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Approaching Artery Rigid Dynamics in IVUS
Aura Hernàndez-Sabaté*, Debora Gil, Eduard Fernandez-Nofrerias, Petia Radeva, and Enric Martí

Abstract—Tissue biomechanical properties (like strain and
stress) are playing an increasing role in diagnosis and long-term
treatment of intravascular coronary diseases. Their assessment
strongly relies on estimation of vessel wall deformation. Since in-
travascular ultrasound (IVUS) sequences allow visualizing vessel
morphology and reflect its dynamics, this technique represents a
useful tool for evaluation of tissue mechanical properties. Image
misalignment introduced by vessel–catheter motion is a major
artifact for a proper tracking of tissue deformation. In this work,
we focus on compensating and assessing IVUS rigid in-plane
motion due to heart beating. Motion parameters are computed
by considering both the vessel geometry and its appearance in
the image. Continuum mechanics laws serve to introduce a novel
score measuring motion reduction in in vivo sequences. Synthetic
experiments validate the proposed score as measure of motion
parameters accuracy; whereas results in in vivo pullbacks show
the reliability of the presented methodologies in clinical cases.

Index Terms—Fourier analysis, intravascular ultrasound
(IVUS) dynamics, longitudinal motion, quality measures, tissue
deformation.

I. INTRODUCTION

C LINICAL effectiveness of intravascular treatments (such
as stent placement [1] or atherosclerotic disease assess-

ment [2]) depend, among other factors, on tissue biomechanical
properties. Arterial tissue elastic properties and detection of rup-
ture-prone vulnerable plaques, in particular, are one of the most
active areas of research in both the cardiology and biomedical
imaging communities [1]–[4]. The main mechanical properties
currently under study are radial strain, which is related to plaque
type and vulnerability [4], and shear stress, which influences the
probability of plaque accumulation [1]. Both measures can be
computed by means of the study of vessel tissue deformation
along the cardiac cycle.

Conventional 2-D intravascular ultrasound (IVUS) is a pow-
erful imaging tool that enables the assessment of different kind
of vessel plaques and the visualization of arterial 3-D models.
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Fig. 1. Artifacts in longitudinal cut appearance induced by cardiac motion.

Cardiac dynamics introduces a misalignment of vessel struc-
tures in short axis views as well as a saw-tooth-shape of the
vessel appearance in longitudinal views that hinders accuracy
of volumetric measures and evaluation of tissue deformation [5].
The longitudinal cut shown in Fig. 1 illustrates the two main arti-
facts induced by vessel dynamics in in vivo pullbacks. The upper
profile shows the saw-tooth-shape pattern of the vessel intima
wall (dark line) introduced by relative vessel–catheter transla-
tion. The bottom profile presents a structure misalignment due
to the relative vessel–catheter rotation for an echo-shadowing
calcified plaque.

A usual way to minimize the impact of dynamics is the use
of ECG-gated devices [6] and image-based gating methods
[7]. Both of them return a static sequence by either capturing
frames synchronized with heart dynamics [6] or discarding
those frames not synchronized with it [7]. In any case, without
a 4-D model of the artery [8], only a static model of the artery at
end diastole is reliable. Such models are suitable for volumetric
measurements, visualization, and palpography techniques
measuring peak tissue deformation. However, for a continuous
assessment of tissue elastic properties, one should consider all
frames between systole and diastole [9], [10]. Due to artery
longitudinal dynamics, this has only been achieved, so far, by
4-D fusion of angiography and IVUS pullbacks [8].

The complex motion of the imaging catheter inside the
coronary vessels causes two main motion artifacts in IVUS
sequences: 1) in-plane rigid motion (vessel–catheter translation
and rotation) and 2) forward and backward longitudinal motion
along the catheter axis [11]. Longitudinal motion disturbs com-
putation of tissue properties only in the case that the pullback
goes through a segment presenting a transition between two
different kind of plaque. Even if we account for longitudinal
motion, transitional segments might not yield a reliable esti-
mation of tissue elastic properties and, thus, deserve special
treatment. In this paper we explore in-plane rigid dynamics for
improvement of vessel physical properties evaluation [9], [10],
[12].
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Current approaches for motion compensation in IVUS work
on three main domains: image intensity [10], [12], radio-fre-
quency (RF) signal [13], and vessel geometric appearance [9].
Intensity-based approaches rely on either registration [10] or
tracking [12] strategies. In the case of large displacements,
tracking [12] fails to yield the expected results, whereas reg-
istration [14] requires exhaustive (computationally inefficient)
search of the parametric space. Moreover, changes in image
intensity from one frame to the next one substantially affect
the performance of intensity-based algorithms. Explicit for-
mulae of motion parameters overcome the limitation of capture
range, whereas the impact of morphological changes is reduced
by including geometric considerations to the algorithm. In
this fashion, the motion artifact reduction developed in [9]
achieves good results, as long as, only catheter translation
compensation is required. An alternate way of dealing with
image intensity changes is considering the RF signal [13]. On
one hand, although IVUS images are reconstructed from RF
signals, not all IVUS devices allow recording and exporting
such signals. On the other hand, vessel translation is given by
the difference between the position of the center of the catheter
and the center of the vessel. Since the RF domain is defined in
polar coordinates centered at the catheter, translations are not
straightforward and, in fact, existing algorithms based on RF
signals only address rotations.

