Fig. 
4 show the removal of corrupted motion profiles. on the 
left-hand side we show the pixels selected after the re-
moval of motionless signals. central plots show LM pro-
files for the two kinds of remaining pixels. The top plot 
shows a pixel properly reflecting cardiac motion and, thus, 
it has a regular profile. The bottom plot shows a pixel not 
reflecting an accurate cardiac motion, and, thus, it has an 
irregular profile. Its erratic pattern is better appreciated 
in the close-up. Pixels selected by optical filtering are 
shown in the right image.

Fig. 5 plots the signal reflecting cardiac motion on a 
longitudinal cut. observe that the most prominent ex-
trema (maximums and minimums) of the signal reflecting 
cardiac motion correspond to maximums and minimums 
of the longitudinal cut profile. We would like to note that 
the position of the extreme of the signal reflecting motion 
is prone to be corrupted (deviated) by noise, texture, and 
non-cardiac dynamics. It follows that the signal should be 
filtered before computation of the extrema.

B. Step 2—Signal Filtering for Cardiac Profile Extraction

Even in healthy subjects, cardiac frequency does not 
remain constant along the sequence, which introduces 
(among other phenomena) irregularities in the Fourier 
transform of the cardiac motion profile. such irregularities 
distort the cardiac signal and corrupt the location of local 
extrema in the signal reflecting cardiac motion. It follows 
that the signal should be filtered. Following the literature, 
we filter the cardiac profile with a band-pass filter. We 
consider two families of band-pass filters centered at ωc: 
Butterworth (B) [13] and Gaussian-based (G) [14]. filters 
are given in Fourier domain by the formulae:
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For Butterworth, n is related to the filter decay and δ 
is proportional to its support. Meanwhile for Gaussian-
based, the decay cannot be handled (it is always expo-
nential) and only its support may be tuned by its devia-
tion, σ.

The real part of the inverse Fourier transform of the 
filtered cardiac profile is a smooth signal for the cardiac 
phase retrieval. regardless of the filter used, we denote it 
by f.

C. Step 3—Cardiac Phase Retrieval

Maximums and minimums of the filtered signal give 
a sampling at the same part of the cardiac cycle and, 
thus, retrieve cardiac phase for each selected pixel. The 
extrema in the time domain of a signal f are given by the 
zero crossings of its first derivative, f ′ = 0. Because, in our 
case, f is a differentiable function of compact support, its 
derivatives can be analytically computed in Fourier space 
using the formula [25]

 f i fk k( )( ) = (2 ) ( )
 w p w wˆ . (2)

The inverse Fourier transform of (2) for k = 1 gives the 
first derivative of f in the time domain. Zero crossings are 
computed by changes in sign of f ′.

III. Validation Protocol

The methodologies have been validated in 22 vessel 
segments 420 to 690 frames long (approximately 7 to 
11.5 mm) from the IVUs database of Incor (Hospital das 
clínicas da Faculdade de Medicina, Universidade de são 
Paulo). sequences were recorded with a Galaxy digital 
imaging console (Boston scientific corp., natick, Ma) at 
40 MHz, with a rotating single transducer and constant 
pullback speed of 0.5 mm/s. The digitization rate was 
30 fps.

automatic samplings were compared with the frames 
achieving extreme lumen areas. These extrema were man-
ually detected by exploring longitudinal cuts and selecting 
minimums and maximums of intima/lumen and media-
adventitia transition profiles. We have considered 3 qual-
ity scores and 2 different statistics for reporting results.

accuracy of each EcG-gating method is given the aver-
age along the sequence of the absolute difference between 
the positions of automatically and manually sampled 
frames. distances between manually detected frames and 
automatic ones were computed as the absolute differences 
between their positions. That is, if sk and s k are frame 
positions in the sequence for a manual and automatic 
sampling, respectively, we define their distance:

 E s sk k k= | |.-   

The distances for all frames provide a distance map 
for each sequence. We retrieve a single quantity for the 
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whole sequence (Eseq) by averaging Ek over all sampled 
frames (N):

 E
N

E
k

N
k

seq =
1

=1
å . (3)

To compare our approach to existing methods, we have 
added the following quality scores: the difference between 
the number of frames manually and automatically gated 

[9], [14] and fraction of the cardiac cycle of the algorithm-
selected frames [9].

