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A Normalized Framework for the Design of Feature
Spaces Assessing the Left Ventricular Function
J. Garcia-Barnés*, D. Gil, L. Badiella, A. Hernàndez-Sabaté, F. Carreras, S. Pujades, and E. Martí

Abstract—A through description of the left ventricle function-
ality requires combining complementary regional scores. A main
limitation is the lack of multiparametric normality models oriented
to the assessment of regional wall motion abnormalities (RWMA).
This paper covers two main topics involved in RWMA assessment.
We propose a general framework allowing the fusion and compar-
ison across subjects of different regional scores. Our framework
is used to explore which combination of regional scores (including
2-D motion and strains) is better suited for RWMA detection. Our
statistical analysis indicates that for a proper (within interobserver
variability) identification of RWMA, models should consider mo-
tion and extreme strains.

Index Terms—B-splines, bull’s eye plots, left ventricle, manifold
parameterization, regional wall motion abnormalities.

I. INTRODUCTION

H EART failure is a prevalent disease [1] that can be caused
by various heart conditions, in particular, ischemic heart

disease (IHD). The decrease of blood supply produced by coro-
nary artery stenosis impairs the contractile properties of specific
myocardial areas. This deviates the normal regional wall motion
and contractility patterns of the myocardium, especially the left
ventricle (LV) [2]. Early and accurate detection of LV regional
wall motion abnormalities (RWMA) might significantly help in
the diagnosis and follow-up of IHD [3]. In order to assess the
myocardial function, two main issues should be addressed.

1) Definition of indicators characterizing the myocardial
function, for any patient in a reproducible manner.

2) Creation of a statistical model (normality patterns) that is
able to discriminate healthy from diseased areas.

A. Myocardial Function Indicators

Clinical routine involves the computation of global indicators
such as ventricular volumes, ventricular mass, ejection fraction,
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or cardiac output. Their values can be easily obtained from con-
ventional imaging techniques such as echocardiography (EC) or
cardiac magnetic resonance (CMR). Although these descriptors
give an overall glimpse of the LV global function, they are un-
able to properly localize RWMA [4].

Since in both EC and CMR, the myocardium appears as a
uniform tissue, computation of motion restricts to LV walls de-
formation. Although wall motion gives a more localized assess-
ment of the ventricular function [5], [6], it is unable to detect
RWMA inside the myocardial tissue. Intramural tissue defor-
mation is related to LV rotation, which provides scores (such as
twist or circumferential shear) of clinical interest [7].

In order to detect intramural motion of the LV, imaging tech-
niques that induce landmarks inside the myocardium (such as
tagged magnetic resonance (TMR) [8], [9] or speckle tracking
imaging (STI) [10]) are better suited. TMR prints a grid-like
pattern of saturated magnetization over the myocardium. As the
pattern evolves by the underlying motion of tissue, it allows
visualization and measurement of the intramural deformation.
STI assumes that small changes in tissue position lead to cor-
responding observable changes in the speckles [10], and thus,
tracking speckles becomes equivalent to tracking tissue. Motion
fields extracted from TMR [11] and STI [7] already constitute
an indicator of local function and are used to derive other indi-
cators, such as strains. Strains are well suited to assess the local
contractile behavior of the LV since they measure the (local) de-
formation of an object along a given direction.

B. Comparison Framework

Global clinical scores allow straightforward comparison
across patients. However, in the case of local (or regional)
values, a faithful comparison should ensure that each image
pixel (region) always corresponds to the same anatomical
location in the LV for any subject and systolic phase. It follows
that comparison of local scores must solve two main artifacts.

1) Intrapatient variability related to the change of LV geom-
etry along the cardiac cycle.

2) Interpatient variability related to heart’s anatomical differ-
ences among subjects and the relative position between the
patient and the acquisition conditions.

We split current solutions into explicit and implicit approaches.
Explicit approaches use image registration techniques (see

[12] for a review) to find the transformation (usually elastic) that
best matches images to a reference one. The parameters of such
transformations are found by either minimizing the distance be-
tween anatomic landmarks [13] or maximizing a similarity cri-
terion between image intensities (e.g., cross correlation [14],
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Fig. 1. Regions defined by different coordinates systems used in LV analysis.
(a) Cartesian, (b) polar, and (c) local coordinates defined by the normalized pa-
rameterization of the LV.

mutual information [15], or a combination of both [16]). Reg-
istration approaches have two main weaknesses. On one hand,
the election of the reference anatomy might introduce inaccura-
cies in the registration process if the chosen reference anatomy
is an extremum of the population [17]. On the other hand, reg-
istration does not provide intuitive coordinates for moving over
the LV domain. Since this hinders the definition of anatomical
segments, some approaches [15] introduce further processing.

Implicit approaches take place in an abstract level and are
based on the subdivision of the LV into segments. By taking
into account anatomical features, segments represent portions
of tissue consistently defined for any subject, time, and image
modality. In this manner, inter- and intrapatient LV shape vari-
ations are removed and the values in each segment are compa-
rable across subjects. The grounds for LV segment definition
were established by the American Heart Association (AHA)
[18] in order to standardize LV perfusion and function analysis
among different image modalities. Their proposed 17-segment
model arises as a tradeoff between anatomical considerations
and usability in clinical practice. Although AHA partition has
been extensively used [15], [19], [20], some authors [21]–[24]
consider more segments in order to provide more continuous
approaches.

