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Abstract

Crystal unbending, the process that aims to recover a perfect crystal from experimental data, is one of the more important steps in
electron crystallography image processing. The unbending process involves three steps: estimation of the unit cell displacements from
their ideal positions, extension of the deformation field to the whole image and transformation of the image in order to recover an ideal
crystal. In this work, we present a systematic analysis of the second step oriented to address two issues. First, whether the unit cells
remain undistorted and only the distance between them should be changed (rigid case) or should be modified with the same deformation
suffered by the whole crystal (elastic case). Second, the performance of different extension algorithms (interpolation versus approxima-
tion) is explored. Our experiments show that there is no difference between elastic and rigid cases or among the extension algorithms.
This implies that the deformation fields are constant over large areas. Furthermore, our results indicate that the main source of error
is the transformation of the crystal image.
! 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Transmission electron microscopy (TEM) analysis of
biological material is inconvenienced by sample sensitivity
to electron radiation. In order to minimize the damage
caused by radiation, the electron dose is kept low and con-
sequently the signal-to-noise ratio of the images is poor.
Image processing methods have been developed to over-
come this problem. Although, in theory, these methods
can be applied to a TEM image of any object, they are usu-
ally most powerful for objects in which subunits are
arranged in a regular manner, such as two-dimensional
crystals. In fact, electron crystallography is currently the
only way to reach atomic resolution using electron micros-
copy (Henderson, 2004). However, this is seldom attained
and, as in many other techniques, the quality of the
experimental data is a major limitation that prevents
crystallographic studies reaching atomic resolution.

This limitation is in part due to the disorder in the crystal,
induced mainly by stretching and bending of the crystal or
the presence of cracks, absences or dislocations of the
lattice.

In this work, we focus on the correction of lattice
defects. In particular, we analyze the importance of the dif-
ferent schemes that can be used to recover an ideal crystal
from the experimental one. From the theoretical point of
view, crystal unbending fits into either an approximation
or an interpolation scheme. Interpolation methods are bet-
ter suited for crystals that present homogeneous deforma-
tions on large areas, while approximation techniques are
optimal in the case of highly varying deformations. We
have explored representative algorithms for each scheme,
including the most popular in the electron microscopy field
as implemented in the MRC package (Crowther et al.,
1996).

We have also explored the importance of (i) modifying
the unit cells so that they suffer the same deformation
as the whole crystal (elastic case) versus (ii) modifying only
the distance between the unit cells centers (rigid case).
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The classical implementation of crystal unbending follows
(i) but, if (ii) is close to what really happens during crystal
formation, it might introduce a distortion in the unit cells,
which would limit the maximum resolution achievable.

The work is divided as follows. Section 2 summarizes the
traditional method for lattice correction and introduces
the mathematical background needed for understanding
the different approaches. Sections 3 and 4 describe the
experiments performed, unbending assessment with phan-
toms in Section 3 and experimental data in Section 4.
Finally, Section 5 discusses the results.

2. Theoretical background

2.1. Crystal unbending

In electron crystallography, Fourier transformation is
usually employed because the Fourier transform (FT) of
a perfect 2D crystal is confined to isolated points. In con-
trast, the contribution from other sources (i.e., noise) is
essentially distributed at random. The standard methodol-
ogy for 3D reconstruction using 2D crystals consists of the
following stages: (i) signal-to-noise ratio (SNR) enhance-
ment by filtering, (ii) correction of the lattice defects (iii)
Fourier synthesis: FT normalization, determination of the
phase origin and 3D reconstruction. Image processing in
crystallography starts by acquiring projections of the crys-
tal at various angles. The 2D projections obtained in the
TEM need to be enhanced to increase their SNR. This is
done by calculating their FTs and setting to zero all those
frequencies not related with the periodic signal (optical fil-
tering). In practice, all the Fourier components not in a
vicinity of the reciprocal lattice points are forced to have
zero value.

Biological crystals are seldom perfect, they present dis-
tortions and stretching, are limited in extent and disor-
dered. These imperfections degrade the FT and reduce
high resolution information. The degradation of the FT
produces a broadening of the peaks at the reciprocal lattice
(i.e., they are no longer a delta function but a Gaussian)
plus an attenuation of the high frequency terms. As filter-
ing (in Fourier space) is equivalent to averaging all the unit
cells in the crystal (in real space), this degradation makes
the average unit cell blurred. In other words, crystal imper-
fections translate into small misalignments of the different
unit cells and the final average then turns out blurred.

