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a b s t r a c t

Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while

restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on

image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue

transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a

block structure due to the shape and size of the considered pixel neighborhood.

In this contribution, we use differential geometry concepts to define a diffusion operator that

restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image

presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-

structure texture. Experiments on different types of medical images (magnetic resonance, computer-

ized tomography) illustrate its benefit on a further process (such as segmentation) of images.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Medical imaging scanners have been improving the quality of
images over the years. Given that scanners capture either physical
or chemical properties of tissue, the appearance of anatomical
structures in images should be uniform. However, the presence of
radiological noise (among other artifacts) disturbs structures
homogeneity. It follows that images should be smoothed before
any segmentation of anatomical structures. Medical imaging
smoothing should homogenize the intensity inside anatomical
structures, while preserving intensity changes at their boundaries
without altering their shape. Existing smoothing methods for
preserving image features (edges and corners) might be grouped
into block-wise and differential operators.

Block-wise operators (like median, morphological [1], mean
shift [2], or Kuwahara inspired [3]) replace the pixel intensity by a
function (usually statistical [2,3]) of neighboring values. Since
they can be related to image level-sets evolution (rather than
image intensity evolution) they naturally preserve contrast
changes. The counterpart is that evolution of image contours
alters their shape. Contours in filtered images deform according to
the shape of the structure element defining the pixel neighbor-
hood. In many cases [1,3], even the smoothed image might
present a block-wise appearance congruent with the shape of
such structure element.
ll rights reserved.

cture-preserving smoothin
Differential operators use parabolic partial differential
equations (PDE) to (iteratively) smooth an initial image [1].
Although higher order methods exist [4], many methods are
given by second order elliptic operators admitting a formulation
in general divergence form. Such methods have a physical
interpretation in terms of heat diffusion and are backed by a
solid mathematical theory [5].

For divergence-based methods, the redistribution of image
intensity along time (iterations), as well as, final states are
determined by the diffusion tensor. A main property is that
evolution converges to a constant image unless the tensor cancels
on some curves [5]. This is exploited by edge enhancement
diffusions [6], which diffuse backwards (i.e. the tensor becomes
negative) at pixels with an image gradient above a given
threshold and like a standard heat equation otherwise. In this
manner, they sharpen image contrast at edges while performing
like a Gaussian filter at areas where contrast change is not
significant. Although widely used by the medical imaging
community, the choice of the threshold is a delicate issue [7–9]
for preventing enhancement of noise and image artifacts.

In order to ensure smooth images, anisotropic diffusions [1]
design positive tensors slowing down diffusion across structures and
features of interest. Such features are determined by measures of
image appearance discontinuity. Common trends are either the
norm of image derivatives (first order for edges [10] and second
order for ridges [11]) or global contextual discontinuities [12]. In
order to ensure stability of the diffusion process, heat diffuses on the
whole image plane, which implies convergence to a uniform
intensity image [5]. This fact forces relying on a given number of
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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iterations (termination problem) or adding close-to-data constraints
to ensure preservation of the image most relevant features.

Close-to-data diffusions [13,14] add a zero order fidelity term
quantifying the difference between the original and the (current)
diffused image to the anisotropic formulation. The iterative
scheme is the minimization of a (total variation) functional
searching for a compromise between smoothing and similarity to
original data. The weight that controls the tradeoff between the
regularity and fidelity terms is related to the degree of filtering of
the solution of the minimization problem. A main concern is that
smaller details, such as texture and some structures are destroyed
if such parameter is too small [4,15].

Finally, trace-based methods [16] remove first order terms from
the divergence equation to make solutions consistent with the image
level-sets geometry described by the diffusion tensor. Solutions are
related to line integral convolution [17] along the diffusion tensor
eigen-directions. Although sharp edges and curved structures are
better preserved along the diffusion process, in the general case, a
number of iterations must still be given in order to prevent
convergence to constant final states. Besides, since the numeric
scheme bases online integration of single vector fields [18] it cannot
be easily generalized to diffusion on surfaces in volumetric data.

In this paper we introduce a differential operator, the
structure-preserving diffusion, SPD, which restricts diffusion to
a smooth approximation of image contours. Differential geometry
arguments [19] ensure stability of the diffusion process. A main
contribution is that SPD homogenizes gray-level along regular
image contours without altering their shape. In this manner, SPD
converges (i.e. the iterative scheme stabilizes) towards a non-
uniform image presenting a uniform gray-level inside anatomical
structures, while preserving transitions across tissue layers.

The contents of this paper are structured as follows. Our SPD
approach is detailed in Section 2 and its mathematical issues are
included in Appendix A. Validating experiments comparing with
existing works are reported in Section 3 and an application
illustrating SPD benefits is given in Section 4. Finally, concluding
remarks are exposed in Section 5.
2. Implicit restricted diffusions

Smoothing methods provide a set of smoothed versions of a
given (2D or 3D) function u0(x1,y,xn)¼u0(x). For PDE-based
methods, the set of smoothed versions is a time (scale) dependant
family, u(x,t), that solves a PDE of parabolic type with initial
condition u0(x). Many approaches for image smoothing are given
by second order elliptic operators given in pure divergence form

ut ¼ divðJruÞ with uðx,0Þ ¼ u0ðxÞ ð1Þ

for ru¼ ðux1
, . . . ,uxn Þ the function gradient and ut the derivative

with respect to time. The symbol div is the divergence operator, J

an n-dimensional symmetric (semi) positive defined tensor and
F1, F0 continuous functions defining first and zero order terms,
respectively.