We propose modelling image in-plane dynamics as a rigid
body motion [15], which is given in terms of a translation fol-
lowed by a rotation. We provide explicit formulae for motion
parameters by combining vessel appearance and shape. In order
to allow a complete exploring of vessel dynamics, we decom-
pose motion into a geometric term due to vessel shape and a
dynamic one induced by heart beating and breathing. We take
special care in defining an objective score to assess parameters
accuracy in real data and introduce a novel quality score mea-
suring image alignment. Two sets of experiments are presented:
validation on synthetic sequences and performance in real pull-
backs. Synthetic experiments assess the accuracy of motion pa-
rameters and validate our quality score. Results on in vivo pull-
backs show the score correlation to visual appearance of longi-
tudinal cuts. Finally, we present a first approximation to image
based ECG gating.

The remainder of the paper is structured as follows. In Sec-
tion II we describe our dynamical model and in Section III
we decouple motion geometric and dynamic terms. The quality
measure is defined in Section IV. Experiments on synthetic and
real sequences are exposed in Sections V and VI. Finally, dis-
cussions and conclusions are explained in Section VII.

II. CROSS SECTION DYNAMICS

A. Rigid Body Motion

The dynamics of coronary arteries is mainly governed by
the left ventricle motion, blood pressure, and artery geometric
properties [16]–[18]. The first order-approximation to vessel dy-
namics is given by a linear transformation combining transla-
tion, rotation, and scaling [19]. Given that size changes are im-
portant indicators for artery properties (distensibility and com-
pliance), scaling compensation is not addressed. Rigid motion

is given by a rotation followed by a translation and can be mod-
elled as a rigid body motion.

Rigid body dynamics is determined by means of the center
of gravity or mass since it is the point describing the object re-
sponse to external forces and torques [20]. In this framework,
the object motion is given by a rotation centered at its center of
mass, which position is identified to the object translation. If the
center of mass of the object at time zero is taken as origin, then
the linear application mapping the object at a given time to the
object at time zero is given by

(1)

for the position of the center of mass and the
angle of rotation in radians. In the case of IVUS sequences, rigid
motion parameters are computed by combining vessel geometry
and appearance as follows.

B. Vessel Translation

The translation aligning a given frame to a reference frame is
determined by the center of mass of the vessel (namely VCM) at
such frame. In IVUS sequences, images are reconstructed from
the reflection of an ultrasound beam against particles and, thus,
grey level reflects tissue mass density [21], [22]. Therefore, the
center of mass given by the image intensity (namely ICM) cor-
responds to the physical center of gravity of the vessel. How-
ever, some acquisition devices allow interactive tuning of the
image brightness in order to enhance tissue and vessel struc-
tures appearance [23]. Since such intensity gain is radial [24],
tissue close to the catheter might look brighter. Thus, for ves-
sels not centered at the catheter, intensity gainings might deviate
the position of ICM from the true center of mass. Although the
vessel geometric center (namely GCM) only coincides with the
center of mass in the case of uniform tissue density, we use it to
compensate the deviation of ICM for noncentered vessels.

The image center mass ICM is given by averaging image pixel
positions, , weighted by their grey-value intensity

for and the number of rows and columns of the image.
The geometric center, GCM, of a set of image points,

, is computed as the average of their positions

In our case, the points are a set roughly lying on the transi-
tion between media and adventitia layers, since it is the vessel
structure best preserving its shape regardless of morphological
changes. The detection of adventitia points [25] is two-fold.
First, vessel translation induced by heart motion is reduced by
taking as origin the image center of mass ICM. Then, points
roughly lying on the adventitia can be extracted by means of
negative horizontal edges of the polar image centered at ICM as
detailed in [25]. The set is obtained by transforming
their polar (radial and angular) coordinates to the Cartesian do-
main.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on December 2, 2009 at 10:06 from IEEE Xplore.  Restrictions apply. 