Lattice unbending was developed by Henderson et al.
(1986), to correct these distortions and recover high resolu-
tion information. This method identifies the position of
each unit cell (usually by cross-correlation) and interpo-
lates a new image with smaller distortion. The new image
is further refined, usually through a few rounds of
‘‘unbending’’.

The main concern of crystal unbending is to correct the
crystal distortions, that is, its deviation from regular lattice
repetition. The standard approach is a three-steps
algorithm:

(1) Extract experimental displacements for each unit cell.
A region in the crystal image that appears to have the
least distortion is selected as a reference area and
cross correlated with the original image. Then, the
position of the cross correlated peaks is used to gen-
erate a list of vectors that map the experimental
image into an ideal crystal made by repetitions of
the reference area. Each peak is mapped to the near-
est theoretical position. Therefore, displacements
larger than half a unit cell are not properly computed.
The output of this first step is a list of scattered shifts
(Fk) at some of the grid points Pk.

(2) Extend experimental shifts. Since the crystal should
be corrected or ‘‘unbent’’ by applying the shifts com-
puted in the previous step, the experimental shifts
must be extended to produce a deformation field at
each image pixel. The way pixel shifts are computed
determines the unbending.

(3) Deform crystal image. The original crystal is unbent
according to the inverse of the deformation field.
The computation of the unbent image involves inter-
polation of the original gray values to handle values
at non integer positions.

Crystal unbending can be stated as a particular case of
function extension (Evans, 1993). In 2D crystallography,
the goal is finding a vector field, f(x, y) = (fx, fy), defined
on the whole image from the experimental displacements,
Fk = (Fx, Fy)k, given at the grid points Pk (Fig. 1(a)).

A usual requirement in extension processes is that the
target unknown function must fulfill some regularity. Such
regularity is usually expressed in terms of a minimum inter-
nal energy (such as in the case of snakes (Kass et al., 1987)
or radial–kernel extensions (Wendland, 2005)) and is relat-
ed to the way information distributes on the domain.
Depending on the similarity between f(Pk) and the given
values Fk, there are two main schemes for crystal unbend-
ing: interpolation and approximation. The choice between
one of the methods depends on the nature of the experi-
mental values.

2.2. Interpolation vs approximation

Interpolation methods (Amidror, 2002) require that the
target function passes through the experimental positions
(i.e., f(Pk) = Fk as in Fig. 1(b)). From the practical point
of view, interpolation schemes have two main advantages.
On one hand, they ensure that the experimental informa-
tion is preserved. On the other, they have an efficient imple-
mentation in terms of a weighted sum of the values Fk.
Although interpolating functions are continuous, the con-
dition f(Pk) = Fk, bounds their global variability by that
of the discrete values Fk. Such limitation on the overall reg-
ularity of the function f can lead to an artificial blurring of
the unit cell if the experimental shifts are highly noisy.

Approximation algorithms (Kass et al., 1987) reach a
compromise between similarity to the original Fk values
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(accuracy to experimental data) and smoothness (robust-
ness against noise) of the target function (Fig. 1(c)).
Usually the above condition is achieved by minimizing an
energy functional (see Appendix A.1 for details). Since
there is no bound on f regularity, the impact of noisy shifts
is suppressed. Unfortunately, depending on the way we
solve the energy equation, the influence of the values Fk

might be minimum and the approximating function might
not resemble the original values. The difference between the
approximating function and the values Fk is called fitting
error.

Fig. 2 illustrates the artifacts that the interpolation
and approximation approaches might present. Fig. 2a
shows the original image, a continuous deformation field

Fig. 1. Interpolation vs approximation: (a) scattered values, (b) interpolation and, (c) approximation.
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Fig. 2. Interpolation and approximation artifacts.
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and the result of applying the continuous field to the ori-
ginal image, we note that given an original image f(x)
and a deformation field D, a deformed image g(x) is
defined as g(x) = f(Dx). Therefore, an expansion defor-
mation as D shrinks the signal f(x). In Fig. 2b we start
from the deformed image and a discrete sampling of
the continuous field with added noise (this field, in the
context of crystal unbending, represents the experimental
shifts at the unit cell center). The goal is to restore the
continuous field from the noisy discrete sampling either
by interpolation or approximation (second row Fig. 2b)
and, thus, recover the original image (third row
Fig. 2b). Since the interpolated field still keeps the noisy
nature of the sampling, the transformed image (labelled
as correction by interpolation) is distorted. Meanwhile

the approximated field, although it avoids image distor-
tions, leaves the transformed image (labelled as correction
by approximation) unchanged.

