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{agalzate,gvillalonga,jiaolong,dvazquez,jaume,antonio} @cvc.uab.es
1Autonomous University of Barcelona, 2Computer Vision Center

Abstract— Despite recent significant advances, pedestrian
detection continues to be an extremely challenging problem in
real scenarios. In order to develop a detector that successfully
operates under these conditions, it becomes critical to leverage
upon multiple cues, multiple imaging modalities and a strong
multi-view classifier that accounts for different pedestrian views
and poses. In this paper we provide an extensive evaluation that
gives insight into how each of these aspects (multi-cue, multi-
modality and strong multi-view classifier) affect performance
both individually and when integrated together. In the multi-
modality component we explore the fusion of RGB and depth
maps obtained by high-definition LIDAR, a type of modality
that is only recently starting to receive attention. As our analysis
reveals, although all the aforementioned aspects significantly
help in improving the performance, the fusion of visible
spectrum and depth information allows to boost the accuracy
by a much larger margin. The resulting detector not only
ranks among the top best performers in the challenging KITTI
benchmark, but it is built upon very simple blocks that are easy
to implement and computationally efficient. These simple blocks
can be easily replaced with more sophisticated ones recently
proposed, such as the use of convolutional neural networks for
feature representation, to further improve the accuracy.

I. INTRODUCTION

Developing a reliable pedestrian detector enables a vast

range of applications such as video surveillance and the

practical deployment of autonomous and semi-autonomous

vehicles. With more than a decade of history by now [1],

pedestrian detection is still a very challenging task when

applied under realistic conditions [2], [3], [4]. In order

to obtain a detector that successfully operates under these

conditions, it becomes critical to exploit sources of infor-

mation along three orthogonal axis: i) the integration of

multiple feature cues (contours, texture, etc.), ii) the fusion

of multiple image modalities, and iii) the use of multiple

views of the pedestrian by learning a strong classifier that

accommodates for both different 3D points of view and

multiple flexible articulations. In this paper we perform an

extensive evaluation providing insight about how each of

these three aspects affect accuracy, both individually and

when integrated together.

In order to integrate multiple image modalities, we con-

sidered the fusion of dense depth maps with visible spectrum

images. The use of depth information has gained attention

thanks to the appearance of cheap sensors such as the one

in Kinect, which provides a dense depth map registered with

an RGB image (RGB-D). However, the sensor of Kinect has

a maximum range of approximately 4 meters and is not very

reliable in outdoor scenes, thus having limited applicability

Fig. 1. Scheme Overview.

for pedestrian detection. On the other hand, Light Detection

and Ranging (LIDAR) sensors such as the Velodyne HDL-

64E have a maximum range of up to 50 meters and are

appropriate for outdoor scenarios. Although they produce a

sparse cloud of points and they are only recently starting to

receive attention for application to pedestrian detection. In

this work we analyze the use of registered pairs of RGB and

Velodyne 3D point clouds.

Our analysis reveals that, although all the aforementioned

components (the use of multiple feature cues, multiple

modalities and a strong multi-view classifier) are important,

the fusion of visible spectrum and depth information allows

to boost the accuracy significantly by a large margin. The

resulting detector not only ranks among the top best per-

formers in the challenging KITTI benchmark, but it is built

upon very simple blocks that are easy to implement and com-

putationally efficient. Before explaining all the components

of our system in detail, we provide a brief summary of each

component and how they relate/differ to more recent work.

A. Multi-cue feature representation
In this work we integrate gradient-based features such as

HOG [5], that provides a good description of the object

contours, with texture-based features such as LBP [6]. These

two types of features provide complementary information

and the fusion of both types of features has been seen to



Fig. 2. Dense Depth map generation scheme.

boost the performance of either feature separately [7], [8].

Both types of features are extracted for each image modality.

We show that by appropriately choosing the parameters used

in the computation of these features for each modality we

can obtain an important gain in accuracy.

From the seminal work of Dalal and Triggs [5] it has been

seen that using different types of gradient-based features and

their spatial distribution, such as in the HOG descriptor [5]

provides a distinctive representation of both humans and

other objects classes. The integral channel features proposed

by Dollar et al. [9] allows to integrate multiple kinds of

low-level features such as the gradient orientation over the

intensity and LUV images, extracted from a large number of

local windows of different sizes and at multiple positions, al-

lowing for a flexible representation of the spatial distribution.

