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Abstract

State-of-the-art object detectors typically use shape in-
formation as a low level feature representation to capture
the local structure of an object. This paper shows that early
fusion of shape and color, as is popular in image classifi-
cation, leads to a significant drop in performance for ob-
ject detection. Moreover, such approaches also yields sub-
optimal results for object categories with varying impor-
tance of color and shape.

In this paper we propose the use of color attributes as
an explicit color representation for object detection. Color
attributes are compact, computationally efficient, and when
combined with traditional shape features provide state-of-
the-art results for object detection. Our method is tested
on the PASCAL VOC 2007 and 2009 datasets and results
clearly show that our method improves over state-of-the-art
techniques despite its simplicity. We also introduce a new
dataset consisting of cartoon character images in which
color plays a pivotal role. On this dataset, our approach
yields a significant gain of 14% in mean AP over conven-
tional state-of-the-art methods.

1. Introduction
Object detection is one of the most challenging prob-

lems in computer vision. It is difficult due to the signifi-
cant amount of variation between images belonging to the
same object category. Other factors, such as changes in
viewpoint and scale, illumination, partial occlusions and
multiple instances further complicate the problem of object
detection [5, 8, 18, 10, 21, 23]. Most state-of-the-art ap-
proaches to object detection rely on intensity-based features
that ignore color information in the image [5, 14, 10, 23].
This exclusion of color information is usually due to large
variations in color caused by changes in illumination, com-
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Figure 1. Find the Simpsons. On the left, the conventional part-
based approach [10] fails to detect all four members of Simpsons.
Only Bart and Lisa are correctly detected, while Homer is falsely
detected as Lisa and Marge is not detected at all. On the right,
our extension of the part-based detection framework with color
attributes can correctly classify all four Simpsons.

pression, shadows and highlights, etc. These variations
make the task of robust color description especially difficult.
On the other hand, and in contrast to object detection, color
has been shown to yield excellent results in combination
with shape features for image classification [17, 13, 12].
The few approaches which do apply color for object detec-
tion focus on a single class such as pedestrians [15, 22, 2].
However, the problem of generic object detection is more
challenging and the contribution of color to object detec-
tion on standard benchmark datasets such as the PASCAL
VOC [8] is yet to be investigated.

In this paper, we investigate extending color information
in two existing methods for object detection, specifically
the part-based detection framework [10] and the Efficient
Subwindow Search approach [14]. The failure of existing
approaches motivates us to distinguish three main criteria
which should be taken into account when choosing an ap-
proach to integrating color into object detection.
Feature Combination: There exist two main approaches to
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combining shape and color information: early and late fu-
sion [13, 16, 17]. Early fusion combines shape and color at
the pixel level, which are then processed together through-
out the rest of the learning and classification pipelines [13,
16]. In late fusion, shape and color are described sepa-
rately from the beginning and the exact binding between
the two features is lost. Early fusion, in general, results in
more discriminative features than late fusion since it pre-
serves the spatial binding between color and shape features.
Due to its high discriminative power, early fusion has tra-
ditionally been a very successful tool for image classifica-
tion [17]. Recent results, however, have shown that when
incorporating spatial pyramids, late fusion methods often
obtain better results [7]. This is due to the fact that once spa-
tial cells become smaller the uncertainty introduced by de-
scribing shape and color separately is reduced. In the limit,
where spatial cells represent a single pixel, early and late fu-
sion are equivalent. The importance of smaller cells of spa-
tial pyramids for object detection has been amply demon-
strated [11, 5], and therefore our intuition is that late fusion
of color and shape will yield better object detection perfor-
mance than early fusion.
Photometric invariance: One of the main challenges in
color representation is the large variation in features caused
by scene-accidental effects such as illumination changes
and varying shadows. Photometric invariance theory pro-
vides guidelines on how to ensure invariance with respect
to such events [19, 17], however photometric invariance
comes at the cost of discriminative power. The choice of the
color descriptor used should take into consideration both its
photometric invariance as well as its discriminative power.
Compactness: Existing luminance-based object detection
methods use complex representations. For example the
part-based method of Felzenswalb [10] models an object
as a collection of parts, where each part is represented by a
number of histograms of gradient orientations over a num-
ber of cells. Each cell is represented by a 31-dimensional
vector. Training such a complex model, for just a single
class, can require over 3GB of memory and take over 15
hours on a modern, multi-core computer. When extending
these cells with color information it is therefore imperative
to use a color descriptor as compact as possible both be-
cause of memory usage and because of total learning time.