We have selected two representative methods (see
Appendix A.1 for details) of each family (interpolation
and approximation). The selected algorithms range from
a high precision but low robustness against noise to a lower
precision but higher robustness to noise:

• Linear interpolation is the most popular way of comput-
ing interpolations (Amidror, 2002). It is the fastest
accurate algorithm but the most sensitive to noise.

• Bessel interpolation provides a more regular interpola-
tion. It is robust against global irregularities but not to
local noise.

b

Fig. 2 (continued )
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• Bessel approximation guaranties robustness against
noise while keeping a low fitting error (precision). Its
main drawback is the computational expenses (a few
hours for a large crystal).

• MRC approximation is a B-spline based method and the
standard de facto in 2D electron crystallography
(Henderson et al., 1986). B-spline based methods require
a user defined parameter (the number of control points,
see Appendix A.2 for details) that allows controlling the
fitting error. As the number of control points increases
B-splines get closer to an interpolation scheme.

We note that MRC implementation assumes small dis-
placements. Although in theory should be able to process
shift as large as half unit cell, this may require editing the
code. This is not the case for the other schemes described.

3. Unbending of synthetic data

3.1. Phantom data generation

Two phantoms have been used in this work. The first
phantom is a simple structure: a hollow cylinder surround-
ed by small spheres (Fig. 3a). This trivial phantom allows a
clear identification of algorithm-induced artifacts and,
thus, a more reliable algorithm comparison. The second
phantom (Fig. 3b) was produced from the crystal structure
of a protein (the histone fold heterodimer of the chromatin
accessibility complex, PDB entry: 2BYM). In our model
the atoms are replaced by blobs (Lewitt, 1990).

Both phantoms are mathematically defined by the crys-
tal vectors, the crystal size (the number of unit cells), and
the parameters that define each feature (either a cylinder,
a sphere or a blob) contained in the unit cell. From these
phantoms, projections with several noise levels were gener-
ated. Special care was taken to generate realistic noise by
considering the addition of noise not only to the pixel val-
ues of the projections, but also to the distances between
neighboring unit cells (lattice distortion). We also incorpo-
rated feature skipping, so that for each unit cell of the

phantom and for each feature (cylinder, sphere or blob),
the feature was not taken into account when computing
the projection if a random number was below a given
threshold. The actual value of the lattice distortions at each
unit cell center was computed from experimental data
(human AQP2 (Schenk et al., 2005)) and assumed constant
within the unit cell (rigid case).

The MRC suite of programs (Crowther et al., 1996) (in
our experiments also helped by SPECTRA (Schmid et al.,
1993)) was used to process the data and compute the corre-
lation maxima needed to perform the unbending. In our
experience image processing of crystals is very robust
against noise added to pixels values and feature skipping.
Therefore, we only report on the case of lattice distortion
noise. In this case, different signal-to-noise ratios only affect
the number of experimental shifts (i.e., number of crosscor-
relation peaks above certain threshold) considered in the
extension step. The impact of the crystal quality has been
assessed by creating three noise cases (high, average and
low) defined by a threshold value. For each case only those
correlation peaks with a correlation above the threshold are
taken into account in the computation of experimental
shifts. The threshold values are set so that the high quality
crystal uses 99% of the correlation peaks, the average one
75% and the low one the extreme value of just 10%.

3.2. Experimental set-up

Our experiments have been designed to address the fol-
lowing topics:

(1) Elastic vs rigid. The goal is to check whether the unit
cell is deformed during crystal unbending (elastic
case) or not (rigid case). The exact phantom shifts
at the unit cell centers are used to compute the
unbending with two different interpolations schemes.
Nearest neighbor interpolation of the deformation
field is used to simulate a rigid block-wise unbending,
while a linear interpolation is used for a generic
elastic unbending.