The behavior of solutions is univocally determined by the
second order term given by the divergence defined by the
diffusion tensor, J. The diffusion tensor, considered as linear
map, diagonalizes in an orthonormal basis:

J¼QLQt ¼
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for l1
Z � � �Zln

Z0 the matrix of eigenvalues and xi
¼ ðxi

1, . . . ,xi
nÞ

the corresponding (orthonormal) eigenvectors. A unique smooth
solution exists as far as li do not vanish (J strictly positive). Such
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solution might be interpreted as redistributing (diffusing) the
gray-values of the original image. Although this is convenient for
image smoothing, the counterpart is that steady states (asympto-
tic behavior as t-1) are constant images [5]. This implies that
the diffusion stopping time (iterations in numeric implementa-
tions) is a critical issue for restoring an image preserving
meaningful structures [12]. The eigenvectors and eigenvalues
locally describe the way mass distributes: an amount li of mass
travels along the direction given by xi. In this context, diffusions
split into isotropic (equal eigenvalues) and anisotropic (distinct
strictly positive eigenvalues).

In [19], it is shown that the eigenvalue matrix L admits null
eigenvalues as far as the associated eigenvectors define a
differential manifold. Let D¼/x1, . . . ,xkS denote the eigenvectors
of positive eigenvalues (li

¼ 1, i¼1,y,k). If such vector space
represents the tangent space to a manifold of Rn (called integral
variety of D and noted from now on by M), then the metric J is the
projection onto M tangent space. Consequently a diffusion process
governed by J would not take place in the whole space Rn but just
on the integral manifolds of D. We will call it restricted diffusion.

The integrability condition ensuring that D defines integral
manifolds is a standard result on differential geometry known as
the Frobenius Theorem [20]. This condition is always satisfied in
the case that D is a single vector field (so that integral manifolds
are curves) or the perpendicular space to a single vector field (so
that integral manifolds are n�1-dimensional spaces).

Although the restricted diffusion does not coincide with the
heat equation for manifolds, it is an elliptic operator on the
integral manifolds of D (see Appendix and [19]). This guarantees
existence and uniqueness of solutions in Rn [19], which, restricted
to M, have equal properties and asymptotic behavior as solutions
to the heat equation [21]. Since the effect of the restricted
diffusion operator may be regarded as diffusing on each of the
integral manifolds separately, solutions converge towards a
collection of manifolds (those given by D) of uniform gray-level
[19]. This ensures that any numeric (iterative) scheme stabilizes
at a non-uniform intensity function. Level-manifolds of the steady
state approximate the original image contours, provided that D
represents their tangent space.

An interesting issue is that our restricted diffusion is an
implicit formulation of a heat equation for manifolds. From a
computational point of view, this endows several advantages over
explicit formulations of the heat equation for manifolds. Explicit
formulations might require computing a parametrization of the
manifold. Although, in the case of curves, numeric schemes for
ordinary differential equations (like Runge–Kutta [18]) can be
used, for higher dimensions manifold integration is not straight-
forward. Our implicit formulation in Rn coordinates might be
solved, regardless of the dimension, using explicit Euler schemes
for non-linear heat equations.
2.1. Structure-preserving diffusion

In the case of images, I(x,y), the second moment matrix or
structure tensor provides a good description of their local
structures. The structure tensor matrix describes the gradient
distribution in a local neighborhood of each pixel by averaging the
projection matrices onto the image gradient:

STðr,sÞ ¼ gr �
IxðsÞ
IyðsÞ

 !
ðIxðsÞ,IyðsÞÞ

" #
¼

gr � I2
x ðsÞ gr � IxðsÞIyðsÞ

gr � IxðsÞIyðsÞ gr � I2
y ðsÞ

 !

Image derivatives are computed using Gaussian kernels, gs, of
variance s (differentiation scale):

IxðsÞ ¼ gðsÞx � I and IyðsÞ ¼ gðsÞy � I
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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Fig. 1. Vector field representing level curves of an angiography for a vessel (bottom-right image) and a background structure-less area (upper-right image).
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The projection matrix onto ðIxðsÞ,IyðsÞÞ is averaged using a Gaussian
of variance r (integration scale). Since STðr,sÞ is the solution to the
heat equation with initial condition the projection matrix, its
eigenvectors are differentiable (smooth) vector fields that represent
image level-sets normal (principal eigenvector, x) and tangent
(secondary eigenvector, x?) spaces. In the absence of corners (like
anatomical contours in bottom right image in Fig. 1), the vector x? is
oriented along image consistent contours (in the sense of regular
differentiable curves [20]). At textured or noisy regions, x? is
randomly distributed (upper right image in Fig. 1) and defines self-
intersecting curves with a large number of corners. At such singular
points (self-intersections and corners) the tangent space expands
the whole plane (i.e. covers more than one direction).