Segment definition requires coordinate systems adapted to
the LV anatomy. The default Cartesian coordinates are not the
best suited in the case of curved surfaces like the LV [see the
square regions in Fig. 1(a)]. Moreover, vectorial-dependent indi-
cators (such as motion or directional strains) expressed in Carte-
sian coordinates lack any anatomical meaning. The aforesaid
limitations have motivated searching for alternative coordinate
systems better adapted to the geometry of the LV. Usual changes
include polar coordinates [25] for the 2-D case, and cylindrical
[24], [26], [27], spherical [20], [22], planispheric [28], or prolate
spheroidal [29], [30] coordinates for the 3-D case. These coor-
dinates define segments better matching the LV geometry [see
curved regions given by polar coordinates shown in Fig. 1(b)]
and allow expressing motion and strains in clinically meaningful
components [27], [28].

Current coordinate systems still present two main shortcom-
ings.

1) The regions defined by coordinate directions do not com-
pletely fit the LV shape [Fig. 1(b)].

2) Coordinates are fixed (usually at end-systole) for all se-
quence frames, though the LV is an object which deforms
along the cardiac cycle.

C. Statistical Models

The ultimate goal of statistical models is to explain the vari-
ability of (clinical) attributes (e.g., shape and motion) across a
given population. Statistical models are based on analyzing (de-
scribing) the values of the attributes on a set of points (land-
marks) sampled over the LV domain for several subjects. The
set of attributes for all LV points of a given subject consti-
tute a vector called observation. The probability distribution of
the observations is commonly assumed to be Gaussian. In this
case, the modes of variation are given by principal component
analysis (PCA) (like statistical shape models [30] or statistical
deformation models [31]). A main drawback is that principal
components given by PCA are not well suited for localizing re-
gional abnormalities. Several methods for selecting modes more
adapted for RWMA assessment have been proposed. They use
multivariate linear regression in [32] to select appropriate prin-
cipal components, although weak correlation to visual abnor-
malities was found. Recently, sparse PCA [5] and ICA [33] have
reported higher correlations.

One disadvantage of the aforesaid global approaches is that,
unless specially designed [30], variation modes lack any clin-
ical meaning. Another disadvantage is that, since they provide a
single model for the whole LV, they might require large training
sets. An alternative to global methods is to divide the LV in sev-
eral segments and consider a different model for each of them
[22], [34]. On one hand, segmental models are, by design, ap-
propriated for straight evaluation of RWMA and might provide
anatomic interpretation by using cardiac coordinate systems. On
the other hand, they admit more reduced training sets. This last
property allows modeling attributes along cardiac cycle [22],
[34] or considering multiple descriptors.

D. Contributions of This Paper

This paper covers two main issues: definition of a general
framework allowing comparison across subjects of regional
scores and exploration of the subset of local function scores
better suited for assessing RWMA.

1) Comparison Framework: Following implicit approaches,
we present a suitable cardiac coordinate system for the compar-
ison of local scores. We use differential geometry concepts to
define a parametrization of the LV domain, considered as a de-
forming manifold. The parametric map defines a time-evolving
coordinate change adapted to each LV anatomy. Such a coordi-
nate system completely unfolds LV geometry onto a (normal-
ized) squared shape, which we call normalized parametric do-
main (NPD). A main advantage is the straightforward definition
of neighborhoods, thus segments, adapted to the LV geometry
[Fig. 1(c)].

By taking into account common anatomical features in the
definition of the parametrization, we implicitly register LV
anatomies in the parametric domain (abstract level). In this
manner, the NPD provides a comparison framework for the
fusion of local scores of different natures (scalar and vectorial)
and their comparison across subjects for a statistical analysis.

2) Design of Appropriate Feature Spaces for Local Function
Assessment: The NPD is used to fuse several local function
indicators (2-D motion and different strains) leading to multi-
dimensional descriptors. We adopt a segmental approach and
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build a statistical model for each segment. We explore the per-
formance of different configurations of these multidimensional
descriptors in order to determine the most appropriate one for
RWMA detection. The validity of these models is assessed sep-
arately for healthy and pathological population. For the first
group, leave-one-out error is used whereas, for the second one,
the ability to detect injured regions is evaluated using ground
truth maps provided by several experts. Our statistical analysis
suggests that motion and extreme strains should be taken into
account.

The paper is organized as follows. In Section II, we define the
NPD comparison framework, and in Section III, we build it for
the particular case of the LV in SA view. Regional multivariate
function descriptors are defined in Section IV-A and functional
assessment in Section V. Experimental settings and results are
presented in Sections VI and VII, respectively. Finally, discus-
sion and future work are given in Sections VIII and IX, respec-
tively.