Fig. 3. Computer generated rendering of (a) a phantom consisting of a hollow cylinder (inner radius = 27 Å, outer radius = 32 Å) and 8 small spheres
(radius = 4 Å). The spheres are located around the outer surface of the cylinder at each 45 degrees. The value of their z coordinate is 0 Å. (b) Phantom
based on the PDB entry: 2 BYM. Sampling rate is 1 Å per pixel.
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(2) Interpolation vs approximation. In order to determine
which is the best scheme, four methods have been
tested: linear and Bessel interpolation, and Bessel
and MRC-spline approximation. Since MRC perfor-
mance depends upon the number of control points,
we have run MRC with control points in the range
[7,60] sampled every 8 units.

We note that, although different approximation/interpo-
lation schemes are used to recover the continuous deforma-
tion field, in all cases, the unbent crystal image is computed
using bilinear interpolation. The comparison protocol focus-
es on lattice distortions and follows these steps. First, we pro-
duce a perfect crystal without noise and process it with the
MRCpackage skipping the unbending step. This yields a ref-
erence unit cell that is compared to the one obtained from a
noisy crystal after unbending. Accuracy in resolutions is
quantified with the following standard measures:

• L2-relative error (RE). This is an overall normalized
measure of dissimilarity between two images, I1 and I2,
given by:

RE ¼
P

i;jðI1ði; jÞ $ I2ði; jÞÞ2
P

i;jI1ði; jÞ
2 : ð1Þ

• Fourier Ring correlation (FRC). This is a local measure
of similarity (correlation) between two images in a given
Fourier frequency range (van Heel, 1986). If FT1 and
FT2 are the Fourier transforms of the images to be com-
pared, then the formula of FRC for a ring defined by the
range IR is: W1,W2

FRC ¼
P

kW kk2IRFT1ðW kÞFT2ðW kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kW kk2IRkFT1ðW kÞk2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kW kk2IRkFT2ðW kÞk2

q

ð2Þ
where FT2ðW kÞ is the conjugate of a complex number
and Wk is the frequency of the different spots.

In the case of methods depending on user defined
parameters (i.e., the number of control points in MRC
approximation), we have optimized them following two
different criteria. The first one is minimizing the global
relative error, the second one is maximizing the number
of good spots in the Fourier transform after unbending.
Spot quality is usually given in terms of the signal-
to-noise ratio and it is reported in a logarithmic scale
as the IQ number (Henderson et al., 1986).

3.3. Results

Plots in Fig. 4 show FRC curves for a high
(Fig. 4a) and an average quality crystal (Fig. 4b) in
the case of the cylinder phantom. The plot labelled
‘‘Op. Fil’’ has been produced computing the unit cell
without unbending and therefore sets a lower bound.
On the other hand, plots labelled ‘‘Elast. TrueU’’ and
‘‘Rigid TrueU’’ are based on interpolation of the exact
shifts used to create the phantom. They set the upper
bounding for the resolution achievable. The FRC
minimum at 0.35–0.40 Å$1 is related with the absence
of energy in the phantom and does not indicate a real
loss of resolution.
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Fig. 4. FRC for the unit cell obtained without unbending (Op. Fil.), the cells produced with MRC approximation (MRCMinE and MRCMaxIQ), linear
interpolation (Lin. Interp.), Bessel interpolation (Bess. Interp.), Bessel approximation (Bess. Approx.) and using the true phantom shifts for the elastic
(Elast. TrueU) and the rigid schemes (Rigid TrueU). Plots have been computed from (a) a high quality crystal and (b) an average one. In order to
emphasize the differences a second y-axis on the right side of the figures has been introduced. The left y-axis corresponds to the ‘‘Op. Fil.’’ plot and the
right one applies to the rest.
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Visual inspection of the FRC plots in Fig. 4 indicates that
differences between elastic and rigid unbending are negligi-
ble. The phantom used in this tests is a particularly favorable
case for the rigid approach, since: (i) the phantom itself has
been created following a rigid approach and (ii) the particle
(the structure made with the hollow cylinder and spheres) is
surrounded by zeros and, therefore, the rigid unbending of
the image does not create overlapping at the unit cell border.
Even in this ideal situation for the rigid scheme, it does not
outperform the elastic approach.