Our structure-preserving diffusion is given by

It ¼ divðQLQtrIÞ, Iðx,y,0Þ ¼ I0ðx,yÞ ð3Þ

with

Q ¼ ðx?,xÞ and L¼
1 0

0 0

� �
for x the principal eigenvector of STðr,sÞ.

Given that x? spatial distribution is a well-defined 1D vectors
field oriented along regular structures (bottom right image in
Fig. 1), SPD smoothes image gray values along them. Meanwhile,
at textured and noisy regions, x? expands the whole plane (upper
right image in Fig. 1) and, thus, SPD performs like a Gaussian filter,
in the sense that solutions converge to a constant value. Therefore
solutions to (3) converge to a non-trivial image that preserves the
original image main features as curves of uniform gray-level [19].
In this manner, SPD output achieves a uniform response to local
image descriptors suitable for a further detection and segmenta-
tion of image (anatomical) regions.
3. Experiments

The goal of our experiments is to show the improvement in
quality of SPD images (compared to other filtering approaches) for a
further identification of anatomical structures. In order to illustrate
SPD benefits regardless of the image modality and anatomic
geometry considered, two different data sets have been considered:
�

P
j.
Cardiac magnetic resonance (MR) images. Images have been
extracted from a data set of healthy volunteers provided by Creu
Blanca Clinic. Images have been acquired using a Siemens Avanto
lease cite this article as: D. Gil, et al., Structure-preserving smoothing o
patcog.2010.08.003
1.5T (Erlangen, Germany) with a spatial resolution from 1.3�1.3
to 1.7�1.7 mm/pixel. The selected images consists of 12 images
in short axis (SA) views and 8 in long axis (LA) views.

�
 Liver computerized tomography (CT) volumes. Images have been

selected from the public database (sliver07.isi.uu.nl) collected for
sliver07 competition hosted at MICCAI07 [22]. CT images were
acquired with scanners from different manufacturers (4, 16 and
64 detector rows) with a pixel spacing between 0.55 and
0.80 mm and the inter-slice distance from 1 to 3 mm. We have
considered 125 images in transversal view uniformly sampled on
five CT-volumes (25 images per volume).

Target structures (myocardium for MR and liver for CT) have been
identified by k-means unsupervised clustering on the intensity of
the original and smoothed images. Following the literature [22],
the quality of segmentations has been assessed by comparing
them to manual segmentations in terms of region overlap and
distance to manually traced contours. In particular, if we denote
by X the reference segmentation and Y the automatic one, we
have considered the following scores:
1.
 Volumetric overlap error (Jaccard measure [23]). It is given in
terms of the percentage in region overlap between two
segmentations, X and Y:

VOE :¼ 100ð1�jX \ Y j=jX [ Y jÞ

for j � j the number of pixels in a given region.

2.
 Average symmetric surface distance. The distance of an arbitrary

voxel, y, to a volume X is defined as: dXðyÞ ¼minxAXJy�xJ,
for J � J the Euclidean norm. The average symmetric
surface distance is defined as the average between dX(y) and
dY(x) as

AvSSD¼
1

jXjþjY j

X
xAX

dY ðxÞþ
X
yAY

dXðyÞ

 !
3.
 Maximum symmetric surface distance. It is given by the
maximum of dX(y) and dY(x):

MxSSD¼maxðmax
xAX
ðdY ðxÞÞ,max

yAY
ðdXðyÞÞÞ

All scores are given in pixels and give 0 for a perfect
segmentation.
f biomedical images, Pattern Recognition (2010), doi:10.1016/

dx.doi.org/10.1016/j.patcog.2010.08.003
dx.doi.org/10.1016/j.patcog.2010.08.003


Fig. 2. Performance of smoothing approaches on cardiac MRI.
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We have compared SPD to four representative techniques:
edge-enhancement (labeled E-E), anisotropic diffusion (labeled
AD), curvature-preserving (labeled C-P) and median filtering
(labeled MF). Edge-enhancing, anisotropic diffusion and SPD were
computed using an explicit (finite difference) iterative scheme.
Edge-enhancing and anisotropic diffusion were stopped after 20
iterations, while SPD images are the steady states obtained by
stabilization of the numeric scheme [24]. Curvature-preserving
images have been computed using default parameters,1 except for
the anisotropy rate, which was set to 1. We recall that such pure
anisotropic case should asymptotically behave like SPD and
converge to a collection of curves of constant intensity. In order
to check the latter assumption and for the sake of a faithful
comparison to the other PDE-based methods, 20 iterations were
1 Software available at www.greyc.ensicaen.fr/dtschump/greycstoration/.

Please cite this article as: D. Gil, et al., Structure-preserving smoothin
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considered. Finally, the size of the window for the median filter
was chosen depending on the resolution of the images of each
data set and was set to 3�3 for cardiac MR and 5�5 for liver CT
images.
3.1. Results for cardiac MR

Manual segmentations were defined as both ventricles (left
ventricle, LV, and right ventricle, RV) excluding trabeculae and
papillary muscles. We observe that this introduces a base-line
systematic error in MxSC, especially for segmentation of myocar-
dial walls in SA views (due to the trabeculae).