1672 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 11, NOVEMBER 2009

The geometric center of mass is used to correct the center
ICM in the measure that the vessel wall is not centered at the
catheter. Consider the maximum, , and minimum, ,
distances of the set to the image center

And let DR note the vessel–catheter deviation rate given by

Then, the vessel center of mass, VCM, is defined as

(2)

C. Vessel Rotation Angle

Once vessel translation has been compensated, two global
motions still remain: rotation and radial scaling. Although this
paper does not address radial scaling, in the polar domain with
origin VCM, they convert into a horizontal translation (corre-
sponding to rotation) and a vertical scaling, (corresponding to
radial scaling)

for two consecutive polar frames (with origin at VCM) of
the sequence. In the case of human coronary arteries, scaling is
very close to 1 [26], so becomes a perturbation of
identity given by . Furthermore, we restrict computations to a
band around the media-adventitia layer, given by .
By Taylor’s formula, it follows that the first-order approxima-
tion to is given by

for denoting the partial derivative with respect to the second
variable.

Since and are constant shifts, the first-order approxima-
tion to can be computed by applying the Fourier transform
[27] and using phase correlation [28]. Let be the Fourier
transforms of and let us assume that they differ in a pure
translation

then their Fourier transforms are related via

for the Fourier frequency and
the Euclidean scalar product.

If we consider the phase, , of the ratio between the two
Fourier transforms [29], we have that

so that the points lie on a plane, , with the slopes
given by the translation

In practice, noise and texture introduce a scatter in the set
, especially for those frequencies with smaller

amplitudes. We reduce noise-scatter by only considering those
frequencies common to both images with an associated ampli-
tude larger than a given percentile. Such frequencies with the
phase yield a point cloud, which regression plane provides a
least-square estimator of the plane .

The first slope of the regression plane is our estimation of
the angle of rotation between two consecutive frames. Rotation
angles are given in the range , which cover all
possible rotational motions. The rotation of each image at time

with respect to a reference frame at time 1 is computed by
accumulating all frame-to-frame rotation angles. Let be
the rotation angle between two consecutive frames at times
and , then the rotation angle aligning the th frame to a first one
is given by

(3)

The reliability of the rotation angle is related to the regression
plane fitting error (residuals). Large residuals indicate a poor
linear dependency between frequency and phase. In this cases,
the estimated parameter does not properly approach the rotation
angle and should be discarded. Since our polar images are 360
pixels wide, anomalous cases are detected by a mean fitting error
over 1 (degree/pixel). Such angles constitute less than 6.43%
of the data analyzed and their values are interpolated along the
sequence using the preserved angles.

D. IVUS Dynamics Compensation

We align sequence frames to a first reference frame by ap-
plying (1) to the th image

for given by formula (3) and
given by applying (2) to frame . Images are corrected by trans-
forming to polar coordinates with origin ; horizontally
shifting polar images degrees and converting to the cartesian
domain with origin, , at the image center.
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III. DYNAMICS EXPLORING

The rigid motion that cardiac vessels undergo is a complex
dynamical process which results from the combination of sev-
eral contributions. In general, it presents a geometric component
related to the artery 3-D shape and a dynamic one induced by
breathing and cardiac movements [22]. Depending on the par-
ticular problem we approach, each of the terms should have spe-
cific treatment. Exploring artery geometry might be derived by
analyzing the geometric component [30], whereas extraction of
cardiac dynamics concerns the cardiac dynamical contribution
[31]. In the case of vessel biomechanics analysis, the goal is to
produce a static model allowing a better tissue tracking along
the segment. Firstly, we note that, without further analysis, the
geometric component does not reach a reliable 3-D representa-
tion of the vessel geometry, which might lead to wrong static
models. Secondly, even if we could infer the true 3-D geometry
from it, by compensating vessel tortuosity we have no guarantee
of a better alignment of vessel plaque. Therefore we suggest cor-
recting only the dynamical terms of the translation and rotation
for stabilizing the sequence.