The FRC plots for the different unbending methods
ploted are the linear (‘‘Lin. Interp’’) and Bessel (‘‘Bess.
Interp.’’) interpolations and the Bessel (‘‘Bess. Approx.’’)
and MRC (‘‘MRC MAxIQ’’ and ‘‘MRC MinE’’) approxi-
mations. The label ‘‘MRC MinE’’ follows the minimum
error criterion while ‘‘MRC MaxIQ’’ follows the IQ crite-
rion for parameter optimization. The plots show that there
is no significant difference among the algorithms, regardless
of the crystal quality and the deformation field.

Table 1 contains the global relative errors given by equa-
tion (1) setting I1 to the phantom unit cell and I2 to the cell
obtained after crystal unbending except for the first line
(labelled ‘‘Op. Fil.’’) where only optical filtration has been
performed. The unbending schemes tested are labelled as
in Fig. 4. Those methods that can be applied to experimental
data are shown in boldface. The table shows an increase in
errors for the cylinder phantom with respect to the PDB-
based one that is due to the presence of higher frequencies
in the former (i.e., sharp transitions from black to white at
the cylinder border).

Another interesting piece of information that can be
extracted from the table is the sensitivity of the error in the
rigid scheme (Rigid TrueU) to the different phantoms. It
compares to the elastic scheme (Elast. TrueU) for the cylin-
drical phantom but it increases in the case of the PDB-based
one. A rigid unbending is a piece-wise constant deformation
arranged into blocks centered at the unit cell center (a rigid
motive, in general). Therefore it is prone to produce discon-
tinuous deformation fields with discontinuities located at
each block border. This can distort unit cells, as in the case
of the PDB-based phantom, if the block does not coincide
with the rigid motive. The impact of the exact location of

the rigid motive is much less important for the cylindrical
phantom as the structure is surrounded by zeros. An elastic
unbending ensures a continuous deformation but it deforms
the unit cell if the unbending is a function of the distance
between cell centers. Since this does not depend on the unit
cell, the similar error between elastic and rigid unbending
for the cylinder phantom, prompts that this is not the case.

Finally, our tests contain some interesting results con-
nected to the MRC unbending method. The MRC method
depends on a user supplied parameter (the number of con-
trol points) that affects its performance. Its optimal value
can be found by exhaustive search of FT spots (MRCMax-
IQ), that is, using only experimentally available data. As
already introduced, MRC behaves as an approximation
algorithm if the number of control points is low, otherwise
it works like an interpolation. Fig. 5 shows the relative
error versus the number of control points. The plots are
not monotonically increasing or decreasing with respect
to the number of control points and vary between crystals.
This ill-posed behavior implies that the optimal number of
control points must be determined for each case by exhaus-
tive search of the error function (MRC MinE). Further-
more, MRC algorithm is very sensitive to the crystal
quality (percentage of correlation peaks used as input for
the approximation). When all peaks are available the error
decreases with the number of control points (Fig. 5 first
column), but as the crystal quality lowers, local oscillations
appears (Fig. 5 second and third column). We also note
that MRC error is very similar for high (interpolation)
and low (approximation) number of control points.

4. Unbending of experimental data

In addition to the tests made with synthetic data, a
quantitative comparison of the performance of the different
algorithms with experimental data has been made. Images
from human aquaporin AQP2 (Schenk et al., 2005) were
used as test specimen.

As in the case of phantom data, the comparison is based
on the resolution obtained with the different approaches.
Since in this case the ideal reconstruction is not available
the resolution has been estimated (as is traditional in the

Table 1
Relative error for the different unbending strategies

99% peaks 75% peaks 10% peaks Total

CYL. 2BYM CYL. 2BYM CYL. 2BYM CYL. 2BYM

Op. Fil. 0.59 0.37 0.59 0.37 0.59 0.37 0.59 0.37
MRC MaxIQ 0.26 0.15 0.30 0.16 0.39 0.21 0.32 0.17
MRC MinE 0.26 0.15 0.30 0.15 0.38 0.18 0.31 0.16
Bess. Approx. 0.28 0.15 0.30 0.17 0.36 0.21 0.31 0.18
Lin. Interp. 0.28 0.15 0.30 0.16 0.35 0.21 0.31 0.17
Bess. Interp. 0.28 0.15 0.30 0.16 0.33 0.20 0.30 0.17
Elast. TrueU 0.20 0.13 0.20 0.13 0.20 0.13 0.20 0.13
Rigid TrueU 0.18 0.26 0.18 0.26 0.18 0.26 0.18 0.26

For high (interpolation) and low (approximation) number of control points.
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2D-crystal field) by using IQ values Henderson et al., 1986.
The overall quality of the crystal is assessed by computing,
for each micrograph, the histogram for IQ. The average
histograms for the methods considered (MRC MaxIQ,
Lin. Interp., Bess. Interp. and Bess. Approx.) are plotted
in Fig. 6. As expected from the synthetic data experiments,
all methods that can be applied to experimental data
behave equally.