In this work and related ones [10], [11] it has been seen that

including color boosts the performance significantly, being

this type of feature complementary to the ones we used

in this study. Context features have also been seen to aid

[12], [13] and could be easily integrated as well. Exploring

alternative types of spatial pooling of the local features in

HOG or LBP is also beneficial as shown in [14] and is also

complementary to the approach used in this paper.

B. Fusion of multiple image modalities

In this work we explore the fusion of dense depth maps

obtained with RGB images. Dense depth maps are obtained

by first registering the 3D cloud of points captured by a

Velodyne sensor with the RGB image captured with the cam-

era, and then interpolating the resulting sparse set of pixels

to obtain a dense map where each pixel has an associated

depth value [15]. Descriptors such as HOG and LBP are

extracted from each modality independently. Following [16],

the information provided by each modality can be fused

using either an early-fusion scheme, at the feature level, or a

late-fusion scheme, at the decision level. In our study, using

a simple early fusion scheme, where descriptors from each

modality are concatenated, provided the best results.

Pedestrian detection based on data coming from multiple

modalities has been a relatively active topic of study [1],

and in particular the use of 2D laser scanners and visible

spectrum images has been studied in several works, for

instance [17], [15]. Only recently authors are starting to

study the impact of high-definition 3D LIDAR [15], [17],

[18], [19], [20], [21], [22]. Most of these works propose

specific descriptors for extracting information directly from

the 3D cloud of points [17], [18], [19], [20], [21], [22]. A

common approach is to detect pedestrians independently in

the 3D cloud of points and in the visible spectrum images,

and then combining the detections using an appropriate

strategy [18], [19], [22]. Following the steps of [15], we

opt for a simple yet effective strategy where the 3D cloud

of points is used to obtain a dense depth map. Given this

map, well-known description techniques such as HOG and

LBP can be applied in order to obtain a highly distinctive

object representation. Our work differ from [15] in that we

use multiple descriptors and adapt them to have a good

performance in dense depth images. While [15] employs a

late fusion scheme, our experimental analysis revealed that

using an early fusion scheme provided best results in the

given multi-cue, multi-modality framework.

C. Multi-view classifier
In this work we make use of Random Forests (RF) of

local experts [23], which has a similar expressive power

than the popular Deformable Part Models (DPM) [24] and

less computational complexity. In this method, each tree of

the forest provides a different configuration of local experts,

where each local expert takes the role of a part model.

At learning time, each tree learns one of the characteristic

configurations of local patches, thus accommodating for

different flexible articulations occurring in the training set.

In [23] the RF approach consistently outperformed DPM.

An advantage of the RF method is that only a single

HOG or HOG-LBP descriptor needs to be extracted for the

whole window, and each local expert re-uses the part of

the descriptor that corresponds to the spatial region assigned

to it. Its computational cost is further significantly reduced

by applying a soft cascade, operating in close to real time.

Contrary to the DPM, the original RF method learns a single

model, thus not considering different viewpoints separately.

In this work, we extend this method to learn multiple models,

one for each 3D pose, and evaluate both the original single

model approach and the multi model approach.

Several authors have proposed methods for combining

local detectors [24], [25] and multiple local patches [26],

[27], [28]. The method in [29] also makes use of RF with

local classifiers at the node level, although it requires to

extract many complex region-based descriptors, making it

computationally more demanding than [23].

D. Multi-cue/modality/view representation
Most relevant to this paper is the approach presented in

[30] where the authors combine multiple views (front, left,

back, right), modalities (luminance, depth based on stereo,

and optical flow), and features (HOG and LBP). The main

differences between [30] and our work are as follows: i)in

order to complement RGB information, we make use of

a sensor modality, high-definition 3D LIDAR, which has

received relatively little attention in pedestrian detection until

now, and ii) while [30] makes use of an holistic classifier, we

make use of a more expressive patch-based model, and iii)



Fig. 3. Random Forest scheme.

in [30] multiples cues are combined following late-fusion

style, while we consider also early-fusion, which, in fact,

give better results in our framework.