In order to allow a complete comprehension of vessel dy-
namics, in this section we provide the mathematical tools for
decoupling each of the terms. The subindex will denote the
geometric term of a motion parameter, the subindex the one
induced by heart beating and the subindex breathing contri-
butions. As usual, Fourier transforms will be indicated by a hat

over functions. The translation and rotation parameters are
functions of the time . Using these notations, we have that the
angle and translation decompose into

(4)

Breathing and cardiac terms are periodic and, thus, have a dis-
crete Fourier spectrum (Fourier series given by the principal har-
monic), while geometry has a broadband (nondiscrete) spectrum
[27]. Principal harmonics have been learned by supervised clas-
sification of the spectrum of a training set of 30 patients without
apparent lesions used in a study for assessment of myocardial
perfusion in contrast angiography [32]. Confidence intervals of
the 95% yield the expected ranges for the principal frequency
of each of the periodic components. For breathing it is (10,45)
repetitions per minute (rpm), while for cardiac motion it is (45,
200) rpm.

We approach each term in (4) as follows. We model the artery
geometric component [30] as a function. Since the artery
length is finite, the geometric component is a function of com-
pact support and, thus, the derivatives of the geometric compo-
nent are integrable functions. Therefore, its Fourier transform is
of rapid decay, so that, high frequencies are negligible [33]. We
approximate the geometric term by the frequencies between 1
and 10 rpm. The study reported in [32] indicates that, in spite
of being periodic, breathing can be defined by the whole spec-
trum in the interval (10,45) rpm. Finally, cardiac motion prin-
cipal harmonic, , is defined as the first local maximum in (45,
200) rpm and the term is approximated by the first 10 harmonics,

.

It follows that the motion terms of a sequence lasting
seconds are given by

(5)

where the period is the sequence length
(in minutes) and defines the domains of integration as

and .
Since, even in healthy cases, the heart rate varies along the

pullback, the peaks in the Fourier series are spread around the
theoretic harmonic frequencies. The more irregularities in pe-
riodicity we have, the more spread around the theoretic har-
monic the Fourier development is. The harmonics less corrupted
by noise are obtained by optical filtering [34]. The technique,
widely used in electron crystallography, selects Fourier peaks
by thresholding the difference between the amplitude achieved
at the harmonic and an average of neighboring amplitudes. Har-
monics selected by optical filtering are the only contributions to
the sums in (5).

Fig. 2 shows the Fourier terms decoupling for the rotation
angle in the top left plot. Vertical lines in the Fourier spectrum
of the signal (bottom left plot) indicate the ranges defined for
the three phenomena. Dots mark the 10 cardiac harmonics and
squares the ones selected after optical filtering. The three com-
ponents of the angle are shown in right plots.

IV. DYNAMICS QUALITY MEASURE

In real pullbacks there is no objective error measure indi-
cating the amount of motion suppressed, since motion parame-
ters are unknown. In most cases, quality measures are either sub-
jective measures, based on the visual appearance of sequences
and longitudinal cuts [7], or rely on extraction of vessel proper-
ties (such as strain in [10]). In this section, we develop an ob-
jective measure which is related to the accuracy of the estimated
parameters.

In order to obtain an objective measure of the amount of mo-
tion suppressed two main issues should be addressed. Firstly,
a similarity measure quantifying image changes along the se-
quence should be defined. The evaluation of the similarity mea-
sure on sequences before and after motion compensation pro-
vides two motion scores. A second stage concerns defining a
criterion for comparing such scores.

Usual similarity measures (such as normalized mutual infor-
mation [35] or normalized cross-correlation [36]) yield scalar
values based on image intensity (overall) differences. Since they
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Fig. 2. Motion decomposition. Rotation angle and its Fourier decomposition on the left; geometric, breathing, and cardiac terms on the right.

reach an extreme value for aligned images, they are success-
fully applied to motion detection [10], [37]. In the case of as-
sessing motion compensation in IVUS sequences, they present
two main limitations:

• Computation is sensitive to image digital quality. In the
case of intensity-based metrics (cross-correlation, sum of
square differences ) texture and speckle might decrease
their accuracy and force a previous image filtering [37]. In
the case of probabilistic approaches (e.g., normalized mu-
tual information) values are substantially affected by the
number and distribution of histogram bins, which depend
on grey-values range and resolution.

• They provide a global estimation of the alignment rate.
Usual similarity measures are scalar scores computed, at
most, over a region of interest. However, vessel motion is
not visually noticed at all image pixels but only at some
salient areas, such as calcium transitions or adventitia
points of extreme curvature. This motivates adopting a
local approach and tracking image motion for each pixel.
Although cross-correlation and sum-of-square-differences
support reliable computation in small neighborhoods
(compared to information measures, which need a min-
imum number of samples for a reliable computation [35]),
they are highly affected by image backscatter [37]. Thus,
for small sets of pixels, their values might be (random)
quantities due to noise.