II. NORMALIZED PARAMETRIC DOMAIN

Statistical analysis of regional scores requires defining seg-
ments adapted to the LV anatomy consistently identified across
subjects and systolic times. As suggested in [35], we will param-
eterize the LV domain in the sense of differentiable manifolds
with boundary [36].

An -dimensional manifold is a mathematical object that,
seen on a small enough scale, is isomorphic (i.e., identifies) to
the -dimensional Euclidean space, . Intuitively, a manifold
can be built by doing “patchwork”. That is, it can be covered
by “cutting” pieces of , “deforming” them, and smoothly
“gluing” them together one by one. Each piece of , namely

, is called parametric domain and the deformation, namely
, parametric map or parameterization. The mapping warps

the parametric domain Cartesian coordinates onto parametric
curves (locally) describing the manifold geometry [see curves
in Fig. 1(c)].

Although, in general, a single domain is not enough to
cover all the manifold, most anatomic structures are isomorphic
to shapes (tubes for vessels, ellipsoids for the LV domain, torus
for the LV in SA views) admitting a single-domain parameteri-
zation. In the case of the LV in SA view, since it is diffeomorphic
[36] to a torus, the parametric domain is given by its circumfer-
ential and radial coordinates.

The parametric coordinates define for each subject a map-
ping, , between the uni-
tary cube and any LV domain (noted by )

(1)

In this case, we call NPD.
The map defines a coordinate change that registers any

to a template, , which is an unfolded version of the . In
contrast to other coordinate changes [such as polar coordinates
in Fig. 1(b)], ensures that the new coordinate curves com-
pletely fit the LV geometry [see Fig. 1(c)]. Besides, since is
completely straightened in the NPD, coordinate curves become
straight lines (the Cartesian axis of ).

Fig. 2. Implicit registration in the NPD: (a) common parametric domain for
two diffeomorphic manifolds and (b) implicit registration given by a common
parametric domain.

For any two LV domains, , , there is always (by
means, for instance, of explicit registration techniques) a trans-
formation, , that deforms one domain into the other one. Such
transformation allows the definition of a parameterization (
for and the composition for ) that as-
signs equal parameters to corresponding anatomical locations
[see Fig. 2(a)]. Thus, if a parameterization map is defined such
that it assigns the same parameter to anatomical locations
consistently defined for any , the two LVs are registered in
two ways. On one hand, the maps , provide an implicit
registration between and in the NPD. On the other
hand, the composition explicitly registers the LV do-
mains in Euclidean (image) space. Fig. 2(b) illustrates the im-
plicit registration given by two parameterizations labeling same
anatomical locations with the same parameter . Pa-
rameters ensuring registration can be defined by assigning spe-
cific parametric values to the same localized anatomic structures
common to all subjects. In particular, boundaries should map
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Fig. 3. Local coordinate systems �� � � � (along circumferential and radial
directions, respectively) induced by the parametrization �.

to walls (endocardium and epicardium) and the septal seg-
ment to the same angular range.

A. Mapping Data to the NPD

Local clinical scores can be either vectorial (motion fields,
denoted by ) or scalar (strains, denoted by ) values defined
on each point on . In order to compare such measurements
across different patients, they must be mapped to the NPD.

In the case of scalar scores, they are directly mapped by com-
puting them at the points . That is, it suffices to con-
sider . Unlike scalar data, displace-
ment vectors are expressed in image coordinates. These global
coordinates depend on acquisition conditions that, in general,
vary across patients. In order to get intrinsic coordinates, vec-
torial data should be expressed in terms of the local references
associated to the parameterization.

Vector mapping is done by applying the Jacobian of the
parameterization. Instead of using the Jacobian of the inverse
map [31], we decompose [36] the deformation vectors into
their circumferential (corresponding to the coordinate) and
radial (corresponding to the coordinate) components. The
coordinates of the local parametric vectors are given by the
columns of the Jacobian of the parameterization

(2)

for , denoting partial derivatives with respect to and
. The columns of the Jacobian define, for each , a

nonorthogonal (local) reference of unitary vectors de-
scribing the local geometry of the domain

(3)

for the Euclidean norm. Fig. 3 shows the description of
geometry given by .

By linearity of the tangent application, the components of
in terms of the local references

(4)

give the mapping of onto . We will call and circum-
ferential and radial components, respectively.

B. Properties of the NPD Framework

The NPD framework provides, both, a subject-specific car-
diac coordinate system and an implicit registration to a normal-
ized squared template.

Although existing cardiac coordinate systems (prolate sphe-
roidal, cylindrical, etc.) might be called parameterizations, they
do not actually parameterize the LV domain from the point of
view of differential geometry. This follows from the fact that co-
ordinate curves do not fit the LV geometry, but other geometries
[like circles in Fig. 1(b)] roughly approximating the LV true ge-
ometry. Our parameterization-based approach has the following
advantages over existing cardiac coordinate systems.

1) Definition of segments/regions adapted to the subject-
specific anatomy. Since, by definition, coordinate curves
faithfully describe the LV geometry, segments adapted to
the geometry are defined by means of a rectangular
grid in .