This paper investigates the incorporation of color for
object detection based on the above mentioned criteria.
We demonstrate the advantages of combining color with
shape on the two most popularly used detection frame-
works, namely part-based detection with deformable part
models [10] and Efficient Subwindow Search (ESS) for ob-
ject localization [14]. In contrast to conventional fusion
approaches that compute shape features on the color chan-
nels independently, we propose the use of color attributes as
an explicit color representation. The resulting image repre-

sentations are compact and computationally efficient while
providing excellent detection performance on challenging
datasets. Figure 1 provides some examples of how our ex-
tension correctly detects challenging object classes where
state-of-the-art techniques using shape information alone
fail.

2. Related work
Most successful approaches to object detection are based

on the learning-from-examples paradigm and rely on shape
or texture information for image representation [23, 5, 10].
Conventionally, a sliding window approach is used which
exhaustively scans an image at multiple locations and
scales. An SVM is then trained using positive and negative
examples from each object category. Given a test image,
a classifier then selects the candidate windows most likely
to contain an object instance. Among various features, his-
tograms of oriented gradients (HOG) proposed by Dalal and
Triggs [5] are the most commonly used features for object
detection.

Recently, discriminative, part-based approaches [23, 10]
have been shown to provide excellent performance on the
PASCAL VOC datasets [9]. Felzenszwalb et al. [10] pro-
pose a star-structured part-based detector where HOGs are
used for image representation and latent support vector ma-
chines for classification. A boosted HOG-LBP detector
is proposed by [23], where LBP descriptors are combined
with HOGs to incorporate texture information. A boosting
technique is employed for feature selection and their ap-
proach yields improved performance for objects. In this pa-
per, we incorporate color information within the part-based
framework of Felzenszwalb et al. [10]. Contrary to the ap-
proach presented by [23], our approach requires no feature
selection to identify relevant features for part representa-
tion.

In contrast to part-based detection methods, the bag-of-
words model has also been used for object detection [21,
11, 18, 14]. These methods are based on the bag-of-words
framework where features are quantized into a visual vo-
cabulary. Vedaldi et al. [21] use a multiple kernel learning
framework with powerful visual features for object detec-
tion. Harzallah et al. [11] use a two-stage cascade classifier
for efficient detection. Their approach also combines ob-
ject localization and image classification scores. The sliding
window approach together with the bag-of-words frame-
work is computationally expensive. Alexe et al. [1] pro-
pose an objectness measure to select a few candidate re-
gions likely to contain an object instance in an image. Van
de Sande et al. [18] propose the use of hierarchical segmen-
tation as a selective search strategy for object detection. Al-
ternatively, Lampert et el. [14] propose an Efficient Sub-
window Search strategy (ESS) to counter the problem of
exhaustively scanning sliding windows. In this paper, we



also investigate the contribution of color when used in com-
bination with shape features in the ESS framework.

3. Color attributes for object detection
In this section we describe the color descriptors we will

use to augment the shape-based feature descriptors used for
object detection. Based on the analysis in the introduction
section, our approach will apply a late fusion of shape and
color.