Regarding the comparison criterion for motion scores com-
puted before and after compensation, the following should be
noted.

• Extreme values are influenced by the anatomic and
morphological differences along the vessel segment.
After motion correction, vessel displacement has dis-
appeared, but morphological changes still remain. That
is, even in the best case, comparison of aligned images
along the sequence is prone to be a non-constant function
depending on the particular morpho-geometric changes
of the vessel segment. We claim that, in order to properly
quantify vessel alignment, only the dynamic components
should be taken into account.

By the above considerations, both, the similarity measure and
the comparison criterion, should discard image areas where mo-
tion is not observed. Otherwise the score is prone to detect a
random motion (due to dark areas, blood, and other artifacts)
rather than the true vessel motion. This leads to considering a
local approach for the definition of both quantities and only use
values computed for those pixels which contribute relevant in-
formation about global alignment.

Inspired on strategies of classic fluid mechanics [38], we pro-
pose exploring the conservation of a physical quantity along
the sequence. In particular, we use the local density of mass
as it might be approximated by the image local mean, LM. We
compute LM in sliding windows of size (empirically set) 9 9
pixels. The LM values for all images provide a pixel-wise func-
tion describing the conservation of the local density of mass
along the sequence.

Concerning comparison before and after motion compensa-
tion, we propose comparing only cardiac terms [15]. Let
and be the Fourier transforms of LM (or any other simi-
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larity score) before and after correction and con-
sider the cardiac frequency as given in Section III. We define
the Cardiac Alignment Rate (CAR) as

(6)

for and the amplitudes corresponding to

the cardiac frequency of and , respectively. The CAR
index is close to 1 in the case that cardiac motion has been sup-
pressed, whereas approaches zero (or becomes even negative)
for a poor rate of motion reduction.

The CAR score is well suited for evaluating cardiac motion
suppression at specific image areas (those showing motion in
our case). In order to measure the reduction of (global) motion
a score involving all valid CAR values should be defined.

Fig. 3 sketches the main steps involved in the computation of
our quality measure: computation of the image descriptor (top
block), conservation of local density along the sequence (middle
block) and the CAR value for all pixels (bottom block). The first
block illustrates the modelling of the local density of mass in
terms of the image local mean. The local mean of the image
(shown on the right hand side) is obtained by computing, for
each pixel, the image mean on a window (white square on the
left image) centered on each pixel (black point). In the second
block, we have the evolution of the local mean at a single pixel
before (left) and after (right) image alignment. The plot obtained
before alignment presents a well defined periodic behavior; af-
terwards, although the periodic pattern has been suppressed, the
function still presents a variability due to noise and morpho-
logic changes. The third block shows the (sorted) CAR values
obtained for all image pixels on the top plot, as well as, the po-
sition on the images of those pixels achieving extreme values
(dotted squares on the CAR plot) at the bottom. Since we deal
with a global movement, all pixels in an image should present
a similar CAR value. However, at blood, uniform, and outer
areas CAR achieves extreme low values (left bottom image),
while pixels showing motion (like calcium–tissue transition on
the right image) present a uniform (high) CAR value.

We define our conservation of density rate (CDR) as the
trimmed mean [39] of the CAR value

for prct a given percentile. We have experimentally checked
that CDR computed for the superior 66% percentile statistically
compares (in the sense of random variables) to the angle relative
accuracy (Section V-A and [40]).

V. VALIDATION PROTOCOL

A. Synthetic Data

Our synthetic experiments focus on addressing the following.
• Accuracy of the motion parameters estimation. Rigid

motion requires computing two parameters: translation and
rotation. Translation accuracy depends on the vessel center
of mass, while rotation angle relies on the ability of Fourier
analysis for computing global translation. The center of
mass bases on the estimation of vessel walls geometry and,

Fig. 3. Quality measure computation.

thus, its accuracy depends on the appearance of vessel mor-
phology. Concerning angle estimation, the first component
of the translation given by Fourier analysis on polar images
estimates the rotation angle as far as the center of mass is
accurate. Any deviation makes the horizontal component
underestimate the rotation angle, since it would also de-
compose into a vertical shift. We have generated computa-
tional dynamic phantoms simulating different vessel mor-
phologies and motion patterns.