5. Discussion and conclusions

This paper addresses two main issues. First, whether the
unit cells should be kept undistorted or suffer the same
deformation than the whole crystal. Second, determine
the unbending algorithm that best adapts to the nature of
the crystal deformations.

To answer the first issue, synthetic data was generated
using a rigid deformation so that the unit cells remain
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always undistorted but not the distance between them. And
two different kinds of unit cells were produced: a
PDB-based one and a cylinder surrounded by zeros. The
latter represents a particularly well suited case for rigid
unbending, since by setting to zero the value at the borders,
unit cell overlapping is no longer a problem.

The results show that the deformation fields are such
that elastic and rigid cases are equivalent, since even for
the cylinder phantom, the rigid scheme does not outper-
form the elastic one. An optimal performance of the rigid
unbending requires identification and isolation of each of
the rigid motives, which is far from trivial. Therefore we
conclude that the elastic approach is the most sensible
option.

Regarding the second issue, the performance of the differ-
ent unbending approaches is very similar as far as parame-
ters are optimum. Although a criterion based on the IQ
values allows a reliable parameter optimization, the best
approach in terms of computational efficiency is a parame-
ter-free interpolation.

The conditions in which interpolation and approxima-
tion schemes give different results are stated in the litera-
ture (Amidror, 2002). Interpolation schemes performance
decreases for noisy vector fields while approximation algo-
rithms are robust against noise but fail to correct the true
deformation if the vector field is highly varying. The equal
performance of the different unbending strategies (using
experimental displacements) implies that deformation
fields are neither noisy nor highly varying. In fact, we can
extract two interesting conclusions on the nature of 2D
crystal deformation. First, the deformation fields are very
regular because interpolation and approximation behave
similarly. Second, since elastic and rigid approaches
perform equally only for constant deformation fields, we
conclude that the deformation fields are constant over large
areas.

The sources of error in the unbending process come
from the extraction of the experimental shifts, the com-
putation of the continuous deformation by an unbend-
ing algorithm and the deformation of the crystal
image. The coincidence in the resolutions achieved by
the different unbending algorithms tested indicates that
the unbending algorithm itself is not the main source
of error. Therefore, the sources of error in the unbend-
ing process are in order of magnitude: the transforma-
tion of the crystal image and the computation of the
experimental shifts.
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ñez and Sánchez Sorzano for kindly revising themanuscript.
Work supported by Grants GEN 2003-20235-C05-05,
BFU2004-00217/BMC, NRCC 050402040003, EU 3D-EM
Network of Excellence FP6-502828, EU -512092, NIH-
1R01HL67465-01, FIS-04/0683 and MEC-TIN2005-00447.

Appendix A. Function extension algorithms

Function extension algorithms (Evans, 1993) consist in
defining a (probably multi-valued) function, f(p), on the
whole N-dimensional domain from values, Fk, given at dis-
crete positions Pk. In the context of crystal unbending,
since Pk do not need to be evenly spaced, crystal unbending
is within the framework of scattered data problems (Wend-
land, 2005).

A.1. Interpolation schemes

Interpolation methods (Amidror, 2002) split into two
main categories: global and local approaches. Global
schemes compute a value at a point by averaging all Fk val-
ues, while the local ones (linear methods, for instance) only
use neighboring values. The first methods require solving a
system of equations involving all experimental points in
order to obtain Fk weights. This limits their efficiency in
the case of large data sets. The second ones need computing
a (triangular) mesh of the scattered data points in order to
define neighborhoods, which decreases their applicability
as the domain dimension increases. In a 2D-domain with
a large amount of scattered data, the best choice is a local
scheme (Amidror, 2002).