3.1. Color descriptors

A consequence of our choice of late fusion is that we re-
quire a pure color descriptor. In addition, we would like this
color descriptor to be discriminative, to possess photomet-
ric invariance to some degree, and to be compact. Several
color descriptors have been proposed in literature. We con-
sider three of them here.
Robust hue descriptor (HUE) [19]: image patches are rep-
resented by a histogram over hue computed from the corre-
sponding RGB values of each pixel according to:

hue = arctan

(√
3 (R−G)

R+G− 2B

)
. (1)

To counter instabilities in hue, its impact in the histogram is
weighted by the saturation of the corresponding pixel. The
hue descriptor is invariant with respect to lighting geometry
and specularities when assuming white illumination.
Opponent derivative descriptor (OPP) [19]: image
patches are represented by a histogram over the opponent
angle:

angOx = arctan

(
O1x
O2x

)
(2)

where O1x and O2x are the spatial derivatives in the chro-
matic opponent channels. The opponent angle is weighted
by the chromatic derivative strength

√
O12x +O22x. The

opponent angle is invariant with respect to specularities and
diffuse lighting.
Color names (CN) [20]: color names, or color attributes,
are linguistic color labels which humans assign to colors
in the world. Based on several criteria with respect to us-
age and uniqueness, Berlin and Kay [4] in a linguistic study
concluded that the English language contains eleven basic
color terms: black, blue, brown, grey, green, orange, pink,
purple, red, white and yellow. In computer vision, color at-
tributes involve the assignment of linguistic color labels to
pixels in an image. This requires a mapping between RGB
values and color attributes [3]. In this paper, we use the
mapping learned from Google images in [20] as a color de-
scriptor. Color names display a certain amount of photomet-
ric invariance because several shades of a color are mapped
to the same color name. They also provide an added advan-
tage of allowing the description of achromatic colors such

as black, grey and white which are impossible to distinguish
from a photometric invariance perspective. Color names
have been found to be a successful color feature for image
classification [13]. They have the additional advantage of
being a very compact representation.

The color name descriptor is defined as a vector contain-
ing the probability of a color name given an image region
R:

CN = {p (cn1|R) , p (cn2|R) , ...., p (cn11|R)} (3)

with

p (cni|R) =
1

P

∑
x∈R

p (cni|f (x)) , (4)

where cni is the i-th color name, x are the spatial coordi-
nates of the P pixels in region R, f = {L∗, a∗, b∗}, and
p (cni|f) is the probability of a color name given a pixel
value. The probabilities p (cni|f) are computed from a set
of images collected from Google. To learn color names, 100
images per color name are used. To counter the problem of
noisy retrieved images, the PLSA approach is used [20].

To summarize, color names possess some degree of pho-
tometric invariance. However, they also can encode achro-
matic colors such as black, grey and white, leading to higher
discriminative power.

3.2. Color descriptor evaluation

To select one of the color descriptors described above
we performed the following experiment. The histograms of
a 2 × 2 spatial pyramid for all the bounding boxes of each
object category are extracted. To compare discriminative
power, for each histogram we compute KL-ratio between
the Kullback-Leibler (KL) divergence of each histogram
with members of the other classes and the KL-divergence
with members of its own class:

KL-ratio =

∑
k∈Cm

min
j /∈Cm

KL (pj , pk)∑
k∈Cm

min
i∈Cm,i6=k

KL (pi, pk)
, (5)

where

KL (pi, pj) =

N∑
x=1

pi (x) log
pi (x)

pj (x)
, (6)

and pi is the histogram of bounding box i over the N visual
words x. Indices i ∈ Cm represent bounding boxes which
belong to class m, while j /∈ Cm are random samples of
the bounding boxes which are not the same class as m. We
choose the number of negative samples j to be three times
the size of the positive samples i ∈ Cm. A higher KL-ratio
reflects a more discriminative descriptor, since the average
intra-class KL-divergence is lower than the inter-class KL-
divergence.



Figure 2. KL-ratio for the PASCAL VOC 2007 and the Cartoon
dataset. The graphs clearly show that the color attribute (CN) is
superior to the HUE and OPP descriptors in terms of both com-
pactness and discriminative power.