• Reliability of CDR as measure of parameters accuracy.
The motion parameters used for generating the phantoms
constitute the ground truth. The absolute and relative errors
for the difference between estimated and ground truth pa-
rameters are our quality measures. In order to validate CDR
we have compared it to the relative accuracy of the rotation
angle (see Section V-C). We have chosen the angle relative
accuracy since its computation depends on the center of
mass and, thus, it reflects the overall error. We also report
results obtained for the cross-correlation (CC) computed
on LM images.
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Our computational phantoms have been created by applying
a rigid motion [given by (1)] to still sequences distilled from real
pullbacks. We have considered two motion models.

1) Synthetic Profiles. In order to illustrate that there are no
limits in parameters range, synthetic motions simulate a
frame-to-frame angular step of 1 and 10 . Two different
patterns have been considered: a periodic sinusoidal mo-
tion (with several amplitudes and frequencies in the car-
diac range) and a quadratic function.

2) In vivo Profiles. In order to produce motions as realistic as
possible we have used motion parameters extracted from in
vivo sequences using our methodology. Since performance
relies on the translation accuracy (strongly dependant on
vessel appearance), errors do not benefit from using motion
patterns computed with our methodology. We have consid-
ered five in vivo motion patterns.

Regarding vessel morphologies, we have used two models.
1) Static Model. It is based on a unique image repeated 200

times simulating a sequence block of a motionless artery
pullback. Errors for this model constitute the lower bound
for the methodology accuracy.

2) Sequence-based Model. It is obtained by compensating
motion of in vivo pullbacks and detects the sensitivity to
varying morphologies (see Fig. 4). We have taken five
vessel segments not belonging to the set used for extracting
motion patterns.

B. In Vivo Data

Performance in real pullbacks has been validated in 32 vessel
segments from clinical cases of the Hospital Universitari “Ger-
mans Trias i Pujol” in Badalona, Spain:

• 17 Left Anterior Descending (3 ostial, 2 proximal, and 12
medium);

• 11 Right Coronary (2 ostial, 5 proximal, and 4 medium);
• 4 Left main Coronary (2 medium and 2 distal).
Sequences have been recorded using a Galaxy–BostonSci de-

vice at 40 MHz with a rotating single transducer and constant
pullback (0.5 mm/s). The digitalization rate was 30 fps and dig-
itized images were 480 480 pixels with a resolution of 0.04
mm/pixel. The segments analyzed are 5–6 mm long (200–300
frames per pullback) and cover different plaques (from soft to
calcified), morphologies (including branches), and motion arti-
facts (such as longitudinal motion).

C. Quality Scores

Let us note the set of mo-
tion parameters used to generate the th frame of a synthetic
sequence and the parame-
ters estimated by our algorithm. For each frame and motion
parameter , we consider the absolute errors and relative
accuracies defined [40] as

These quantities provide, for each sequence and motion param-
eter, an accuracy function. In order to obtain a single quality

score for each sequence, we consider the maximum and average
of accuracy functions over all sequence frames

(7)

for the number of frames of each synthetic sequence.
The statistical ranges of the norms (7), given by the mean
the variance for all phantoms, indicate the overall accuracy

(mean) and stability (variance) of the method. Error ranges are
given in pixels for the translation and in degrees (pixel precision
in polar coordinates) for the rotation angle.

In the case of CC, normalized cross-correlation [36] is com-
puted between the (whole) image at time and the reference
one and three scores are considered:

• average along the original sequence;
• average along the processed sequence;
• CAR on CC: defined by (6) as

.
Image misalignment in IVUS sequences mainly follows from

rigid motion [19] and, in our simulated IVUS sequences, only
depends on it. It follows that, in our synthetic experiments, im-
ages in processed sequences are aligned in the measure that
such rigid motion has been properly compensated. Motion is
correctly compensated if and only if motion parameters are cor-
rectly estimated. Thus, a measure of the increase in image align-
ment (CDR) and the accuracy in the estimated parameters
are two different procedures for assessing the same concept (at
least in synthetic tests). Statistical analysis comparing means
(paired Student t-test with confidence intervals, CI, at 95%) and
pdf’s (Kolmogorov-Smirnov goodness-of-fit) are used to check
whether there is any significant difference between alignment
measures and . We also report Pearsons correlation coefficient
and regression coefficients for CDR and .

VI. EXPERIMENTAL RESULTS

A. Synthetic Data

Table I reports the absolute error ranges for
synthetic motion profiles. Note that errors do not substantially
differ between the two synthetic motion profiles considered
(periodic and quadratic). As expected, error ranges increase
as morphological changes appear (Sequence Model). Re-
garding the step, there is no difference in between 1 and
10 . Student (pairwise) t-tests return a p-value equal to 0.99

for Static models and equal to 0.98
for Sequence ones.