Representative SA and LA cuts and their region segmentation
for non-processed and filtered images are shown in Fig. 2. Three
regions have been segmented: blood (shown in white), myocar-
dial walls (shown in gray) and background (shown in black).
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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Manual contours are plotted in red on segmented images and also
on the non-processed ones for a better discrimination of cardiac
walls. Images in LA cuts (Fig. 2(a)) mainly show the LV as a
parabolic ‘U’-shaped structure. There are two areas difficult to
segment. First, the thin background layer separating the LV and
the bottom adjacent tissue should be preserved. Second, the piece
of the RV appearing on the right bottom part of images as a small
bright structure should not merge to the LV. The heart in SA cuts
(Fig. 2(c)) clearly shows both ventricles and the LV presents a
circular geometry. In this case, there are three small structures
that should be preserved for an accurate segmentation. First, the
RV wall (thin dark layer on the left side of images), in order to
avoid merging blood pool with adjacent tissue. Second, the weak
separation between heart and bottom adjacent tissue and, finally,
the sharp geometry of trabeculae muscles (the small structures
appearing at the first quadrant of the LV endocardium) in order to
discard them from LV shape models. Table 1 reports the statistical
ranges of the quality scores for blood and myocardial wall in LA
and SA views and a total range for all views and regions. The
results have been split into blocks corresponding to each method.
Bold face is used to highlight the best ranges.

In non-processed images, blood is accurately identified (pre-
senting a high accuracy rate in Table 1) in both views and
myocardial tissue is separated from adjacent structures. Small
structures (such as RV thin wall and trabeculae muscles in
Fig. 2(d)) are partially missing and myocardial regions are
corrupted by spurious pixels wrongly classified as background.
Although this does not significantly affect SA wall detection rate it
Table 1
Quality scores ranges for cardiac MRI.

AvSD MxSC VOE

Non-proc

LA Blood 1.63 71.05 6.66 73.53 27.94 715.95

LA Wall 3.28 73.37 13.85 77.81 77.05 730.51

SA Blood 1.01 70.88 6.38 74.70 29.24 719.73

SA Wall 1.34 71.06 7.15 73.85 49.85 725.27

Total 1.81 71.01 8.51 73.57 46.02 722.99

MF

LA Blood 1.30 70.58 6.49 73.04 20.08 711.13

LA Wall 2.27 71.69 13.66 78.38 47.92 724.72
SA Blood 1.33 70.83 8.33 74.10 33.38 714.54

SA Wall 1.63 71.20 10.69 77.48 49.26 724.14

Total 1.63 70.45 9.79 73.10 37.66 713.75

AF

LA Blood 1.14 70.63 6.92 73.58 18.73 712.08

LA Wall 1.86 71.05 9.49 74.79 64.12 731.02

SA Blood 1.12 70.90 7.64 74.99 34.11 718.93

SA Wall 1.93 71.70 11.54 79.08 48.20 728.59

Total 1.51 70.44 8.90 72.07 39.79 718.92

C-P

LA Blood 1.27 70.71 6.34 72.41 34.39 718.62

LA Wall 2.82 71.14 10.37 71.23 93.90 710.52

SA Blood 1.11 70.69 7.72 74.27 32.57 717.75

SA Wall 3.09 72.62 14.95 710.25 69.71 731.10

Total 2.07 71.03 9.84 73.79 57.64 729.61

E-E

LA Blood 1.07 70.70 5.26 73.26 19.96 713.34

LA Wall 2.74 71.75 13.52 78.63 69.89 732.08

SA Blood 0.95 70.70 6.36 74.29 28.75715.87

SA Wall 1.16 70.86 7.76 76.63 40.08 716.43

Total 1.48 70.84 8.22 73.68 39.67 721.77

SPD

LA Blood 1.06 70.57 5.79 73.41 17.14 78.21
LA Wall 1.52 71.12 8.31 76.17 50.67 733.25