2) Local operations. Local operations, such as interpolation
or smoothing, along geometry can be done along the
rectangular axis of , which correspond to vertical (rows)
and horizontal (columns) directions.

3) Anatomical interpretation of vector-dependant scores.
Vectorial quantities expressed in the local reference
system given by (3) have a clinical interpretation in terms
of the anatomy.

4) Visualization. Values at can be easily mapped to bull’s
eye plots for a better visual interpretation of results.

On the other hand, our parameterization-based implicit
registration enjoys several advantages over explicit registration
schemes.

• Generic comparison framework. The NPD provides a com-
parison domain well suited for comparing and fusing
different local and segmental scores.

• Generic abstract template of the . Since LV anatomies
are registered to a common domain, NPD overcomes the
problem (in registration approaches) of choosing a refer-
ence anatomy [17]. In fact, the NPD might be considered
as an abstract version of the natural coordinates proposed
in [17].

• Identification of specific anatomic locations. The param-
eter assignment required for implicit registration allows
localizing any anatomical point with respect to bound-
aries and the septal segment. This provides a way of
moving on the LV intuitive for physicians.

III. BUILDING THE NPD OF THE LEFT VENTRICLE

The superscript will indicate a given systolic phase. Thus,
and will stand for a generic LV domain and its parame-

terization at time . In the case of several subjects, the subscript
will be used to identify them. A 2-D point in the image will

be noted for short by and end-systolic time by . Since
depends on the subject, we will use .

We propose using the segmentation of the LV boundaries [35]
to obtain the parameterization using B-splines in a twofold
process. First the initial parameterization is defined at end di-
astole (given by the first frame). Next, is defined by updating
using motion maps. The motion vector field between frame
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and frame will be noted by and it is computed from TMR
sequences using the harmonic phase flow (HPF) method [37].

A. Parameterization

The parameterization of splits in four steps.
Step 1) Landmark identification. The inner (endocardium)

and outer (epicardium) contours of are ex-
tracted and anatomical key points are located.

Step 2) Anatomical affine reference. An affine coordinate
system based on anatomy is defined in order
to account for variability in patient–device relative
position.

Step 3) Boundaries parameterization. B-spline curves are
fitted to endocardial and epicardial contours in
the new affine reference in order to account for
anatomic changes across patients and deformations
due to heart beating.

Step 4) Domain parameterization. Finally, the parametric
map is obtained by fitting a bidimensional B-spline
to the domain defined by boundaries.

1) Step1: Landmark Identification: Identification of anatom-
ical landmarks is required for defining the anatomic reference
and the circumferential parameter.

The set of boundary points will be denoted by for
the endocardium and for the epicardium. Following [38], we
manually identify them at positive times and track them back to

using HPF. The number of points depends on the number
of control points (linked to the degree of the blending functions)
used for the B-spline. In our case, we use 12 for, both, endo-
cardium and epicardium.

We also identify the junction points between left and right
ventricles at anterior and inferior LV walls, respec-
tively [Fig. 4(a)]. These two points are used in the definition
of the affine reference system accounting for affine variability
in patient–device relative position. Their angular coordinates
in such affine systems serve to define the (average) portion of
septal wall, . Such value is taken into account for the definition
of the angular coordinate in order to register anatomies.
Since the points , should only indicate anatomic direc-
tions, they do not necessarily belong to the sets and .

2) Step2: Anatomical Affine Reference: An affine coordi-
nate system is defined by means of an origin of coordinates, ,
and two linearly independent axes, and . The new origin
is defined as the center of mass of in order to compen-
sate any translation among different subjects. The new x-axis,

, is a unitary vector starting at and pointing to . Fi-
nally, is a unitary vector orthogonal to and oriented op-
positely to the septal wall. Since points the same anatomical
location for any LV, by setting as the origin of angles, we
handle any rotational disparity among different subjects. The
scheme in Fig. 4(a) shows the anatomical reference defined by
the anatomical landmarks in comparison to the image coordi-
nate axis (upper left corner).

3) Step3: Boundaries Parameterization: We compute a
unified compact parameterization of boundaries by fitting
(in the least-squares sense [39]) a couple of B-spline curves to

and , expressed in the anatomic affine system [Fig. 4(b)].

Fig. 4. �� parameterization. (a) Landmark identification (��, �� , � ,
and � ) for the definition of the affine reference. (b) �� boundaries param-
eterization and interpolation of intramural points, � �����.

B-splines are defined by a normalized circumferential param-
eter, , ensuring implicit registration of across
subjects.

Anatomic (implicit) registration is achieved by assigning a
circumferential range to nonseptal segments and to
the septal one. The transition parameter is computed as the
normalized average of the angular coordinate, , of

in the system for healthy volunteers

(5)

The normalized angular coordinate is defined as

(6)

A couple of closed cubic B-spline curves, , , are fitted
to the boundary points and by minimizing
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Fig. 5. Implicit registration of two TMR sequences belonging to different subjects. Each parameterization� defines a coordinate system tailored for the geometry
of each subject and time. Same anatomical locations share the same parameter in �.