Fig. 4 shows box plots for for in vivo profiles
and Sequence models. A reference image from each of the se-
quences is shown at the bottom row. Case1 and Case2 are vessel
segments centered at the catheter, Case3 and Case4 are off-
center and Case5 is a branch with longitudinal motion. A hori-
zontal line indicates the bound for subpixel accuracy. In general,
there is an increase in angular error due to its dependency on the
center of mass.

In Table II we summarize the absolute error ranges for in vivo
motion profiles. Static models achieve subpixel accuracy for av-
erage ranges . As in Table I, errors increase for Sequence
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TABLE I
ANGLE ABSOLUTE ERROR RANGES FOR SYNTHETIC PROFILES

Fig. 4. Box plots for the sequence-based phantoms (first row) and a representative image of the sequence for each phantom (second row).

TABLE II
ABSOLUTE ERROR RANGES FOR IN VIVO PROFILES

models, although average ranges are below 1.67 pixels for
translations and 2.44 for rotations .

Table III reports the statistics summary for the validation
of CDR (using the upper 66% CAR percentile) as accuracy
measure. We report ranges for and CDR, as well as, the
(pairwise) t-test p-value and the confidence interval (CI).
The right-most three columns are devoted to comparison to
normalized cross-correlation measures: and CAR
on CC. There is no significant difference in means between
CDR and with at most a % of discrepancy. According to
a Kolmogorov–Smirnov test for comparison of random vari-
ables, there is no evidence of difference in their distributions
(with a p-value of 0.3334 and 0.9545 for Static and Sequence
phantoms, respectively). Regarding CC, in the absence of
morphological changes (Static Model), and ranges
are similar. On Sequence phantoms, there is no significative
difference between and , which suggests using the
CAR score. However, the global nature of CC, makes CAR on
CC underestimate the amount of motion suppressed.

Fig. 5 shows the regression line for the point cloud given by
plotting ( variable) against CDR ( variable). The regres-
sion coefficients for the model are

and . Pearson’s correlation coefficient indi-
cates a significant linear dependency . Finally, the
F-statistics for testing clearly show (with

) that both scores are correlated.

B. In Vivo Data

Fig. 6 shows four cases with decreasing CDR values (from
left to right): 89%, 83%, 75%, and 63%. The first row shows
a frame of the original sequences. The corresponding longitu-
dinal cuts at the white lines are shown on the second row and the
same cut after sequence alignment on the last one. The sequence
in the first column [Fig. 6(a)] presents a structure misalignment
due to rotation. The calcium shadow appears and disappears in
the original longitudinal cut, whereas it shows a uniform appear-
ance after alignment. In the second column [Fig. 6(b)] transla-
tion introduces a saw-shape in the original longitudinal cut (es-
pecially at the end of the segment). After compensation, only
a faint undulation due to radial dilation remains. The longitu-
dinal cut in Fig. 6(c) shows a straight profile (both before and
after alignment) in spite of a lower CDR. This phenomenon,
which appears in the absence of motion, is inherent to any rel-
ative measure like CDR [40]. Finally, in Fig. 6(d) we show the
worst performer, both, in terms of longitudinal cut appearance
and CDR value. Since a proper alignment is only achieved at
the second half of the segment, we have 63% of motion reduc-
tion. Regarding objective measurement of IVUS alignment, we
have that the statistical range for CDR gives an overall motion
reduction of % %.
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TABLE III
ALIGNMENT MEASURES VERSUS ANGLE RELATIVE ERROR

Fig. 5. Linear correlation between CDR and angle relative accuracy �� �.

C. First Approach to Longitudinal Motion

The first step for modelling longitudinal motion in IVUS se-
quences is retrieving cardiac phase information. In this section
we illustrate our methodology’s potential by presenting a first
approach to image-based ECG sampling. According to [41],
minimum and maximum lumen areas are around the beginning
of the QRS complex (end systole) and the T-wave (end dias-
tole) peak in the ECG signal. Luminal area evolution is synchro-
nized to other vessel cardiac phenomena, such as rigid motion or
tissue motion. In particular, we have that the extreme values of
the local mean evolution LM contain information about cardiac
phase. In order to extract it we apply a Butterworth bandpass
filter to LM Fourier development [31]

for the cardiac frequency defined as in Section III, and
as set in [31].