SA Blood 0.73 70.54 5.59 73.90 27.98 716.45
SA Wall 1.19 70.95 7.74 76.88 37.90 717.93
Total 1.13 70.33 6.86 71.37 33.42 714.29
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substantially rises segmentation error for LA views. Since, for both
views, spurious pixels wrongly classified in original views are
removed in all filtered images, blood detection rates are similar
for all methods. However, the geometry of the segmented
anatomical structures varies across smoothing methods. Com-
pared to PDE-based methods, MF is more aggressive to shape
geometry and is prone to merge adjacent tissue (RV and bottom
tissue in Fig. 2(b)) and lose thin and small structures (RV wall and
trabeculae in Fig. 2(d)). Systematic tissue merging increases the
average distance for LA wall, while structure lost affects
maximum distances in SA blood and wall segmentations (Table 1,
2nd block). AF images present a general decrease in intensity
sharpness (Fig. 2(a), (c)), which equally affects segmentation
accuracy (Table 1, 3rd block) for SA and LA walls. In qualitative
terms (Fig. 2(d)), sharpness decrease might merge myocardium
with surrounding tissue and oversmooth structure shape (like
trabeculae). We observe that C-P (Table 1, 4th block) quickly
degrades intensity sharpness at small structures which distorts its
shape (like trabeculae in Fig. 2(d) and RV in Fig. 2(b)). This might
be attributed to numerical errors inherent to the Runge–Kutta
scheme used in its implementation, which prevent convergence
to the theoretical collection of curves of constant gray-level. We
would like to note that for a small number of iterations (at most 2
as suggested in [16]) it behaves like AF. Those images filtered with
E-E present a good preservation of intensity sharpness at the cost
of a pixelized texture appearance (Fig. 2(a), (c)). It follows that
segmentations keep separations between myocardium and ad-
jacent tissue but restore discontinuous (RV wall in Fig. 2(d))and
irregular profiles. Although in overall terms, E-E is the second best
performer (Table 1, 5th block), texture enhancement might drop
its performance at images prone to present noisy backgrounds (LA
wall). Finally, SPD is the best performer with top ranges for eight
specific scores and optimal total ranges for the three quality
measures. Images in Fig. 2 show that the steady states achieved by
SPD present a good compromise between noise removal and
restoration of continuous anatomical structures.
3.2. Results for liver CT

Given that C-P behaves like AF, it has been dropped for this
experiment. Manual segmentations (available at http://www.
sliver07.org/) were defined as the entire liver tissue including all
internal structures like vessel systems, tumors, etc. Such structures
present a different gray-level than healthy liver tissue and might not
be included in the k-means segmentation. Morphological operations
have been applied to k-means in order to include such structures.

The main difficulty in CT is that contrast sharpness might be at
the cost of noise increase. This property splits CT into two main
categories. Images with a clear inter-tissue transition but a low
signal-to-noise ratio (data sets CT1, CT2) and images with a good
signal present but a poor inter-tissue contrast (data sets CT3 to
CT5). For the first type, a filter with strong regularizing properties
should be used, while for the second type the filter should
preserve image sharpness as much as possible in order to avoid
merging of different structures.

Fig. 3 shows the performance for two representative CT images, a
noisy image from CT1 in Fig. 3(a) and a poor contrast one from CT3
in Fig. 3(c). Like Fig. 2, manual contours are plotted in red on
segmented images (Fig. 3(b), (d)) and also on the non-processed
ones for a better discrimination of the liver. As in the previous
experiment, Table 2 (also split into blocks) reports ranges for the
quality scores with merit numbers in boldface. Infinite for distances
indicates that liver contours were undetected for some images.

The segmentation of the liver area fails for some images in non-
processed volumes (infinite AvSD ranges for CT1, CT2 in the first
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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Fig. 3. Performance of smoothing approaches on Liver CT.
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block) and is prone to merge the liver with adjacent tissue in low
contrast ones (MxSD ranges for CT3–CT5 and Fig. 3(d), 1st row). By
its strong smoothing properties, MF outperforms PDE-based
methods in noisy volumes (especially for highly noisy cases like
CT1 shown in Fig. 3(b)). However, its efficiency might significantly
drop in low contrast cases by a systematic merging of adjacent
tissue (AvSD ranges for CT3 as shown in Fig. 3(d), 2nd row). Over
regularization of AF images also produce tissue merging in low
contrast cases (CT3, CT4) as illustrated in Fig. 3(d), 3rd row. Given
that low-contrast cases are quite smooth, E-E performance is
optimal as illustrated in Fig. 3(d), 4th row. However, for noisy cases
it might amplify noise (see Fig. 3(b), 4th row) producing rather
erroneous segmentations (like Vol1 in Table 2). Finally, SPD achieves
a suitable compromise between noise removal and preservation of
intensity sharpness and structures geometry. It follows that it gets
the best total ranges for all scores.
4. Application to extraction of plant’s xylem network

The xylem of plants is a tissue consisting of a tubular network
that provides the main pathway for long distance transport of
Please cite this article as: D. Gil, et al., Structure-preserving smoothin
j.patcog.2010.08.003
water from roots to leaves [25]. Its properties determine how
much water can be transported by plants, as well as the
vulnerability to transport dysfunctions (formation and propaga-
tion of emboli) associated to stress factors, such as droughts and
frost. In particular, vulnerability to embolism has been recognized
as one of the main factors explaining plants’ resistance to drought
and a key element in predicting plant survival under warmer (and
drier) conditions [26]. A proper description of the structure and
transport properties of the xylem is thus a key element in the
development of realistic predictive models of the behavior of
different plant species under extreme drought conditions and to
forecast vegetation changes under different climate change
scenarios [27].

The relationship between xylem structure and function has
traditionally been studied from 2D cross-sections of the xylem
tissue (e.g. [25]), using properties such as the diameter-(� mm)
and length-(� cm) distributions of the conduits and the size of the
pores that connect them. Recent studies [28], however,
show the importance of the 3D topology of the xylem network
to its overall transport properties. Specifically, the connectivity of
the system (i.e. the average number of neighbors per conduit)
has a strong effect on both the hydraulic conductivity of the xylem
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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Table 2
Quality scores ranges for liver CT-images.