(7)

4) Step4: Domain Parameterization: In order to get the
final parameterization, , we fit a bidimensional spline
to a uniform sampling of the radial values (normalized in the
range ) of the two border splines. Since at end-diastole
tissue does not have any deformation, the radial direction can
be linearly sampled [20] as

(8)

We evaluate the aforesaid equation at a uniform grid in
given by and .

This provides myocardial points, , at the
initial time. These points are equiangular in the circumferential
direction for each segment (septal and nonseptal) and equidis-
tant in the radial one. Fig. 4(b) shows a sampling of the param-
eterized boundaries and given by a grid of 10 4
points. The close-up illustrates the linear interpolation of ra-
dial positions (intramural points ) at and

from boundary points sharing same circumferential
parameters.

The parametric map is obtained by fitting a bidimensional
B-spline surface to the set . The B-spline surface
is given by

(9)

for cubic blending functions, quadratic blending func-
tions, and control points ensuring a closed
surface along the circumferential direction. Blending functions

in the radial direction are chosen quadratic because image reso-
lution does not guarantee enough information along this direc-
tion. Control points are given by minimizing

(10)

B. Parameterization

The domain is parameterized by fitting a B-spline sur-
face to a set of points, , sampled on the domain. Such
points are obtained by iteratively applying the displacement be-
tween consecutive frames, , to the points

t=0

t > 0.
(11)

The mapping is the minimum of the cost functional given
by changing for in (10). By keeping the parameters

unchanged for any sequence and time, we ensure the
implicit registration requirement of Section II. Fig. 5 sketches
the parameterization of the LV domain along the whole systolic
cycle for two different subjects.

IV. MULTIVARIATE REGIONAL FUNCTION DESCRIPTORS

Following [19], in order to assess myocardial local function,
we consider two different kinds of local indicators: zeroth-order
(motion) and first-order (strains). Since their comparison and
fusion take place in the NPD, all attributes are considered at the
points .

A. Local Function Descriptors

1) Zeroth-Order Indicators (Motion): Motion is given by the
(two) components, , of the vector fields expressed
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in image coordinates. Our zeroth-order attributes are given by
the circumferential and radial components [given by
formula (4)] of the motion vectors .

2) First-Order Indicators (Strains): They are given by the
spatial variations (first partial derivatives) of the displacement
maps and are computed by means of the strain tensor

(12)

where

(13)

and denotes the transpose of a vector or matrix. The strain at
a point along a direction (with ) is given by

(14)

Strains describe the amount of contraction the muscle un-
dergoes. In cardiac function analysis, the usual strains are ex-
tremal (minimal, , and maximal, ) strains and directional
strains. The latter are commonly computed along radial
and circumferential directions. In addition, we also con-
sider the strain along the direction of displacement . Ex-
tremal strains are given by the highest and the lowest

eigenvalues of the strain tensor evaluated in the NPD,
. Directional strains are given by

(15)

for , given by the (3)

B. Time and Space Normalization

In order to obtain quantities comparable across different
studies, spatiotemporal variability across acquisitions should
be compensated. On one hand, TMR studies may have different
spatial resolution. On the other hand, due to heart beat vari-
ability, the number of frames per cardiac cycle differs from one
study to another.

1) Space Normalization: Since TMR studies may have dif-
ferent spatial resolution (depending on the acquisition condi-
tions), the displacement vector fields in pixels are noncompa-
rable. This artifact is removed by considering motion fields in
millimeter. Millimeter resolution is achieved by resizing images
so that 1 pixel corresponds to 1 mm .

2) Time Normalization: Temporal resolution is compen-
sated by interpolating the motion components and in
order to get a uniform sampling along the systolic cycle for all
subjects. Let us consider the discrete sets and

. The components at time correspond to
0% of systolic cycle, whereas components at time
correspond to 100% of systole. We resample values (by using

Fig. 6. Temporal normalization the component of the motion field � .

cubic interpolation) at uniformly sampled fractions of the
systolic cycle given by .

Fig. 6 shows the resampling process of the component
at a given point . The -axis represents the fraction of sys-
tolic cycle. The components obtained from analysis of TMR
sequences, , are plotted in circles. The values at
the uniform sampling of the systolic cycle are plotted in crosses
over the interpolated curve in solid line.

C. Multivariate Regional Descriptors

Usually zeroth- and first-order attributes are considered sepa-
rately. However, on one hand, strains reflect muscle contraction
at an image plane. On the other hand, since tissue motion might
follow from adjacent contracting fibers (dragging effect), mo-
tion might reflect the dynamic behavior of areas even outside the
image plane. We, thus, consider that by taking into account both
attributes, better descriptors reflecting (in spite of being 2-D) the
3-D functionality of the LV should be obtained. Merging all the
attributes described so far, we obtain a 9-D feature space de-
scribing the LF of the LV

(16)

The multivariate descriptor (15) provides a pointwise robust
(from the statistics point of view) representation of the func-
tion that we next analyze within regions. Regions along the cir-
cumferential direction are called sectors whereas along the ra-
dial direction layers.