In Figure 2, we report the average KL-ratio over the
classes for each color features, HUE, OPP and CN, on the
two data sets we use in our experimental evaluation: PAS-
CAL VOC 2007 and a new data set Cartoons. For both
HUE and OPP we vary the number of bins in the histogram
from 36 as used in [19] to eleven bins which is the size of
the CN descriptor. Lowering the dimensionality of the OPP
and HUE descriptors leads as expected to lower KL-ratios.
As can be seen, the CN descriptor obtains higher KL-ratio
even compared to the 36 dimensional representation of the
HUE and OPP descriptors.

Based on this experiment we select the CN descriptor as
the color feature to use for object detection. It is a pure color
feature, therefore allowing us to use it for late fusion with
shape features, and based on the KL-ratio it was demon-
strated to be more discriminative and compact than the HUE
and OPP color descriptors.

4. Coloring object detection

In this section we show how two detection methods can
be augmented with color attributes for object detection. We
start by coloring a part-based detection framework [10],
then we show how color can enhance the performance of
ESS-based object localization [14].

4.1. Coloring part-based object detection

In part-based object detection each object is modeled as
a deformable collection of parts with a root model at its
core [10]. The root filter can be seen as analogous to the
HOG-based representation of Dalal and Triggs [5]. Learn-
ing in the part-based framework is performed by using a
latent SVM formulation. The detection score for a window
is obtained by concatenating the root filter, the part filters
and the deformation cost of the configuration of all parts.
Both the root and the parts are represented by a dense grid
of 8x8 non-overlapping cells. A one-dimensional histogram
of HOG features is computed over all the pixels in a cell,
capturing the local intensity changes.

Figure 3. Visualization of learned part-based models with color
attributes. Both the HOG and color attribute components of our
trained models are shown. Each cell is represented by the color
which is obtained by multiplying the SVM weights for the 11 CN
bins with a color representative of the color names. Top row: the
HOG and color attribute models for pottedplant and horse. Bottom
row: Marge and Tweety models. In the case of horse, the brown
color of the horse together with a person sitting on top of it is
prominent. Similarly, the model is able to capture the blue hair of
Marge and orange feet of Tweety.

Conventionally, HOGs are computed densely to rep-
resent an image. An image is divided into 8x8 non-
overlapping pixel regions known as cells. We follow a sim-
ilar procedure to compute color attributes for each cell, re-
sulting in a histogram representation. We extend the 31-
dimensional HOG vector with the eleven-dimensional color
attributes vector. For cell Ci, the representation is obtained
by concatenation:

Ci = [HOGi, CNi] , (7)

and this concatenated representation thus has dimension-
ality 42. This is still significantly more compact than an
early fusion approach where the HOG would be computed
on multiple color channels. Such an approach slows the
whole detection pipeline significantly by increasing both
time complexity and memory usage. Table 2 shows a com-
parison of feature dimensions of different extensions of the
part-based method.

Throughout the learning of the deformable part-based
model both appearance and color are used. Therefore, the
introduction of color leads to models which can signifi-
cantly differ from the models learned on only luminance-
based appearance. Examples of four models are provided
in Figure 3.

4.2. Coloring ESS object detection

The Efficient Subwindow Search (ESS) object localiza-
tion framework [14] offers an efficient alternative to the



Feature HOG OPPHOG RGBHOG C-HOG LBP-HOG [23] CN-HOG
Dimension 31 93 93 93 90 42

Table 1. Comparison of feature dimensionality of different ap-
proaches. Our proposed CN-HOG feature increases dimension-
ality to only 42 dimensions. The early fusion extensions of HOG
based on computing the HOG on multiple color channels result
in dimensionality of 93 (notations are similar to [17]). The LBP-
HOG approach combines the LBP and HOG using late fusion and
increases overall dimensionality to 90.

computationally expensive bag-of-words approach to slid-
ing window object detection. ESS relies on a branch and
bound strategy in order to globally optimize a quality cri-
terion across all sub-windows in an image. ESS is based
on a bag-of-words representation of the image. Typically, a
number of local features are extracted from each image, and
these local features are then quantized into a visual vocabu-
lary from which histograms are generated.