AvSD MxSC VOE

Non-proc

CT1 N N 99.26 73.46

CT2 N N 84.96 724.58

CT3 3.31 74.02 32.34 727.21 22.15 711.29

CT4 1.27 71.22 14.84 713.35 9.45 76.40
CT5 1.45 71.35 15.07 711.98 13.71 711.76

Total N N 45.91 742.73

MF

CT1 3.66 74.74 31.70 727.04 26.10 713.56
CT2 2.44 74.73 17.18 725.65 9.29 711.99
CT3 6.51 76.00 47.29 730.89 22.91 712.64

CT4 3.11 75.07 22.75 728.60 11.30 79.29

CT5 2.99 74.83 24.24 727.21 10.61 77.95

Total 3.74 71.61 28.63 711.65 16.04 77.84

AF

CT1 5.54 75.26 49.46 731.98 33.52 714.38

CT2 1.79 72.95 14.71 719.86 11.35 713.46

CT3 7.72 78.41 44.68 738.81 23.30 718.91

CT4 7.27 75.59 46.37 730.08 29.09 77.82

CT5 2.15 72.32 19.81 718.95 8.89 76.43

Total 4.90 72.79 35.01 716.39 21.23 710.81

E-E

CT1 12.67 710.96 62.82 732.13 70.66 720.10

CT2 1.37 71.05 12.99 710.40 10.97 77.52

CT3 1.63 71.41 16.93 714.19 10.47 78.98

CT4 2.33 73.70 19.08 721.71 9.57 76.57

CT5 1.33 71.26 14.35 713.66 7.72 75.36
Total 3.87 74.94 25.23 721.14 21.88 727.30

SPD

CT1 6.08 75.67 48.87 730.86 36.37 716.34

CT2 1.65 71.80 14.58 713.48 12.09 710.68

CT3 1.60 71.34 16.74 714.33 10.24 78.62
CT4 2.37 73.43 20.97 722.60 9.98 77.06

CT5 1.47 71.32 17.05 715.81 8.30 76.60

Total 2.63 71.96 23.64 714.29 15.40 711.80
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and its vulnerability to embolism [28]. Unfortunately, measuring
the connectivity of real wood samples remains a challenge, as
obtaining good quality 3D reconstructions of representative
segments of the xylem network is technically difficult because of
the required spatial resolution and the opacity of wood.

X-ray computed micro-tomography (micro-CT) is one of the
few imaging techniques allowing high resolution imaging of the
3D xylem network [29,30]. In order to process stacks of micro-CT
sections to obtain good quality 3D reconstructions of the xylem
network that are useful to estimate its connectivity, it is critical
that the segmentation algorithm preserves all the functional
conduits (i.e. even the smallest ones) and that neighbor conduits
are not merged. Fig. 4 shows how SPD smoothing can be used in
this context to produce satisfactory results. Fig. 4(a) shows
a tomographic section of a wooden segment from Fraxinus

americana, obtained with a SkyScan 1072 microtomograph [30],
and its processed SPD output is shown in Fig. 4(b). Xylem conduits
correspond to darker elliptic structures and might appear either
isolated or in small (connected) groups separated by a (lighter)
thin cell wall. Fig. 4(d) and (e) show gray-level intensity
histograms for non-processed (Fig. 4(d)) and SPD (Fig. 4(e))
images. In the SPD processed image, even the smallest conduits
(like the one in square 1) are clearly outlined from the background
and there is no loss (i.e. conduit merging) in their connectivity
(see the two neighbors in square 2). Furthermore, SPD homo-
genization of structure intensity produces a bi-modal distribution
in histograms clearly separating xylem tubes from background.
We have used this property to obtain a detailed 3D reconstruction
of the xylem system by simple image processing operators.
Please cite this article as: D. Gil, et al., Structure-preserving smoothin
j.patcog.2010.08.003
Otsu’s thresholding method applied to each CT-slice histogram
gives the gray-value (vertical dashed line in histogram of Fig. 4(e))
that best separates the two distributions. Morphological opera-
tions on binary images are used to remove small structures and
close tube holes. Fig. 4(c) shows the final binary image
representing xylem tubes from SPD image in Fig. 4(b). A labeling
of the binary 3D block provides the xylem network (as shown in
Fig. 4(f)) and allows the computation of the network connectivity
by morphological opening with a structure element of size the
maximum separation between connected tubes. These results
provide one of the first direct measurements of the connectivity of
the xylem network in any plant species, and are consistent with
previous manual measurement attempts (cf. [31] for Fraxinus

excelsior). Additionally, SPD smoothing has been recently applied
to improve the segmentation of traditional xylem cross-sections
(2D) in a work looking at the spatial distribution of xylem
conduits and its functional significance [32].
5. Conclusions

Smoothing of biomedical images preserving weak tissue
transitions is a crucial step for a proper segmentation of anatomical
structures. Smoothing methods given by solutions to a second
order elliptic PDE are backed up by a solid mathematical theory
and admit an explicit iterative numeric scheme. The asymptotic
behavior of solutions is determined by the second order term,
which is usually described by means of a diffusion tensor positive
defined. If the eigenvectors of strictly positive eigenvalues expand
the whole space, solutions converge towards a constant function
and the number iterations becomes a critical issue.