The rest of the paper is organized as follows. In Sect. II

we develop our proposal. Section III presents the experiments

carried out to assess our proposal step by step, and discuss

the obtained results. Finally, section IV draws our main

conclusions.

II. MULTIVIEW RGBD-RF FOR PEDESTRIAN DETECTION

We propose a complete framework in which our final

model incorporates the multi-cue characteristic by extracting

HOG and LBP descriptors. Also the multi-modal char-

acteristic by extracting information from RGB and depth

modalities, which will be combined at feature level (early

fusion) or at decision level (late fusion). Finally we will use a

multi-view model in which we will separate the problem into

n− views for combining them with late fusion (See Figure 1).

In addition we will model pedestrians both holistically and

as a set of relevant patches. In the former case the model will

be learnt with linear SVM; and in the latter with a Random

Forest of Local Experts.

A. Multi-cue feature representation
In order to improve the pedestrian detection accuracy

it is widely used the incorporation of different cues or

features. This incorporation looks for complementarity by

using different cues for describing the same object. In

order to incorporate different cues in our framework we

use the HOG [5] descriptor (shape) and the LBP [31]

descriptor (texture). Both descriptors are combined using an

early fusion technique (concatenating HOG and LBP de-

scriptor), obtaining a robust descriptor with complementary

information (HOGLBP). HOG descriptor is composed by a

histogram of gradient orientations. Given a window candidate

the histograms are calculated on overlapped blocks inside

it. LBP descriptor calculate histograms of texture patterns

over the same overlapped blocks than HOG. This texture

patterns are based on value differences between the central

pixel and the surrounding ones in a 3 × 3 neighborhood.

We use our own implementation that includes some mod-

ifications that improve the final detection rate. The first

modification is included in the image pyramid construction.

The image re-size process is done by bilinear interpolation

with antialiasing,which helps the gradient calculation and

thereby the HOG descriptor classification accuracy. The

second modification is included in the LBP descriptor. When

the value differences are calculated we accept as equal values

the ones included in a defined range, this range (defined as

ClipT h) allows that small noises (small value changes) do

not affect the texture pattern (More details in [32]).

B. Fusion of multiple image modalities
Keeping in mind that more complementarity is better for

pedestrian detection, we want to explore the integration of

different modalities. Usually information is extracted from

a single-modal sensor (RGB camera), but we combine this

visual information with 3D information extracted from a

LIDAR sensor. In order to transform the point cloud obtained

using the LIDAR into a dense depth map, we follow the

approach presented by Premediba et al. [15]. In this method,

the 360◦ 3D point cloud from the LIDAR sensor is filtered

in order to take only those points included in the viewfield

of the RGB camera. The filtering process start by applying

calibration matrices to project the 3D coordinates in image

plane coordinates. Then the points that fall inside the image

are selected, while the others are rejected. The filtered points

form a sparse depth image, time and space synchronized with

the visual image. At this step by defining a neighborhood

for each valid pixel of the depth map we interpolate the

information for filling the missing values. After this process,

the pixels without depth information will be filled, ending

up in a dense depth map (see Fig. 2).

At this point, for each candidate window we extract HOG

and LBP features over each modality (visual and depth).

Then, we combine these features into a single detector. There

are two approaches for performing this combination. The first

one is to use a late ensemble of detectors; in this case we train

two separate detectors, one per modality. The second one is

to combine at feature level the two modalities; in this case

we train a single model using as descriptor the concatenation

of the features computed at each modality.

C. Multi-view detectors
For facing the problem of intra-class variability, if we

reduce the variability inside the target object, we will dis-

criminate better this class from the background. One of the

biggest causes of the large variability in object detection is

the pose and orientation of the object. In order to solve this

problem we propose to use a multi-view approach. Given

a set of annotated pedestrians for training a detector, we

propose to separate them into n different views depending

on its orientation. We analyze the orientations of the training

samples in order to define some thresholds that split the sam-

ples into different views. By spliting in this way the samples

we can adjust the canonical size for each subset, allowing the

final detector to deal with pedestrians in different orientation

having each orientation its own aspect ratio (e.g. it is not the

same bounding box for a frontal-viewed pedestrian than for

a side-viewed pedestrian).