The difference in the number of sampled frames indi-
cates the repetition rate (i.e., more than one sampling per 
cycle) of the method. Because a discrepancy of ±1 is at-
tributed to boundary conditions and is expected, we only 
report the number of segments (noted by reprate) with 
a discrepancy over ±1 frame. The fraction of cardiac cycle 
is defined for each frame as:
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Fig. 4. scheme illustrating the process of discarding pixels. The first step is discarding pixels with low signal in the local mean dynamic profile. The 
central plots correspond to the amplitudes of Fourier developments of a pixel with no motion information (top) and two pixels with motion informa-
tion (bottom). The second step is the selection of pixels reflecting a well-defined cardiac profile. The central plots correspond to the amplitudes of 
Fourier developments of a pixel with a regular profile (top) and another one with a corrupted profile (bottom). 
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We note that EFk is a measure similar to the fraction of 
r-r cycle reported in [9]. like Ek, the values of EFk for 
all frames provide a fraction function for each sequence. In 
this case, the quantity associated to the sequence is given 
by the standard deviation [9]:
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We report two different statistics for comparing the 
performance of each method: ranges for quality scores and 
multiple comparison hypothesis test over Eseq. statistical 
ranges of quality scores given by the mean ± the vari-
ance for all sequences indicate the overall accuracy of each 
method. To detect if there are any significant differences 

among methods (that is, a best/worst performer), we have 
used the multiple comparison methodology proposed by 
demsăr in [26]. For each sequence (trial) the M filters 
(there are 12 in our case and might be considered as clas-
sifiers) are ranked according to their errors [given by (3)]. 
The ranking assigns 1 to the best performer and M for the 
worst one. The average ranks are statistically compared 
to find out if there are any significant differences. First, a 
multiple hypothesis test is computed to ensure that data 
are comparable. The null hypothesis states that all filters 
are equivalent. If the hypothesis is not rejected, the fil-
ters are not statistically different because either they have 
equal performance or there are not enough data sets. oth-
erwise, all filters are compared with each other by means 
of a nemenyi test. The performance of two filters is signifi-
cantly different if the corresponding average ranks differ 
by at least a critical difference given by the test.

IV. Experiments

The methodologies were implemented in Matlab code 
(The MathWorks, natick, Ma) on a pc with a 3.20-GHz 
Pentium IV cPU (Intel corp., santa clara, ca) and 
1.50 GB of raM. The average processing time per frame 
was 36 ms.

The set of parameters scanned for each filter family 
(Gaussian filters noted by Gi and Butterworth by Bi) are 
given in Table I. Fig. 6 shows the different filter profiles 
in the Fourier domain. Each plot corresponds to a differ-
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Fig. 5. signal reflecting motion after averaging all local means selected 
by optical filter. 

TaBlE I. Filter Parameters. 

G1: {σ = 10} G2: {σ = 1.5} G3: {σ = 0.001}
B1: {n = 1, δ = 0.5} B2: {n = 1, δ = 0.05} B3: {n = 1, δ = 0.005}
B4: {n = 2, δ = 0.5} B5: {n = 2, δ = 0.05} B6: {n = 2, δ = 0.005}
B7: {n = 4, δ = 0.5} B8: {n = 4, δ = 0.05} B9: {n = 4, δ = 0.005}

Fig. 6. Battery of filters gathered according to their bandwidth. 

http://dx.doi.org/10.1109/TUFFC.2011.1774/mm4
http://dx.doi.org/10.1109/TUFFC.2011.1774/mm2


ent sub-family of filters: Gauss, Butterworth with n = 1, 
Butterworth with n = 2, and Butterworth with n = 4. For 
each sub-family, the filter with largest support is plotted 
in blue, the one with the medium support is shown in red 
and the smallest one is plotted in black. Vertical dashed 
lines indicate the frequency range around ωc used for opti-
cal filtering (ωc − ωc/2, ωc + ωc/2).

qualitative results of different filters and parameters 
are illustrated in Figs. 7 and 8 for sequences presenting 

low (Fig. 7) and high (Fig. 8) variability in heart rate. We 
show results obtained by the unfiltered signal, the signal fil-
tered with a broad-band filter (B2), the signal filtered with 
a medium-band filter (B1), and the signal filtered with a 
narrow-band filter (B9). For each signal, we plot the signals 
with their extremes marked with crosses (red for minimums 
and blue for maximums) in the top-left graphics, with x-
axis representing frames and the y-axis representing lM-
filtered intensity. The frames sampled at maximums are 
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Fig. 7. Influence of band-pass filtering in cardiac phase retrieval for a regular case. Top-left images show the signals and the sampled extreme posi-
tions. Top-right images show the extreme position (solid lines) and the manual sampling (dashed lines). Bottom images show the extreme positions 
for the complete longitudinal cut. 

http://dx.doi.org/10.1109/TUFFC.2011.1774/mm5


indicated with vertical lines on the longitudinal cuts shown 
at the bottom of each graphic. Finally the extreme position 
together with the manual frame detections are shown in 
the longitudinal cuts close-up images on the top right-hand 
side. Extreme positions of signals are plotted in solid white 
lines and manual detections in dashed yellow lines.