This work gives the mathematical conditions required for
designing tensors that do not expand the whole space, but restrict
diffusion to given manifolds. The condition is always satisfied for
eigenvectors perpendicular to a single smooth vector field, which,
in the case of images, might be computed using the structure
tensor. The diffusion scheme is the implicit formulation of an
elliptic operator on the integral manifolds of the eigenvectors of
strictly positive eigenvalues. By using the structure tensor for
defining such eigenvectors, they model a smooth completion of
anatomical structures and expand the whole space elsewhere. It
follows that the diffusion scheme converges to non-uniform
images which present homogenous inter-tissue transitions at
consistent anatomical structures and are smooth everywhere else.
By using an implicit formulation, our restricted diffusion admits
an explicit numeric scheme for non-linear heat equations which
stops by stabilization of the iterative scheme.

Thus, the proposed diffusion has several advantages over
existing second order PDE-based methods. It can be solved using a
low complexity numeric scheme supported for any dimension
and which only depends on the two parameters used to compute
the structure tensor. The stopping criterion for the iterative
numeric scheme is independent of the input image. The stabilized
solutions preserve intensity sharpness and the geometry of
structures in a natural way. By its geometric nature, SPD preserves
low contrast structures as far as their geometry is well defined.
This is an advantage over other PDE techniques using structure
tensor since they would smooth them out if they have a well-
defined geometry but low contrast. Another main advantage is
the ability to restore thin structures and homogenize the response
to local image descriptors.

The performance of SPD strongly relies on the quality of vector
fields representing the tangent space of anatomical structures.
In this approach, the structure tensor has been used, which makes
the proposed diffusion fail in three specific situations. First, like
other methods based on the structure tensor, diffusion is not well
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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Fig. 4. Benefits of SPD on micro-CT slices of wooden segment. Top images show non-processed (a), SPD (b), and segmented CT-slices (c). Bottom graphics show intensity

histograms for non-processed (d), SPD images (e), and 3D-reconstruction of the xylem (f).
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defined at corners, where level-curves tangent space is not
consistent. Since this represents a significant limitation in natural
scenes, there are some recent methods trying to fix the problem
[33]. Fortunately, biomedical structures have smooth boundaries, so
that, in the particular field of biomedical imaging filtering SPD is
reliable. Second, we have observed that at areas presenting heavy
speckle noise, the structure tensor might produce fake consistent
vector fields partially aligned along observable noisy patterns.
In such situations, SPD is prone to introduce false boundaries inside
anatomic structures. This might be solved by tuning of the structure
tensor scales or using alternative measures of image local structure.
Finally, by its geometric nature, SPD might smooth out small
structures (such as tumors and polyps) in the case that the structure
tensor cannot model their tangent space. The number of smooth out
small structures is minimized by considering the smallest scales for
computing the structure tensor. We consider that structures below
such scales are on the edge of the image resolution and thus their
measurement is not accurate enough for medical applications.
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Appendix A. Relation to the heat equation on manifolds

As in the case of Rn, heat equations on manifolds, M, are given
by divergence operators divMðJrIÞ, for J a symmetric positive
defined 2-form (i.e. a metric), rI the gradient (in M) of a smooth
function, I : M-R, and the divergence operator defined on M. In
order to deduce the expression in M coordinates and its relation to
our structure-preserving smoothing, we will use some tools of
differential geometry. General theory on Riemmanian manifolds
might be found in [20] and the specific one about heat equations
on manifolds in [21].

We will use the following notations. Scalar product will be
noted by / � , �S, the divergence of a vector field by div, Lie
derivatives by L and the Lie bracket by ½�,��. Given a k-dimensional
Riemmanian manifold, M, we will use the subindex M to indicate
that the former operators are taken on M. In the particular case of
Rn the subindexes will be dropped. Coordinates will be noted by
s¼(s1,y,sk) for M and by x¼(x1,y,xn) for Rn. Accordingly, basis of
the respective tangent (vector) spaces will be given by the partial
derivatives @si

, i¼1,y,k and @xi
, i¼1,y,n.

The expression of any vector field, ~x, in local coordinates is
given by ~x ¼

P
i
~xiðsÞ@si

and will be noted by ð ~x1, . . . , ~xkÞ for short.
If M is embedded in Rn through local charts f:

f : U 	Rk
�!M	Rn

s¼ ðs1, . . . ,skÞ/ðf1ðsÞ, . . . ,f
n
ðsÞÞ
g of biomedical images, Pattern Recognition (2010), doi:10.1016/
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then the Jacobian of the chart:

Df¼

@s1
f1 � � � @sk

f1

^ ^

@s1
fn � � � @sk

fn

0
B@

1
CA ð4Þ

is a k�n matrix that provides an expression of the vectors @si
in

the canonic (vectorial) basis of Rn:

@si
ðfÞ ¼ ðf1

si
, . . . ,fn

si
Þ ¼f1

si
@x1
þ � � � þfn

si
@xn ð5Þ

It follows that any vector field on M, ~x ¼ ð ~x1ðsÞ, . . . ,
~xkðsÞÞ, has an

expression in Rn given by applying Df to ~x:

x¼Df ~x ð6Þ

That is, x¼ ðx1ðXÞ, . . . ,xnðXÞÞ, for xk ¼
P

i
~xif

k
si

. Conversely, any
vector field, x, in Rn has an expression in M given by

~x ¼ ðDftDfÞ�1Dftx ð7Þ

for x¼ ðx1ðfðsÞ, . . . ,xnðfðsÞÞ evaluated at fðsÞ.
Manifolds embedded in Rn inherit its scalar product, so that

/ � , �SM is given by the symmetric tensor ðgijÞij ¼ ð/@si
,@sj

SÞij for
@sk

given by (5). If g¼det(gij) denotes its determinant, then the
volume form of M equals o¼ g1=2ds1 . . . dsk, for dsi the dual basis
of @si

.
The divergence of a vector field ~x in local coordinates is [20]

divMð
~xÞ ¼ g�1=2 ~xðg1=2Þþ

X
i

@si
ð ~x

i
Þ ð8Þ

Given a smooth function I¼ Iðs1, . . . ,skÞ : M-R, its gradient in M is
the (unique) vector satisfying [21]

/rMI, ~xSM ¼
X

k

~x
k
@sk
ðIÞ ¼ ~xðIÞ ¼ I ~x ð9Þ

Analogously to Rn, rI might be interpreted as the vector
that provides the derivative of the function along any direction
~x. In the case that I¼ I(x1,y,xn) is a function of Rn restricted
to M, we have that the derivative in Rn relates to the derivative
in M:

/rI,xS¼
X

k

xk@xk
ðIÞ ¼

X
k

@xk
ðIÞ

X
i

~xif
k
si

 !

¼
X

i

~xi

X
k

fk
si
@xk
ðIÞ

 !
¼
X

~xi@si
ðIÞ ¼/rMI, ~xSM ð10Þ

Expression (5)–(10) is all we need to compute the formulation of
the heat equation on manifolds and relate it to our restricted
diffusion. Let ~x

1
, . . . , ~x

k
be the eigenvectors of a diffusion tensor

with li
¼ 1 defined on a manifold M. The associated heat equation

is given by [21]

divMðJrMuÞ ¼ divM

X
i

/rMu, ~x
i
SM �

~x
i

 !

¼
X

i

/rMu, ~x
i
SM � divMð

~x
i
Þþ
X

i

~x
i
ð/rMu, ~x

i
SMÞ

¼
X

i

u ~x
i divMð

~x
i
Þþ
X

i

u ~x
i ~x

i
þ
P

i

/rM u,ðrM
~x

i
Þ ~x

i
SM

ð11Þ

where rM
~x

i
stands for the Jacobian of a vector ~x

i
¼ ð ~x

i

1, . . . , ~x
i

kÞ in
local coordinates:

rM
~x

i
¼

@s1
~x

i

1 � � � @sk
~x

i

1

^ ^

@s1
~x

i

k � � � @sk
~x

i

k

0
BBB@

1
CCCA
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and u ~x
i ~x

i is the second derivative along ~x
i

given by the Hessian
in M:

ðu ~x i
~x j
Þij ¼ ð

~x
i

jÞ
t
ijðusisj

Þijð
~x

i

jÞij

The Laplacian corresponds to ~x
i
¼ @si

.
Since the second order term in (11) is of elliptic type, there is a

unique solution [19]. In fact, since ~x
i

are orthonormal, the matrix
ðu ~x i

~x j
Þij is equivalent (as linear map) to ðusisj

Þij. Therefore, by
invariance of traces under coordinate changes, we have that (11)
equalsX

i

usisi|fflfflfflffl{zfflfflfflffl}
2nd order

þ
X

i

divMð
~x

i
Þu ~x

iþ/rMu,ðrM
~x

i
Þ ~x

i
SM|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st order

ð12Þ

We would like to note that by (8) diffusion equations on
manifolds contain, in the general case, a divergence term of the
eigenvectors of the diffusion tensor. However, this term does not
influence the asymptotic behavior of solutions, since it is
exclusively determined by the second order term.

In the case of the restricted diffusion introduced in Section 2,
the divergence develops as

divðJruÞ ¼
X

i

uxi divðxi
Þþ
X

i

uxixiþ
X

i

/ru,ðrxi
ÞxiS ð13Þ

for derivatives taken in Rn. By using the expression of xi in M

coordinates given by (7), we have that

This relation and (10) imply that (13) is equal to

divRn ðJruÞ ¼
X

i

usisi
þ
X

i

u ~x
i divðxi

Þþ
X

i

/rMu,ðrM
~x

i
Þ ~x

i
SM ð14Þ

The main difference between (14) and (12) is the divergence of
the vector fields, which is computed on each space (M for (12) and
Rn for (14)). This difference does not affect steady states, which
are described by functions constant on the integral manifolds of
the distribution ðx1, . . . ,xk

Þ.
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