D. Pedestrian Model
In our study we focus on two different models: one

holistic, where the whole pedestrian view is considered as

the model; and a patch-based one where only a subset

of pedestrian patches are considered as model. As holistic

model we use the descriptor/SVM with a linear kernel



Fig. 4. Orientation Histogram and Distribution.

(linSVM) which has a good compromise between compu-

tation time and accuracy. As patch based model we use

descriptor/RandomForest(RF). Each tree inside the RF has

different configuration of patches (see Fig. 3), and at the

end the decision is made by taking into account the different

configuration learned in each tree. We will use the RF formed

by 100 trees, 7 levels as max depth and each node in a tree

will be a linSVM local expert (see [23] for details).

III. EXPERIMENTAL RESULTS

In this section we will evaluate each step of the pro-

posed approach: multi-cue, multi-modal and multi-view. In

order to fulfill this evaluation we will use our own im-

plementation of HOG and LBP features, which provides

significantly better results than the one proposed in [7],

i.e., removing the occlusion handling reasoning. Also we

will use as classifier the SVM with linear kernel, and

the Random Forest. Letting us with a bunch of possibles

detectors: HOG/linSVM, LBP/linSVM, HOGLBP/linSVM,

HOGLBP/RF. We will use as baseline for comparing the

different steps the HOG/linSVM detector which is standard

for pedestrian detection.

a) KITTI Dataset: in this paper we use the KITTI

dataset that provides synchronized data obtained from two

different sensors, a stereo-pair camera and a LIDAR. KITTI

dataset for object detection includes 7481 training images

and 7518 test images, comprising a total of 80.256 labeled

objects. Annotations are provided only for the training set.

For this reason we split the training set into a training set (the

first 3740 images) and a validation set (the last 3741 images)

as done in [15], these subsets are used for the evaluation of

each step of our approach. The original training and testing

set will be used for the detector configuration finally selected,

i.e., in order to compare with the state-of-the-art methods

using the KITTI web page for submitting results on test set.

b) Evaluation protocol: As evaluation methodology

we follow the de-facto Caltech standard for pedestrian de-

tection [4], i.e., we plot curves of false positives per image

(FPPI) vs miss rate. The average miss rate (AMR) in the

range of 10−2 to 100 FPPI is taken as indicative of each

detector accuracy, i.e.. the lower the better. Also we will

evaluate using the KITTI evaluation framework in which the

precision-recall curve is calculated for ranking the methods

by the average precision (AP), i.e., the higher the better.

During training we consider pedestrian higher than 25 pixels

not occluded (Reasonable subset). For testing we use the

reasonable subset in the caltech evaluation and the KITTI

evaluation is performed over 3 different subsets depending

on height and occlusion level: easy subset (Min height: 40

px; max occlusion level: fully visible; max truncation: 15%),

moderate subset (Min height: 25 px; max occlusion level:

partly occluded; max truncation: 30%), hard subset (Min

height: 25 px; max occlusion level: difficult to see; max

truncation: 50%). This KITTI evaluation will be performed

in the validation set and in the final testing set.

c) Multi-cue: We start by evaluating the gain obtained

by using multiples cues, for that reason we start the evalua-

tion by comparing the single-view (SV) detectors. However,

first of all we have tuned the LBP parameters, getting

ClipT hRGB = 4 and ClipT hDepth = 0.2. These parameters

mean that, for calculating the texture pattern, we will treat

as the same value those in the range on 4 luminance

units for the RGB modality and 0.2 meters in depth. In

Table I, comparing the SV experiments HOG/linSVM against

HOGLBP/linSVM, we can see that the gain in AMR is

around 12% with RGB modalities, around 4% with depth and

around 2% when combining the two modalities. The same

behavior can be seen also if we compare the SV-LBP/linSVM

against the SV-HOGLBP/linSVM where we obtain improve-

ments of around 10% , 3% and 4% respectively.