In both images, extreme positions of the unfiltered sig-
nal produce an over-sampling due to the impact of high 

frequencies. signals filtered with a narrow-band filter pro-
duce a regular periodic sampling suitable for cases with 
a low variability in heart rate, but are unable to cap-
ture variations caused by non-constant heart rate (images 
labeled B9 in both figures). However, broad-band filters 
produce better results for high variability in heart rate, al-
though they might over-sample regular sequences (images 
labeled B2 in both figures). The band-pass filter achiev-
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Fig. 8. Influence of band-pass filtering in cardiac phase retrieval for an irregular case. Top-left images show the signals and the sampled extreme 
positions. Top-right images show the extreme position (solid lines) and the manual sampling (dashed lines). Bottom images show the extreme posi-
tions for the complete longitudinal cut. 
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ing a better compromise is the middle-band one (images 
labeled B1 in both figures).

Table II reports the average ranks reflecting (the small-
er, the better) each filter’s performance. For a significance 
level of 0.1, the nemenyi critical difference (cd) is 3.86. 
The test detects that Butterworth filters with n = 2 and 4, 
δ = 0.005 (B6 and B9) and Gaussian with σ = 0.001 (G3), 
which are too restricted around ωc, are significantly worst. 
The nemenyi test also reports that there is not enough 
evidence of a significantly different performance among 
the remaining methods. Fig. 9 shows the filters’ average 
ranks from best (right) to worst (left) together with the 
critical difference, to visually compare all filters.

Table III reports statistical ranges for the filters achiev-
ing better ranks. The table reports ranges for Eseq in 
frames, seconds, and millimeters; ranges for EFseq; and 

the repetition rate, reprate. With the exception of the 
filter with largest support (B1), all filters present a low 
oversampling rate (at most 2). although differences are 
not significant, the Butterworth filter B2 (n = 1, δ = 0.05) 
achieves the best results with Eseq within 3.89 ± 1.80 
frames (which corresponds to 0.06 ± 0.03 mm) and EFseq 
for cardiac fraction within 8.43 ± 4.93%.

Fig. 10 shows the performance for the best configura-
tion in 2 large longitudinal cuts. The original cuts ob-
tained by considering all sequence frames are shown in 
the left images. The top segment presents the character-
istics saw-tooth shape in longitudinal profiles induced by 
heart beat. The bottom cut also contains a discontinuous 
calcium plaque at the first upper half of the sequence. 
The cuts obtained by sampling frames at the extreme 
(maximums) positions of the signal filtered with B2 are 
shown in the right images. For both cases, the EcG-
sampled images show continuous profiles for lumen con-
tours. In particular, the calcium plaque has stabilized in 
the second segment.

V. discussion

cardiac phase retrieval and compensation is a key fea-
ture for accurate 3-d exploring of coronary arteries in 
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Fig. 9. comparison of different filters. sorted average ranks from best 
(right) to worst (left) used for the nemenyi test.

Fig. 10. results of image-based EcG sampling for two different longitudinal cuts.

TaBlE II. quantitative results for the Filters selected by the nemenyi Test. 

Filter Eseq (frames) Eseq (s) Eseq (mm) EFseq (%) reprate

G1 3.8644 ± 1.7497 0.1288 ± 0.0583 0.0644 ± 0.0292 9.4705 ± 4.8763 1
G2 3.8929 ± 1.6648 0.1298 ± 0.0555 0.0649 ± 0.0277 10.2111 ± 4.5102 2
B1 4.0240 ± 1.6105 0.1341 ± 0.0537 0.0671 ± 0.0268 10.9402 ± 4.7388 10
B2 3.8972 ± 1.8001 0.1299 ± 0.0600 0.0650 ± 0.0300 8.4289 ± 4.9313 1
B3 4.4488 ± 1.9458 0.1483 ± 0.0649 0.0741 ± 0.0324 8.3204 ± 4.2297 0
B4 3.8570 ± 1.7338 0.1286 ± 0.0578 0.0643 ± 0.0289 9.9875 ± 4.7239 2
B5 4.1506 ± 1.8597 0.1384 ± 0.0620 0.0692 ± 0.0310 8.6898 ± 4.5845 1
B7 3.8680 ± 1.7279 0.1289 ± 0.0576 0.0645 ± 0.0288 9.9836 ± 4.6334 1
B8 4.2071 ± 1.8385 0.1402 ± 0.0613 0.0701 ± 0.0306 8.6713 ± 4.6943 1

TaBlE III. average rank of the Filters for nemenyi Test. 