A shape-based visual vocabulary of SIFT features is usu-
ally used for detection using the ESS framework [14]. Color
can be incorporated using early or late fusion for image rep-
resentation. Both extensions are straightforward. In early
fusion a single combined color-shape vocabulary is created
and extracted patches are represented by a color-shape vi-
sual word. In late fusion, a separate shape and color vo-
cabulary are learned, and patches are represented by two
indexes, one for the shape vocabulary and one for the color
vocabulary. Though we use late fusion to incorporate CN
features into ESS, we will also compare with ESS results
based on early fusion.

5. Cartoon character detection
The PASCAL VOC dataset for object detection is pre-

dominantly shape-oriented and color plays a subordinate
role [13]. To evaluate the potential contribution of color
to object detection, we present a new, publicly available
dataset of cartoon character images1. The dataset consist
of 586 images of 18 popular cartoon characters collected
from Google. The 18 cartoon characters in the dataset are:
The Simpsons (Bart, Homer, Marge, Lisa), the Flinstones
(Fred and Barney), Tom, Jerry, Sylvester, Tweety, Bugs,
Daffy, Scooby, Shaggy, Roadrunner, Coyote, Donald Duck
and Micky Mouse. The dataset contains a variable number
of images for each character, ranging from 28 (Marge) to
85 (Tom). Each class is equally divided into training and
testing sets where the number of images per category vary.
The dataset is challenging as the images come from sources
of different types, such as graphics, wallpapers, sketches,
etc. Figure 4 shows some example images from the dataset.
Note the variable quality, appearance and scale of the vari-
ous cartoon characters. To evaluate detection performance,

1The dataset is available at http://www.cat.uab.cat/
Research/object-detection

Figure 4. Example images with annotations from the new Cartoon
dataset. The dataset consists of images of 18 different cartoon
characters.

we follow the PASCAL VOC evaluation criteria [8].

6. Experimental results

Here we first present our results on the PASCAL VOC
datasets and in section 6.2 results on the Cartoon dataset.

6.1. Results on the PASCAL VOC datasets

The PASCAL VOC 2007 dataset consists of 9963 images
of 20 different object classes with 5011 training images and
4952 test images. The 2009 PASCAL VOC dataset contains
13704 images of 20 different categories. We first provide re-
sults of our approach based on the part-based approach [10]
discussed in Section 4.1. Afterwards, we show the results
obtained using ESS for object detection.
Coloring part-based object detection: The conventional
part-based framework [10] is based on HOGs for feature
description. We start by comparing our approach with [10]
where HOGs with no color information are used as a fea-
ture descriptor. We first perform an experiment to compare
our proposed approach with existing color descriptors. Re-
cently, a comprehensive evaluation of color descriptors has
been presented by Van de Sande et al. [17]. In this evalua-
tion, opponentSIFT and C-SIFT were shown to yield supe-
rior performance on image classification.

We also perform experiments using the standard RGB
color space. In case of early fusion, HOG features are com-
puted on the color channels and the resulting feature vectors
are concatenated in a single representation. To the best of
our knowledge, the performance of these color descriptors
have not been evaluated before on the task of object detec-
tion within a part-based framework. Table 2 shows the re-
sults on all 20 categories of the PASCAL VOC 2007 dataset.
None of the three color-based methods, namely opponen-

http://www.cat.uab.cat/Research/object-detection
http://www.cat.uab.cat/Research/object-detection


plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean AP
HOG [10] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3
OPPHOG 29.2 54.2 10.7 14.5 17.9 45.8 53.5 21.7 19.3 22.8 21.7 12.3 57.4 46.0 41.2 15.6 19.2 25.0 42.2 41.2 30.6
RGBHOG 33.9 56.5 6.8 13.7 22.9 46.2 56.6 14.9 20.4 22.8 19.3 11.7 57.1 46.7 40.6 13.3 19.2 31.6 47.5 43.4 31.3