The inverse Fourier transform of the filtered LM signal
(HLM) provides, for each image pixel, information about
end systole and diastole. In order to retrieve the global phase
information, we combine the filtered LM signals. Following the
considerations given in Section V-C, we only consider those
LM reflecting cardiac motion and define the cardiac phase
pattern, CPh, as the average

for prct the 80% percentile of all LM cardiac amplitudes. The
peaks of CPh give a sampling at end diastole, while valleys cor-
respond to end systole [31], [41].

In Fig. 7 we illustrate the performance of our approximation
to image-based ECG gating. The top row shows the ECG sam-
pling on a short longitudinal cut at a side branch. The left image
corresponds to the original cut with the side branch on the upper
half. The image on the right shows the sampling given by CPh
peaks in dashed lines. We note that peak match the extreme
points of the longitudinal profile. On the bottom row, we show
two large (over 5 cm) longitudinal cuts (left images) sampled at
end diastole rate (right images).

VII. DISCUSSION AND CONCLUSION

This paper approaches compensation and assessment of
artery rigid dynamics in IVUS sequences. We address cardiac
rigid motion and define an objective score (CDR) measuring
motion reduction in experimental data. We present experiments
on synthetic sequences and in vivo pullbacks. Synthetic exper-
iments serve to assess the accuracy of the motion estimation
and validate CDR as quality measure. For in vivo pullbacks we
present a first approximation to longitudinal motion.

By combining vessel appearance and shape, we provide ex-
plicit formulae for motion parameters. This sets no limits to the
capture range of motion parameters and we have equal perfor-
mance (Table I) for frame-to-frame steps of 1 and 10. Transla-
tion is given (independently for each frame) in absolute terms,
whereas rotation is computed by accumulating frame-to-frame
transformations. In large segments, the latter might introduce
accumulation errors. Alignment of large segments is a difficult
task, due to morphological variations, which also might drop the
accuracy of registration algorithms. Therefore, we consider that
this does not represent a major limitation of our approach com-
pared to registration strategies. Experiments on sequence-based
synthetic models (Table II) show that the main source of error
arises from morphological changes along the vessel, with av-
erage errors of 1.09 pixels * 0.04 mm/pixel mm for
translations and 1.72 for rotations. Our errors favorably com-
pare to the numbers reported in [12], which achieve mean errors
of 0.064 mm and 7.8 , provided that the catheter rotation does
not exceed 3.5 .

Our quality measure bases on the conservation of the image
local density of mass (given by the local mean) and only
considers image pixels with noticeable motion. Results on
Sequence models (Table III) show that CDR correlates to the
angular relative accuracy. Results on real pullbacks show that,
in general, CDR also correlates to the uniform and continuous
appearance of longitudinal cuts [see Fig. 6(a), (b), and (d)].
This fact validates CDR as an objective measure of image
alignment. Comparison to global similarity scores, such as
cross-correlation (Table III), indicates that global approaches
are prone to underestimate motion reduction.

Experimental results detect two sources for under perfor-
mance of the proposed methodology: sudden morphological
changes and nonperiodic random motion patterns. In the first
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Fig. 6. Longitudinal cuts for sequences of four different patients (columns), from the best corrected sequence (a) to the worst corrected one (d). Original frames
are shown on the first row, original longitudinal cuts on the second row, and corrected ones on the third row.

Fig. 7. Image-based ECG sampling of a short segment (top) and gating images of long cuts (bottom).

case, which is a common limitation in most registration and
tracking algorithms, changes in appearance mislead image
alignment as the objects to be tracked have significantly
changed. The second source of error is inherent to the defini-
tion of rigid (periodic) movement, which is the only motion
considered. These extreme cases, which CDR might drop to
63%, only represent a 6% of the data analyzed.

Although we do not explicitly address it, the developed
methods allow exploring longitudinal motion. Longitudinal
motion affects 3-D IVUS exploring in two main ways.

1) 3-D vessel measurements and visualization. Reliable 3-D
measurements along the vessel must either account (i.e.,
correct) for catheter swinging or simulate image-based

ECG-gating [7], [42]. In Section VI-C we illustrate the
potential of the methods presented by giving a first ap-
proximation to image-based ECG gating (Fig. 7).

2) Biomechanics analysis. Longitudinal motion might dis-
turb computation of tissue properties only in the case of
a segment with a transition between two different kind of
plaque. Since, if noticeable, longitudinal motion induces a
periodic variability in tissue composition, CDR allows its
detection and, thus, selection of those segments best suited
for assessing biomechanics.

By the former considerations we conclude that the methods
presented are suitable for exploring tissue mechanical properties
from in vivo clinical cases.
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