d) Multi-modal: Regarding the evaluation of the

multi-modal approach, we compare the SV-HOG/linSVM

detector over RGB and depth against its combination (RGB

+ depth). In order to select the best type of modality fusion

we evaluate both the late and early fusion techniques. In

Fig. 5 we can see that the early fusion method improves

the performance (lower AMR) with respect to the late fusion

for all the proposed models. Taking into account this fact we

include in Table I only the modality fusion experiments based

on early fusion technique. In Table I, comparing the SV

experiments HOG/linSVM in RGB, Depth and RGB+Depth

we can see how the multi-modal experiments outperform the

single-modal ones obtaining an AMR gain of ∼ 18% against

RGB and ∼ 10% against Depth. This behavior is repeated if

we look at the different SV proposed models: LBP/linSVM

(∼ 14% / ∼ 7%), HOGLBP/linSVM (∼ 8% / ∼ 8%) and

HOGLBP/RF (∼ 4% / ∼ 4%).

e) Multi-view: In order to show the gain obtained

by the introduction of a multi-view (MV) model we will

compare the SV-HOG/SVM against the MV version. For

pedestrian detection we propose a two view approach, one

grouping the front (270◦) and back (90◦) orientations and

the other one grouping the left (180◦) and right (0◦) orienta-

tions. Analyzing the orientation histogram (see Figure 4) for

pedestrians included in the KITTI training set, we find out



TABLE I

RESULTS USING DIFFERENT SUBSETS FOR TRAINING (SINGLE-VIEW (SV), FRONTAL (F), LATERAL (L), MULTI-VIEW (MV)), MODALITIES, AND

DETECTORS, TESTED OVER THE VALIDATION SET. AMR IS INDICATED FOR CALTECH EVALUATION AND AP FOR KITTI EVALUATION. BEST

ACCURACY FOR EACH DETECTOR IN EACH MODALITY IS INDICATED IN BOLD, WHILE THE BEST DETECTOR FOR EACH MODALITY IN RED

Evaluation Detector
RGB Depth RGB + Depth (Early Fusion)

SV F L MV SV F L MV SV F L MV

AMR

HOG/SVM 50.29 55.58 62.67 46.77 42.17 46.71 45.23 40.25 32.49 38.28 33.12 31.44

LBP/SVM 48.91 53.23 57.63 45.37 41.42 43.24 43.24 38.51 34.66 38.33 30.85 29.85

HOGLBP/SVM 38.66 44.25 45.91 35.66 38.05 41.67 39.42 36.14 30.78 34.08 30.85 28.33

HOGLBP/RF 30.05 39.95 41.76 27.94 30.47 36.06 34.10 30.13 25.99 32.49 30.44 25.59

AP (Easy)

HOG/SVM 0.50 0.44 0.36 0.54 0.59 0.54 0.57 0.62 0.71 0.65 0.70 0.73

LBP/SVM 0.52 0.47 0.42 0.56 0.62 0.60 0.59 0.65 0.69 0.66 0.74 0.75

HOGLBP/SVM 0.64 0.58 0.54 0.68 0.65 0.61 0.64 0.67 0.74 0.71 0.74 0.76

HOGLBP/RF 0.73 0.62 0.59 0.75 0.74 0.67 0.70 0.75 0.79 0.73 0.74 0.79

AP (Moderate)

HOG/SVM 0.38 0.33 0.28 0.41 0.46 0.42 0.42 0.47 0.57 0.53 0.54 0.58

LBP/SVM 0.41 0.37 0.34 0.44 0.48 0.46 0.46 0.50 0.57 0.54 0.59 0.61

HOGLBP/SVM 0.50 0.46 0.43 0.54 0.51 0.47 0.49 0.52 0.61 0.58 0.60 0.62

HOGLBP/RF 0.59 0.50 0.46 0.60 0.58 0.52 0.53 0.58 0.65 0.59 0.59 0.66

AP (Hard)

HOG/SVM 0.33 0.29 0.24 0.35 0.40 0.37 0.36 0.41 0.50 0.46 0.47 0.51

LBP/SVM 0.36 0.32 0.29 0.38 0.42 0.40 0.40 0.43 0.50 0.47 0.52 0.53

HOGLBP/SVM 0.43 0.40 0.37 0.47 0.45 0.42 0.43 0.46 0.53 0.51 0.52 0.55

HOGLBP-RF 0.51 0.43 0.40 0.52 0.50 0.45 0.46 0.50 0.56 0.52 0.52 0.57

a separation between the four views: 310◦− 50◦ for right,

50◦− 130◦ for back, 130◦− 230◦ for left and 230◦− 310◦

for front. Once defined the orientation clusters we calculate

the canonical aspect ratios (AR) for each view. This AR is

important for defining the sliding window size, and in order

to allow detection with different AR in the final ensemble.