C-HOG 29.1 54.7 9.8 14.3 17.9 44.8 55.2 16.0 19.5 25.1 19.6 11.8 58.5 46.6 27.1 15.2 19.0 26.9 44.0 46.6 30.1
CN-HOG (This paper) 34.5 61.1 11.5 19.0 22.2 46.5 58.9 24.7 21.7 25.1 27.1 13.0 59.7 51.6 44.0 19.2 24.4 33.1 48.4 49.7 34.8

Table 2. Average precision results for the baseline HOG detector [10], color descriptors proposed in the literature [17] and our proposed
CN-HOG approach on all 20 classes of the PASCAL VOC 2007 dataset. Note that our approach along among existing fusion methods
outperforms shape alone on this dataset. Our approach provides a significant improvement of 2.5% mean AP over the standard HOG-based
framework.

tHOG, RGBHOG and C-HOG, improve the performance
over the standard HOG features. Our proposed approach,
which has the additional advantage of being compact and
computationally efficient, results in a significant improve-
ment of 2.5% on the mean average precision over the base-
line HOG. Figure 5 shows the precision/recall curves for
these color descriptors as well as the baseline HOG on six
different object categories from the PASCAL VOC 2007
dataset.

Finally, Table 4 shows results obtained on the PASCAL
VOC 2009 dataset. Our proposed approach obtains a gain
of 1.4% in mean AP over standard HOG based framework.
Our method provides superior results on 15 out of 20 ob-
ject categories compared to standard HOG based frame-
work. Moreover, independently weighting the contribution
of color and shape is expected to improve on categories
where adding color provides inferior performance.
Coloring ESS-based object detection: The ESS-based ap-
proach has been shown to provide good localization results
on the cat and dog categories of the PASCAL VOC 2007
dataset. We only report the results on cat and dog categories
since ESS results in similar or better results compared to
part-based methods on these two classes. To evaluate the
performance of our proposed approach, we construct a 4000
visual word shape vocabulary based on SIFT features. A vi-
sual vocabulary of 500 color-words is constructed using the
CN descriptor described above.

On the cat category, our proposed approach provides
an AP of 22.3% compared to 20.7% obtained using shape
alone. Similar results are obtained on the dog category
where shape alone and our approach provide score of 13.8
and 15.8 respectively.
Comparison with state-of-the-art results: Table 3 shows
a comparison of our approach with the state-of-the-art re-
sults reported in literature. Firstly, our proposed color
attribute-based approach improves the baseline part-based
approach on 15 out of the 20 object categories. The results
reported by [21] are obtained by using the bag-of-words
framework with multiple features combined using a mul-
tiple kernel learning framework. The boosted HOG-LBP
approach [23] combines HOG and LBP features while em-
ploying boosting as a feature selection mechanism. It is fur-
ther reported by [23] that without this feature selection strat-
egy, the naive feature combination provides inferior results.

In contrast to these approaches, no feature selection strat-
egy is used in our approach, though a selection strategy can
be easily incorporated which is expected to further improve
results. The approach proposed by [18] provides a mean
AP of 33.9% using multiple color spaces, specifically RGB,
opponent, normalized rgb and hue for segmentation. More-
over, a dense representation based on SIFT, opponentSIFT
and RGBSIFT is used within the bag-of-words framework.
Our approach provides the best mean AP reported on this
dataset in the detection literature2 [10, 6, 24, 9, 23, 18].
Finally, on the PASCAL VOC 2009 dataset our approach
provides best results on 7 object categories.