Some local interpolation schemes compute the interpo-
lating function, f(p), at a 2D point, p, by using its barycen-
tric coordinates (Amidror, 2002) to average the nearest Fk

values. That is, if a point p is on a triangle given by dp0p1p2
(see Fig. 7), then:

f ðpÞ ¼ a0F p0 þ a1F p1 þ a2F p2 ð3Þ

for ai the barycentric coordinates of the point p with re-
spect to dp0p1p2 . In the function interpolation context, the
triangle is given by the Delanauy triangulation (de Berg
et al., 1997) of the scattered data Pk.

Geometric arguments (Amidror, 2002) indicate that
barycentric coordinates can be computed in terms of the
area ratios ai = Ai/A, for A the area of the triangle dp0p1p2
and Ai the area of the subtriangle opposite (see Fig. 7) to
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Fig. 7. Interpolation scheme on a triangle.
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the vertex pi. Triangle areas are given by the square norm
of the vector product between two of their sides as
A ¼ k~v1k2k~v2k2 sinðaÞ2, for a the angle between the vectors
~v1 ¼ p1 $ p0 and ~v2 ¼ p2 $ p0. From this geometric point
of view, it follows that the interpolation is determined as
soon as a norm on the vector space R2 is given (Lang,
1971). We have explored the following representative
algorithms:

(1) Linear interpolation. This is the usual way of comput-
ing local interpolations (Amidror, 2002) based on
area weights. It is given by using the standard Euclid-
ean norm

k~vk2 ¼ v2x þ v2y

to compute the area. The resulting function is piece-
wise linear and at most continuous unless all values
(Pk,Fk) lie on a plane.

(2) Bessel interpolation. It corresponds to using the Bessel
kernel (Evans, 1993) to compute triangle areas:

k~vk2 ¼ Bðk~vkÞ ¼ 1

2

Z
e$te$kvk2=ð4tÞ

t
dt: ð4Þ

Since Bðk~vkÞ ! 0 as k~vk ! 1 and B0: = B(0) > 0, we
normalize the Bessel kernel between 0 and 1. The norm
we use to compute areas is given by
BN ðk~vkÞ :¼ 1$ Bðk~vkÞ=B0. Because in the discrete
domain, BN is of compact support, the degree of
differentiability at the vertexesPk isC

1. This translates
into an increase in the smoothness of the interpolating
function without increasing the computational com-
plexity when compared with linear interpolation.

A.2. Approximation schemes

Approximation schemes are based on an energy func-
tional involving a similarity term and an internal energy.
The internal constrains are usually given in terms of the
square L2 norm of the first derivatives of f (Evans, 1993).
Similarity is given by straight correlation between the tar-
get fitting function and the original values to be approxi-
mated. In the case of a discrete data set, this yields:

Eðf Þ ¼
X

ðf ðPkÞ $ F kÞ2 þ
Z

R2

ðoxf Þ2 þ ðoyf Þ2dxdy ð5Þ

where oxf, oyf are the partial derivatives of f. The minimum
of the functional E computed by its Euler–Lagrange equa-
tions (Evans, 1993) leads to solving a partial differential
equation (PDE). The values Fk might be ignored unless f
is expressed as a linear combination of basis functions
(Wendland, 2005). In this case, the computational efficien-
cy of the approach is not optimal because a system of (lin-
ear) equations involving the inversion of a large sparse
matrix must be solved.

Among the different strategies that take especial care of
scattered data, we have tested the following approaches:

1. MRC B-spline approximation. B-spline snakes are a stan-
dardway (Brigger et al., 2000) of obtaining a compact rep-
resentation of functions in terms ofN control points. The
number of control points is a parameter that controls the
tradeoff between accuracy to experimental values and
robustness to noise. As the number of control points
increases, B-splines get closer to an interpolation scheme.
B-splines as implemented by MRC (Henderson et al.,
1986) allow a maximum number of 60 control points.

2. Bessel approximation. This is a non parametric strategy
designed to minimize the impact of the fitting error. The
main problem in equation (5) is that the similarity term
is of discrete nature and the smoothness constraints are
continuous and, thus, they are not comparable. This can
be solved, in practice, by changing the discrete function
Fk by a continuous function interpolating the values. This
converts (5) into a diffusion-reaction equation, which
solution is given (Evans, 1993) by convolving the interpo-
lating function with the two dimensional Bessel Kernel
(4). By using a continuous model of the discrete sampling
the impact of the fitting error is minimized without the
need of adjusting any parameter.
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