|
David Geronimo, Antonio Lopez, Daniel Ponsa and Angel Sappa. 2007. Haar Wavelets and Edge Orientation Histograms for On-Board Pedestrian Detection. In J. Marti et al., ed. 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477.418–425.
Keywords: Pedestrian detection
|
|
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Andrew Bagdanov, Maria Vanrell and Antonio Lopez. 2012. Color Attributes for Object Detection. 25th IEEE Conference on Computer Vision and Pattern Recognition. IEEE Xplore, 3306–3313.
Abstract: State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
Keywords: pedestrian detection
|
|
|
Diego Cheda, Daniel Ponsa and Antonio Lopez. 2012. Pedestrian Candidates Generation using Monocular Cues. IEEE Intelligent Vehicles Symposium. IEEE Xplore, 7–12.
Abstract: Common techniques for pedestrian candidates generation (e.g., sliding window approaches) are based on an exhaustive search over the image. This implies that the number of windows produced is huge, which translates into a significant time consumption in the classification stage. In this paper, we propose a method that significantly reduces the number of windows to be considered by a classifier. Our method is a monocular one that exploits geometric and depth information available on single images. Both representations of the world are fused together to generate pedestrian candidates based on an underlying model which is focused only on objects standing vertically on the ground plane and having certain height, according with their depths on the scene. We evaluate our algorithm on a challenging dataset and demonstrate its application for pedestrian detection, where a considerable reduction in the number of candidate windows is reached.
Keywords: pedestrian detection
|
|
|
Alejandro Gonzalez Alzate, Gabriel Villalonga, Jiaolong Xu, David Vazquez, Jaume Amores and Antonio Lopez. 2015. Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium IV2015.356–361.
Abstract: Despite recent significant advances, pedestrian detection continues to be an extremely challenging problem in real scenarios. In order to develop a detector that successfully operates under these conditions, it becomes critical to leverage upon multiple cues, multiple imaging modalities and a strong multi-view classifier that accounts for different pedestrian views and poses. In this paper we provide an extensive evaluation that gives insight into how each of these aspects (multi-cue, multimodality and strong multi-view classifier) affect performance both individually and when integrated together. In the multimodality component we explore the fusion of RGB and depth maps obtained by high-definition LIDAR, a type of modality that is only recently starting to receive attention. As our analysis reveals, although all the aforementioned aspects significantly help in improving the performance, the fusion of visible spectrum and depth information allows to boost the accuracy by a much larger margin. The resulting detector not only ranks among the top best performers in the challenging KITTI benchmark, but it is built upon very simple blocks that are easy to implement and computationally efficient. These simple blocks can be easily replaced with more sophisticated ones recently proposed, such as the use of convolutional neural networks for feature representation, to further improve the accuracy.
Keywords: Pedestrian Detection
|
|
|
Alejandro Gonzalez Alzate, Gabriel Villalonga, German Ros, David Vazquez and Antonio Lopez. 2015. 3D-Guided Multiscale Sliding Window for Pedestrian Detection. Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015.560–568.
Abstract: The most relevant modules of a pedestrian detector are the candidate generation and the candidate classification. The former aims at presenting image windows to the latter so that they are classified as containing a pedestrian or not. Much attention has being paid to the classification module, while candidate generation has mainly relied on (multiscale) sliding window pyramid. However, candidate generation is critical for achieving real-time. In this paper we assume a context of autonomous driving based on stereo vision. Accordingly, we evaluate the effect of taking into account the 3D information (derived from the stereo) in order to prune the hundred of thousands windows per image generated by classical pyramidal sliding window. For our study we use a multimodal (RGB, disparity) and multi-descriptor (HOG, LBP, HOG+LBP) holistic ensemble based on linear SVM. Evaluation on data from the challenging KITTI benchmark suite shows the effectiveness of using 3D information to dramatically reduce the number of candidate windows, even improving the overall pedestrian detection accuracy.
Keywords: Pedestrian Detection
|
|
|
Naveen Onkarappa and Angel Sappa. 2013. Laplacian Derivative based Regularization for Optical Flow Estimation in Driving Scenario. 15th International Conference on Computer Analysis of Images and Patterns. Springer Berlin Heidelberg, 483–490. (LNCS.)
Abstract: Existing state of the art optical flow approaches, which are evaluated on standard datasets such as Middlebury, not necessarily have a similar performance when evaluated on driving scenarios. This drop on performance is due to several challenges arising on real scenarios during driving. Towards this direction, in this paper, we propose a modification to the regularization term in a variational optical flow formulation, that notably improves the results, specially in driving scenarios. The proposed modification consists on using the Laplacian derivatives of flow components in the regularization term instead of gradients of flow components. We show the improvements in results on a standard real image sequences dataset (KITTI).
Keywords: Optical flow; regularization; Driver Assistance Systems; Performance Evaluation
|
|
|
Patricia Marquez and 6 others. 2014. Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging. 17th International Conference on Medical Image Computing and Computer Assisted Intervention. Springer International Publishing, 231–238. (LNCS.)
Abstract: Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across dierent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three dierent OF methods, including HARP.
Keywords: Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging
|
|
|
Patricia Marquez, Debora Gil, R.Mester and Aura Hernandez-Sabate. 2014. Local Analysis of Confidence Measures for Optical Flow Quality Evaluation. 9th International Conference on Computer Vision Theory and Applications.450–457.
Abstract: Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
Keywords: Optical Flow; Confidence Measure; Performance Evaluation.
|
|
|
Patricia Marquez, Debora Gil and Aura Hernandez-Sabate. 2012. A Complete Confidence Framework for Optical Flow. In Andrea Fusiello, V.M., Rita Cucchiara, ed. 12th European Conference on Computer Vision – Workshops and Demonstrations. Florence, Italy, October 7-13, 2012, Springer-Verlag, 124–133. (LNCS.)
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Keywords: Optical flow, confidence measures, sparsification plots, error prediction plots
|
|
|
Patricia Marquez, Debora Gil, Aura Hernandez-Sabate and Daniel Kondermann. 2013. When Is A Confidence Measure Good Enough? 9th International Conference on Computer Vision Systems. Springer Link, 344–353. (LNCS.)
Abstract: Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
Keywords: Optical flow, confidence measure, performance evaluation
|
|