Regions in the LV are defined by giving a uniform grid on
defining grid cell corners. A sampling given by

and divides in
sectors and layers, whose regions, , are defined as

The functional behavior at each for a given systolic time
is given by the average

for a uniform sampling over .
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V. REGIONAL FUNCTION ASSESSMENT

Regional normality models follow from the statistical anal-
ysis of the descriptors obtained for healthy volun-
teers. In this paper, we assume Gaussianity and describe the re-
gional normal function of the LV with Gaussian
models (one for each spatiotemporal region). Principal compo-
nent analysis serves to obtain the orthogonal basis that best ex-
plains the correlations among functional parameters. The eigen-
vectors of the covariance matrix of the observations give the
modes of variation and the eigenvalues of the expected normal
ranges.

Let , be, respectively, the mean and covariance ma-
trix of for healthy cases. Given an incoming subject, the
Mahalanobis distance

quantifies the deviation of the subject regional descriptor
from the average healthy model. The average of for all
times

(17)

gives a compact description of the region’s integrity. Regions
are considered “Abnormal” if is over a given threshold

and “Normal” otherwise. The threshold value was set using
receiver operating characteristic (ROC) analysis, as detailed in
Section VII.

A. Parametric Images

For the visualization of the different regional data that have
been generated, we use bull’s eye plots (BEPs). BEPs are polar
plots that represent an idealized shape of the LV. The most ex-
tended BEP is the standardized 17-segment division suggested
by the AHA [18]. AHA BEPs plot four SA levels (basal, mid,
apical, and apical cup) in the same four four-ring chart [one
ring per SA level, as shown in Fig. 7(a)]. Following other works
[21]–[24], [40], we prefer using our own-developed division.
We use a separate BEP for each of our SA levels (basal, mid,
and apex). Each BEP is divided into sectors and an arc
representing the septal portion is displayed on the left. For each
BEP, the outer rim denotes epicardium (except for the septum,
where it denotes RV endocardium) and the inner rim denotes
endocardium. For a better comparison to AHA segments, they
are shown labeled as follows. A stands for Anterior, AL for
Anterolateral, IL for Inferolateral, I for Inferior, IS for Infer-
oseptal, and AS for Anteroseptal. Fig. 7(b)–(d) shows our bull’s
eye charts for base, mid, and apex, respectively.

Each sector is colored according to its classification: green
is used for “Normal” regions and red for “Abnormal” ones.
In order to obtain a more descriptive assessment, the red (R)
and green (G) channels are colored according to Table I. In
this manner, dark colors indicate (for, both, “Normal” and “Ab-
normal”) values close to the boundary discriminating patholog-
ical behaviors from normal ones. Meanwhile, bright tones cor-
respond to extreme behaviors: severe deviation from normality

Fig. 7. Different bull’s eye charts. (a) AHA LV representation in the four levels,
17 segments. (b)–(d) Segments 1–6 correspond to a basal cut, 7–12 to a midcut,
13–16 to an apical cut, and 17 (optional) to the apex. Our representation for
basal, mid, and apical levels. (a) AHA. (b) BASE. (c) MID. (d) APEX.

TABLE I
VISUALIZATION OF REGIONAL FUNCTION ASSESSMENT

TABLE II
PARAMETER CONFIGURATIONS USED IN OUR EXPERIMENTS

for the red color and high agreement to normal function for the
green one.

VI. EXPERIMENTAL SETTING

The NPD framework has been applied to assess the regional
systolic function in TMR sequences. For each sequence,

spatiotemporal regions have been con-
sidered. The 7-D feature space defined in (15) is explored in
order to determine which subsets of parameters are best suited
for regional assessment of LV function. Among the 127 pos-
sible configurations, we have analyzed nine representative sub-
sets ( , ) given in Table II. The bullet indicates that
a particular attribute is present in the configuration.

For each configuration we have assessed the following.
1) Model Consistency. We consider that for healthy cases, all

regions should be labelled as“Normal.” Consistency is as-
sessed by leave-one-out (LOO) errors for the volunteers
data set.
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2) Pathology Discrimination. The clinical potential is given
by the ability for detecting anomalous regional behaviors.
Discrimination is assessed by comparing the automatic
classification to manual labeling.

A. Experimental Data Set

Our data set consists of healthy volunteers and patients with
several degrees of hypokinesis.

1) Healthy subjects. Composed of a total number of 21 vol-
unteers, 15 males and 6 females aged between 23 and 55

.
2) Nonhealthy subjects. Composed of a total number of seven

patients (six infarcted and one hypertrophic), four males
and three females aged between 47 and 71 .

For each subject, TMR sequences at basal, mid, and apical
levels were recorded in breath-hold. The acquisition device was
a Siemens Avanto T (Erlangen, Germany) with a spatial res-
olution from 1.3 1.3 to 1.7 1.7 mm/pixel and temporal res-
olution within 5–8 frames/syst. cycle.