Filter G1 G2 G3 B1 B2 B3 B4 B5 B6 B7 B8 B9

rank 5.9091 5.6591 8.2727 6.8864 4.9318 6.6136 5.9091 5.6591 8.3182 5.8409 5.7727 8.2273



IVUs sequences. Because cardiac phase can be strongly 
affected by artery lesions and other cardiac factors, we 
consider that the following issues should be discussed.

A. Comparison to Existing Methods

The first methods developed for retrospective EcG-
gating [3], [4] were mainly concerned with comparing off-
line sampling of sequences to on-line EcG-triggered ac-
quisitions. To do so, they reported comparisons between 
volumetric measures obtained using both methodologies. 
a main concern is that such validation protocol requires 
EcG-gating systems for prospective image capture, which 
are not always available and increase acquisition time up 
to three times [4].

In the absence of EcG-gated acquisitions, a standard 
well-defined methodology for comparing gating algorithms 
(image-based or not) is not available, especially in the ab-
sence of an EcG-signal. Many methods based on quality 
assessment of longitudinal cuts appearance [13], [17], [20] 
and those reporting quantitative numbers do not follow a 
standard protocol [9], [14]. such heterogeneity in valida-
tion protocols makes faithful comparison across methods 
a difficult task. also, given that there are no public IVUs 
databases, any comparison is merely illustrative, because 
reported statistics are computed from different data sets.

The error ranges for cardiac fraction (EFseq) obtained by 
the best performer (8.43 ± 4.93) compare with the ranges, 
within 8.08 ± 3.11, given in [9]. The increase in standard 
deviation might be attributed to the different number of 
samples of the databases considered (22 in our case versus 
4 in [9]). To compare our method to the single in vivo case 
reported in [14], we have computed signed distances for 
the best filter. In such a case, the average reflects the shift 
between automatic and manual samplings, and the quality 
score reflecting the accuracy of the method is the standard 
deviation along the sequence, because it reflects the vari-
ability of the sampling. We significantly outperform the 
range −10 ± 74 ms in 7 cases (representing 31.82% of our 
data) with a best range of 88.46 ± 22.98 ms. In fact, the 
average standard deviation in 16 cases (72.73%) is in the 
range within 74.35 ± 39.48 ms. The remaining cases are 
outliers that fit into one of the categories described in the 
limitations subsection (section V-E).

concerning complexity, our local approach is ( )n , where 
n is the number of frames in the sequence analyzed. This 
constitutes a significant reduction in complexity, compared 
with methods based on dissimilarity matrices [9], [17], which 
are ( )2n . Furthermore, we achieve a high performance in 
speed (close to real time) with 36 ms per frame on average.

B. Performance on Rigid Segments

different factors such as heart pumping, blood pres-
sure, or artery geometric properties mainly contribute 
to the dynamics of coronary arteries [20], [27], [28]. The 
first-order approximation to vessel dynamics is given by a 
linear transformation combining two main deformations: 
rigid (translation and rotation) and elastic (radial scaling) 

[29]. In the case of human coronary arteries, scaling is very 
close to 1 [30]. It follows that the main contributions to 
vessel cardiac dynamics are given by the rigid part of such 
approximation.

By their physical properties, calcified areas (like stented 
arteries) are rigid structures. It follows that their motion 
is almost lacking in elastic radial scaling, but still includes 
rigid contributions (translation and rotation), which are 
the predominant motions. It follows that, although pixels 
inside plaque seem motionless, image pixels on the angular 
transition between calcium and soft tissue reflect in-plane 
rotation. In a similar way, pixels on 3-d longitudinal tran-
sitions (i.e., transitions along the sequence) reflect longi-
tudinal motion. Therefore, bordering points on rigid vessel 
structures reflect cardiac motion and are good candidates 
for retrieving cardiac phase.

our data set includes 9 stented segments; the accuracy 
for these segments (using the best filter, B2) is 3.9986 
± 1.7852 frames, and thus compares to the overall ac-
curacy.