For the defined frontal (F) view, i.e., (Front + Back) we

obtain an AR = 2.6 and for the lateral (L) view, i.e., (Left

+ Right) an AR = 2.4. In Table I are presented the results

obtained by training the model using the different subsets

based on each view (F/L) and the ensemble of them (MV),

comparing the SV-HOG/SVM against its MV counterpart

we obtain an AMR gain of ∼ 4% (RGB), ∼ 2% (Depth)

and ∼ 1% (RGB+Depth). The same behavior is obtained by

comparing the other SV models against its MV counterpart:

LBP/linSVM (∼ 3% / ∼ 3% / ∼ 5%), HOGLBP/linSVM

(∼ 3% / ∼ 2% / ∼ 2%) and HOGLBP/RF (∼ 2% / ∼ 1%

/ ∼ 1%).

f) Discussion: Each of the mentioned detectors is de-

veloped using RGB, Depth and Early Fusion (RGB + Depth)

information sources in order to compare the accuracy under

the different conditions. Also for evaluating the multi-view

performance the experiments are carried out using a single-

view (all samples) and a multi-view (samples divided in two

views). In Table I there are the accuracy measurements over

the validation set. The measurements include the Caltech

evaluation methodology for reasonable pedestrians subset

and the KITTI evaluation methodology for easy, moderate

and hard pedestrian subset. Regarding the obtained results

it is easy to see the performance improvements at each step

of the proposed method. First we can see the improvement

introduced by the RF over the other detectors. Comparing

the results obtained in each column (training subset and

information source) we obtain always the best accuracy

in the HOGLBP/RF detector. The second improvement is

introduced by the multi-view proposed method, comparing

each row (detector) we obtain the best performance for each

of the information sources (RGB, Depth, RGB+Depth) when

TABLE II

EVALUATION AND COMPARISON OF MULTI-VIEW RGBD RF DETECTOR

USING THE FINAL TEST SET

Rank Method Moderate Easy Hard

1 Regionlets 61.15 % 73.14 % 55.21 %

2 MV-RGBD-RF 54.56 % 70.21 % 51.25 %

3 pAUCEnsT 54.49 % 65.26 % 48.60 %

we perform the multi-view ensemble classifier. The third

improvement is introduced by the early fusion of information

sources, in this case for each detector and given a training

subset we obtain the best performance in the RBG+Depth

experiment.

Finally if we compare the baseline method SV-

HOG/linSVM against our proposed multi-cue, multi-modal

and multi-view Random Forest of Local Experts we obtain an

AMR gain of ∼ 25% in the validation set. Regarding the final

approach MV-HOGLBP/RF early fusion of RGB and depth

in Table II, we obtain an AP of 70.37%, 54.67%, 50.35%

for the easy, moderate and hard subset respectively, ranking

the second best pedestrian detector in the challenge. Fig. 5

shows the precision-recall curve obtained over each subset

using the final approach.

IV. CONCLUSIONS

In this paper we develop a complete multi-cue, multi-

modal and multi-view framework for pedestrian detection.

We have shown the applicability to different models (holis-

tic, patch-based), obtaining significant performance improve-

ments. In this paper we focus on pedestrian detection using

HOG/linSVM as baseline applying the different proposed

method: different cues (HOG and LBP), diferent modalities

(RGB and depth) and different views (Frontal and lateral),

thus, our immediate future work will focus on detection

of different classes like cyclist and car in which the intra-

class variability is higher depending on the orientation.

Also the candidate generation and re-localization based on

segmentation as in [33] could be integrate in this pipeline

improving the obtained results.
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Fig. 5. First 4 plots represent the results over validation set using HOG/linSVM, LBP/linSVM, HOGLBP/linSVM, HOGLBP/RF under the different
sources: RGB, Depth and RGB+Depth. The last plot shows the final approach precision-recall curve of the testing set for each subset: easy, moderate and
hard.
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