B. Ground Truth Maps

For each sequence, we define its ground truth as a BEP chart
with each of its regions labeled as “Normal” or
“Abnormal” (BEPs labeled Expert#1 and Expert#2 in Fig. 10).
Physicians were asked to visually identify those regions moving
abnormally. The expert was given two TMR sequences: the
original one and another with the time-evolving re-
gions printed over . A region was labeled “Abnormal” if it
presented any anomalous behavior along the systolic cycle. Two
different experts have been considered in order to compute in-
terobserver variability.

C. Quality Scores

The performance of each configuration was evaluated in
terms of sensitivity and specificity given by

(18)

for true positives (number of regions correctly classified
as “Abnormal”) and true negatives (number of regions
correctly classified as “Normal”). The total number of “Ab-
normal” (positive) and “Normal” (negative) regions are and

. We are particularly interested in minimizing sensitivity.
Consistency is given by LOO errors. For each configuration,

the normality model is computed using all healthy cases ex-
cept one, which is used as test. The process is repeated for each
healthy subject and the false positive rate is computed
at each round. We define our measure of consistency as the av-
erage of LOO errors for the sequences of all healthy cases. The
threshold is defined by the radius of the ellipsoid containing
95% of the normal samples. In this manner, the consistency error
should be around 5%. Any increase might be attributed to errors
in the computation of the statistical model parameters. It follows
that indicates the maximum number of dimensions that can
be reliably modeled with a given number of healthy samples.
The threshold value is for two dimensions ( – ),

Fig. 8. Leave-one-out errors for the nine parameter configurations.

for three dimensions , for four dimen-
sions ( and ), for five dimensions ( and ),
and for seven dimensions .

Concerning discriminant capability, we will check the ability
of the system to perform as a human expert. Since manual
labeling of sequences is prone to vary across experts, the
system will perform as one of them if classification errors
compare to interobserver variability [41]. Interobserver vari-
ability (sensitivity and specificity) is computed by taking one
of the experts labeling as ground truth and the other one as
configuration output. ROC curves are used to define the optimal
cutoff threshold . We define the cutoff value as the radius
that achieves the same sensitivity as interobserver sensitivity,
which is 0.7732 in our case. Since we have one ROC curve for
each expert, the cutoff is given by the average of the cutoff
values for both experts. This optimal is used to assess each
configuration. We have considered the following agreement
measures between each configuration and expert: area under
ROC curve (AUC). Spearman rank correlation (Corr) [42],
specificity, sensitivity, and confidence intervals (CI) for mean
differences. Agreement scores have been computed using
stratified-by-sequence analysis. Results for each sequence were
aggregated in order to obtain confidence intervals and standard
errors (given by mean standard deviation) using sequences
as experimental unit. In this manner, agreement measures
incorporate intersequence variability.

VII. EXPERIMENTAL RESULTS

A. Model Consistency

Fig. 8 shows the graphic of bars for model consistency for the
nine configurations. By the choice of the threshold (including
95% of the healthy population) errors should be around 5%.
Configurations ( – ) under 4-D are the only spaces fulfilling
such condition. 4-D configurations ( , ) rise to 10% and
higher dimensional spaces reach errors over 20%. For equal di-
mension, we observe a worse performance in configurations in-
cluding directional strains ( , , and ).

B. Pathology Discrimination

Fig. 9 shows ROC plots for the nine configurations. Each
plot shows the ROC curves for the two experts (labeled “Exp1,”
“Exp2”), the cutoff line of 0.7732 sensitivity (horizontal solid
line) and the average false positive rate achieved with this
criterion (vertical dashed line). Plots for and present
the most linear profile in the middle part of the ROC curve.
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Fig. 9. ROC plots for the nine configurations showing ROC curves for the two experts and the optimal cutoff (horizontal line).

Except for configuration , which is biased toward Exp1, all
configurations agree with Exp2 for high sensitivity (left part
of ROC plots) and with Exp1 for medium-high specificity
(right part of ROC plots). Concerning cutoff lines, and
are the best performers in terms of false positive rates (given
by vertical dashed lines). The average of the values given by
the intersection of the cutoff horizontal line with each expert
ROC curve gives our optimal cutoff thresholds, which are

for .
Table III reports the statistical scores assessing , as

well as, the comparison to interobserver (IO) variability. We
give the average area under ROC curves (AUC), sensitivity
(SensRnk) and specificity (SpecRnk) ranges (mean standard
deviation, computed for the two experts), confidence interval
(SensCI, SpecCI) for mean differences, and Spearman rank
correlation (Corr). The top performers for each score are in
boldface. Configurations and are the ones achieving a
best compromise between sensitivity and specificity.

Fig. 10 shows BEPs for the two experts manual labeling and
the color map for . As the interobserver ranges (SensRnk,
SpecRnk) of Table III suggest, there is a substantial variability
between the two expert labels. The larger disagreement is in the
hypertrophic case (Pat.#4) followed by Pat.#5. For the latter,
our method performs closer to Expert2, which is identifying in-
jured segments, while Expert1 considers a normal motion. In

general, achieves a good compromise between both experts,
specially for affected segments (sensitivity). The only exception
is the basal level of Pat.#7, which is labeled green when both ex-
perts consider that it presents an abnormal behavior. However,
we note that the classification output is in the transition area
(dark colors) between normal and affected. We also observe that
apical levels achieve the lowest agreement, with a higher rate of
false positive detections (specificity).