C. Impact of In-Plane Motion

The complex motion of the imaging catheter inside 
the coronary vessel causes two main motion artifacts in 
IVUs sequences: 1) in-plane rigid motion (vessel-catheter 
translation and rotation), and 2) forward and backward 
longitudinal motion along the catheter axis [1]. although 
the influence of these phenomena on the evolution of 
the vessel wall pixels cannot be clearly decoupled, both 
reflect cardiac phase in the same manner. Therefore, any 
quantity reflecting image changes induced by any of them 
is suitable for the task of cardiac phase retrieval. This 
is the case for all image-based methods which compute 
a signal that captures the changes in sequence frames 
(such as lumen area [13] or image misalignment [9], [14]) 
that cardiac motion induces, regardless of its nature (in- 
or out-of-plane).

D. Impact of Variability of Heart Beat

concerning high variability in heart rate, we recall 
that any variation in heart rate spreads the frequencies of 
the Fourier series around the theoretical harmonic. This 
produces a harmonic peak including all frequencies that 
contribute to the principal periodic motion along the se-
quence. The more irregularities in periodicity we have, the 
more spread around the theoretic harmonic the Fourier 
development is. It follows that heart rate variability influ-
ences the decay and support of the band-pass filter, which 
should include all frequencies contributing to the periodic 
component of the signal.

according to our experiments, as long as there is not 
a substantial sudden change in heart rate, the critical cri-
terion for an accurate cardiac phase retrieval is the band-
pass filter support, rather than its decay. a preliminary 
study shows that, for a given decay (Butterworth with n 
= 1) there are significant differences between large (over 
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optical filtering support given by δ = 1), medium (within 
optical filtering support given by δ = 0.05), and small (re-
stricted to ωc given by δ = 0.001) supports with nemenyi 
critical difference equal to 0.6187 and average ranks equal 
to 2.4318, 1.3636, and 2.2045, respectively.

This might not be the case for subjects presenting large 
and sudden changes in heart rate. We plan to extend the 
set of patients to cases presenting a significantly irregular 
cardiac profile, to determine the role of the filter decay.

E. Limitations

a main limitation of image-based gating methods is that 
they require an apparent cardiac motion along IVUs se-
quences. consequently, accuracy of cardiac phase retrieval 
is prone to decrease at segments on infarcted hearts pre-
senting a drastically reduced cardiac motion. Given that 
pathological groups have not been distinguished in our 
experiments, this might be a main source of error, with an 
impact on performance that has not been identified.

another source of error in current image-based meth-
ods is that they rely on changes observed in sequence 
intensity. We consider that the quality of IVUs images 
naturally bounds accuracy of intensity-based methods. It 
follows that current approaches (including ours) are un-
able to produce samplings synchronized to the shortest 
cardiac phases (isovolumetric contraction and relaxation). 
Both phases last between 30 and 70 ms [31], which would 
imply an average error between ±1 and ±2 frames. We are 
currently exploring alternative quantities to image inten-
sity evolution based on vessel dynamics.

a main limitation of our validation protocol is the man-
ual sampling of sequences, because it is prone (because 
of the quality of longitudinal cuts) to present a high in-
ter- and intra- observer variability. This might introduce a 
source of variability in statistics and it is a main drawback 
for fine tuning of the filter profile. an on-going work is 
gathering a database with EcG signals large enough for a 
better design of the filter profile.

VI. conclusions

In this paper, we propose a method for extracting car-
diac signal from analysis of IVUs images and we explore 
the ability of a battery of filters to remove noise and other 
non-cardiac phenomena. The cardiac signal is based on 
the evolution of tissue density of mass (given by image 
local mean). The filters considered cover different band-
widths (centered at the cardiac phase, ωc) and decays.

local approaches present several advantages over 
methods based on global similarity measures. The accu-
racy compares to existing approaches but significantly re-
duces computational complexity. our local method also 
performs equally well on stented segments, which shows 
its potential for clinical applicability.

concerning the band-pass filter profile, several inter-
esting conclusions are derived from our experiments. The 

band-pass filter’s support should not be too restricted 
around ωc to avoid uniform samplings. also, a large sup-
port is prone to produce sampling with a high repetition 
rate. We have observed that filters with support in the 
range considered for optical filtering (given by vertical 
lines in Fig. 6) achieve optimal performances. a prelimi-
nary trial indicates that the range (ωc − ωc/2, ωc + ωc/2) 
is a good candidate for the filter support.

Because the bandwidth of the filter is related to the 
variability in the heart rate, the performance of the filters 
on segments with a regular cardiac phase and with an ir-
regular cardiac phase could be significantly different. We 
plan to extend the set of patients to cases presenting a sig-
nificantly irregular cardiac profile, to determine whether 
this is a critical issue.
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