6.2. Results on the Cartoon dataset

Here we report the results obtained on our new Cartoon
dataset in which color plays an important role. We first
show results using the part-based framework and then fol-
low with a comparison of several approaches using the ESS-
based object detection framework.
Coloring part-based object detection: Table 5 shows the
results obtained using the part-based framework. The con-
ventional part-based approach using HOG features provides
a mean AP of 27.6%. The early fusion based approaches
yield similar results3. Our approach, however, results in
a significant gain of 14% in mean AP compared to stan-
dard HOG. Moreover, our approach gives the best perfor-
mance on 9 out of the 18 cartoon categories compared
to HOG, opponentHOG, C-HOG and RGBHOG. On cate-
gories such as Daffy and Tom, our approach results in a gain
of 25.9% and 9.2%, respectively, compared to the second-
best approach. This significant gain can credited to the fact
that color names have the additional capability of encoding
achromatic colors such as black, grey and white.
Coloring ESS-based object detection: Here we compare
our approach with shape alone and the two best color de-
scriptors reported in the literature, namely opponentSIFT
and C-SIFT [17]. We perform an experiment to compare
the performance of different fusion approaches. We use vi-

2We do not compare our results with methods combining image classi-
fication and detection. Such approaches can be seen as complementary to
our approach.

3We also performed an experiment with a 36-dimensional hue-
saturation color descriptor concatenated with a HOG. This yielded a MAP
of 34.2%, significantly lower than the 41.7% of our compact representa-
tion.



Figure 5. Precision/recall curves of the various approaches on six different categories from the PASCAL VOC 2007 dataset. Other than
the bus category, our approach provides significantly improved performance compared to others.

plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean AP
HOG [10] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

Best 2007 [9] 26.2 40.9 9.8 9.4 21.4 39.3 43.2 24.0 12.8 14.0 9.8 16.2 33.5 37.5 22.1 12.0 17.5 14.7 33.4 28.9 23.3
UCI [6] 28.8 56.2 3.2 14.2 29.4 38.7 48.7 12.4 16.0 17.7 24.0 11.7 45.0 39.4 35.5 15.2 16.1 20.1 34.2 35.4 27.1

LEO [24] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
Oxford-MKL [21] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1

LBP-HOG [23] 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9 27.0 24.3 15.2 58.2 49.2 44.6 13.5 21.4 34.9 47.5 42.3 34.3
CN-HOG (This paper) 34.5 61.1 11.5 19.0 22.2 46.5 58.9 24.7 21.7 25.1 27.1 13.0 59.7 51.6 44.0 19.2 24.4 33.1 48.4 49.7 34.8

Table 3. Comparison with state-of-the-art results on the PASCAL VOC 2007 dataset. Note that the approach of boosted LBP-HOG [23]
combines HOG and LBP together using a boosting strategy for feature selection. However, our proposed combination of color names and
HOGs (CN-HOG) is compact, computationally inexpensive and uses no feature selection.

sual vocabularies of 500 shape words and 100 color names.
For opponentSIFT and C-SIFT, a visual vocabulary of 500
words is constructed. A comparison of different approaches
using the ESS framework is shown in table 6. On this
dataset approaches based on color-shape fusion improve
performance over standard ESS using SIFT alone.

Table 6 shows the comparative performance of our ap-
proach. The results obtained using the ESS-based frame-
work is inferior to that obtained using the part-based
method. Both opponentSIFT and C-SIFT yield improved
results compared to shape alone. Our approach using the
ESS framework gives the best performance on the Sylvester
category. Interestingly, on the Cartoon dataset ESS again
achieves the best results on cats and dogs.

7. Conclusions

We investigate the problem of incorporating color for ob-
ject detection. Most state-of-the-art object detectors rely on
shape while ignoring color. Recent approaches to augment-
ing intensity-based detectors with color often provide infe-
rior results for object categories with varying importance of
color and shape. We propose the use of color attributes as an
explicit color representation for object detection. Color at-

tributes are compact, computationally efficient, and possess
some degree of photometric invariance while maintaining
discriminative power. We show that our approach can sig-
nificantly improve detection performance on the challeng-
ing PASCAL VOC datasets where existing color-based fu-
sion approaches have shown to provide below-expected re-
sults. Finally, we introduce a new dataset of cartoon char-
acters where color plays an important role.
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