VIII. DISCUSSION

A. Model Consistency

Regardless of the dimension, the classifier boundary of the
normal group was defined by the ellipsoid containing 95% of
the normal samples. Therefore the consistency error should be
around 5%. Any increase might be attributed to errors on the
computation of the statistical model parameters. The reliability
of any statistical analysis drops with either low or dependant
number of samples unable to properly explain the variability of
the feature space.

In our case, consistency decreases as the dimensionality in-
creases (over 20% for spaces over four dimensions). We at-
tribute such phenomenon to a low number of volunteers

used to compute the statistical model in comparison to the
space dimension. Thus, parameter configurations should reach
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Fig. 10. BEPs for ground truth provided by the clinical experts and classification given by � � �� � � � � � � �.

the best compromise between number of scores (determined
by the number of healthy samples available) and capability for
pathology detection. The lower performance of spaces including
directional strains is attributed to computational and accumula-
tion errors (they rely on the accuracy of directions estimation).

B. Pathology Discrimination

Table III shows that configurations under five dimensions
including motion are favored. This agrees to the fact that vi-
sual identification of RWMA strongly relies on motion. In fact,

human experts fail to properly detect areas of abnormal strain, as
the hypertrophic Pat.#4 illustrates. It follows that configurations
combining strain and motion might improve image-based diag-
nosis. The configuration achieving the best compromise among
the agreement scores considered is .

Table IV reports for each level (base, mid, and apex) the
ranges for accuracy , specificity, and
sensitivity obtained by for their comparison to agreement to
visual assessment achieved by the models of normal wall mo-
tion reported in [33]. Average percentages for the ICA-based
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TABLE III
STATISTICS SUMMARY

TABLE IV
RWMA VALIDATION FOR �

TABLE V
RWMA VALIDATION FOR ICA-METHOD AND WT REPORTED IN [33]

method, proposed in [33], and wall thickening (WT) computed
using the software developed in [43], are given in Table V. For
the apical level, visual identification of anatomical landmarks
(especially xant and xinf defining the septal segment) required
for NPD definition is sensitive to subjectivity, which drops the
model accuracy to 64. However, specificity compares to WT and
sensitivity is a 20 higher than ICA and WT. Although mid-level
accuracy is a bit lower than ICA and WT, it is the level showing
the best compromise between specificity and sensitivity. Sensi-
tivity is higher than ICA and WT, while specificity is between
them. Finally, basal level outperforms ICA and WT, achieving
the highest specificity (82%).

IX. CONCLUSION AND FUTURE WORK

Determining which clinical scores derived from imaging
techniques best detect RWMA is a key point for an accurate
diagnosis and follow-up of cardiac diseases. The complex
biomechanics of the LV suggest that zeroth- and first-order
attributes should be considered. In this paper, we have pre-
sented a general framework, the NPD, that allows the fusion
and comparison across subjects of different LV local function
scores. We illustrate its utility by exploring which regional
scores are better suited for RWMA assessment.

The main conclusions derived from our experiments are the
following. The NPD framework is a suitable tool for compar-
ison across patients of different local scores. For a set of ap-
proximately 20 volunteers, statistical modeling over four di-
mensions is not reliable. Analysis of BEPs suggests that the
output of a system assessing RWMA should be a continuous
mapping of the chance that a given region is injured rather than
a discrete map grading its abnormal condition. Motion attributes
play a central role in accurate detection of RWMA and are well

complemented with extreme strains. In fact, performance of our
model combining motion and extreme strains compares to
state-of-the-art methods.

Although sensitivity compares to interobserver ranges,
its specificity (especially for the apical level) is lower than
interobserver variability. Furthermore, for 5% of the sequences
(e.g., basal level Pat#7) it fails to detect any injured segments,
which hinders its clinical applicability. We consider that the
system could be improved in two ways. On one hand, accuracy
of RWMA detection is sensitive to boundaries segmenta-
tion and definition of regions. In order to reduce the impact of
manual identification of landmarks, we are currently developing
an automatic segmentation of contours in TMR images
including detection of the right-left ventricle septal union
( and ). On the other hand, the normality assumed
for statistical models, although suitable for a low number of
training samples, might not be the most appropriate for RWMA
assessment. This might be addressed by considering other
probability distributions for modeling normal function or mul-
ticlass approaches for discrimination of specific pathologies
(like hypertrophic or asynchronous cases). In any case, a larger
number of volunteers and patients are required and it is work
that is in progress.

We are also working on the extension of the NPD to 3-D
by considering additional anatomic landmarks (apical cap and
basal ring) in long-axis slices for the parameterization of the
longitudinal direction. This 3-D framework will allow to extend
RWMA assessment to the whole ventricular volume. We are
using the 3-D NPD to parameterize Diffusion tensor volumes
in order to compute a mean model of the myocardial fibers dis-
tribution. Such model will be the input for simulations of the LV
electromechanical propagation [44].
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