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Abstract— Common techniques for pedestrian candidates
generation (e.g., sliding window approaches) are based on an
exhaustive search over the image. This implies that the number
of windows produced is huge, which translates into a significant
time consumption in the classification stage. In this paper, we
propose a method that significantly reduces the number of
windows to be considered by a classifier. Our method is a
monocular one that exploits geometric and depth information
available on single images. Both representations of the world
are fused together to generate pedestrian candidates based
on an underlying model which is focused only on objects
standing vertically on the ground plane and having certain
height, according with their depths on the scene. We evaluate
our algorithm on a challenging dataset and demonstrate its
application for pedestrian detection, where a considerable
reduction in the number of candidate windows is reached.

I. INTRODUCTION

The main objective of Advanced Driver Assistance Sys-
tems (ADAS) is increasing driver safety and comfort. ADAS
systems require a full understanding of the scenarios where
the vehicle is evolving, including detection of moving and
stationary objects that determine the free space available for
driving. In that case, the vehicle’s surroundings is perceived
and monitored by sensors to avoid unsafe situations (e.g.,
collisions). Although systems employing active sensors (e.g.,
radar, lidar, etc.) have shown promising results in object
detection, they have several drawbacks, such as high cost,
high consumption, and interference caused by sensors of the
same type installed in different vehicles. However, passive
sensors based on visual information (like cameras) receive a
rich representation of the environment, that can be used to
identify objects on the scene, as well as to detect lanes and
recognize traffic signs. Indeed, due to the low cost of camera
sensors, vision-based systems will be present as standard
equipment on mid/low-priced vehicles providing information
to ADAS applications.

A fundamental stage in scene understanding is the recog-
nition of objects which are present in the scene (e.g.,
pedestrian [1], vehicles [2], signals [3]). To warn the driver
in time of potential dangers, this step must be performed
efficiently. Analyzing the whole image to locate potential
objects locations is not feasible due to this constraint. What
many object detection proposals do is follow two steps:
First, hypothesize about object locations in an image, and
then test this hypothesis to verify the presence of the object.
Often these steps are executed multiple times on an image to
recognize different objects by using independent methods.
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The number of hypothesis to be evaluated can be dras-
tically reduced by assuming that interesting objects are ap-
proximately vertical and their height is into a limited range.
A reduced number of scanning windows has two advantages
for an object detection module: on the one hand, speeding
up the detection by discarding large image portions that not
provide relevant information; on the other hand, reducing
the false positives detections by focusing on specific regions
with high probability of having the presence of objects.

In this paper, we propose a novel method to generate
a set of candidate hypothesis based on different cues and
context information which are available in single images. Our
method fuses two complementary mid-level scene represen-
tations to select the image region where applying an object
recognition algorithm has sense. Basically, we use geometric
information obtained from a single image that allow us to dis-
tinguish between three main classes of surfaces: horizontal,
vertical and those that belong to sky regions in the image [4].
From these information, we are able to know what regions
are potentially supporting surfaces (i.e., the ground), and
what are vertical objects. In the ADAS context, interesting
objects are vertical and located over the road plane; so we
have a first clue where selectively searching them.

Another useful information is the distance of objects in
the scene, since it constrains the object detector’s scale to
be used. Traditionally, distances has been estimated using
multiview approaches (e.g., stereo, structure from motion).
However, this information can be obtained from a single
image. We estimate coarse depth maps using a set of visual
features, which are useful to determine an approximated
distance of objects receding into depth. Both kind of informa-
tion is combined to select regions of interest (ROI) containing
possible stationary or moving vertical objects located in front
of the vehicle. Figure 1 depicts our approach to pedestrian
candidates generation.

Many approaches concerning our purpose have been pro-
posed. Here, we refer some of them. For instance, popular
object detection algorithms find pedestrians by exhaustively
scanning over all locations and scales (i.e., a sliding window
approach). Viola et al. [5] train a cascade classifier of walking
humans by combining motion and appearance information.
This method has good performances, but the number of
windows to be evaluated is huge. Assuming a flat world,
Gavrila et al. [6] generate candidates over a presupposed
road plane. However, this algorithm suffers when the road
is a non-flat surface and/or vehicle has pitch variations.
Using stereo cameras, Badino et al. introduced a compact
description of the world for autonomous vehicles, called
“stixel world” [7], offering a strong simplification of the data,

2012 Intelligent Vehicles Symposium
Alcalá de Henares, Spain, June 3-7, 2012

978-1-4673-2118-1/$31.00 ©2012 IEEE 7



a) Original Image
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Fig. 1. Our method is based on exploiting information extracted from an
image. First, pixels corresponding to vertical objects and a rough depth map
are obtained. Then, we generate candidate windows from this information.

but preserving the information of interest. The underlying
model focuses only on objects standing vertically on the
ground plane and having certain height.

The rest of the paper is organized as follows. In the
next section, we detail our method to monocularly compute
the medium-level information used in our proposal. Then,
we describe how we fuse both representations to generate
candidate windows. Finally, we measure the performance
of our approach for pedestrian candidates generation and
conclude.

II. MEDIUM-LEVEL REPRESENTATIONS

In this section, we describe our method to build a compact
representation of a scene. Figure 1 shows a schema of
our approach. Briefly, the first step is extracting useful
information from the image regarding geometric and depth
clues.

A. Geometric Information

Geometric information about the scene is recovered by
using the approach proposed by Hoiem et al. [4]. This
method segments the image into three geometric classes
that depend on the orientation of the surfaces in the scene.
Each region in the image is classified as horizontal, vertical
or sky. Horizontal surfaces are approximately parallel to
ground plane and objects can be supported by them (e.g.,
road surface). Vertical surfaces are roughly perpendicular
to ground plane (e.g., buildings, pedestrian, cars, trees,
etc.). The sky usually located on top regions in the image,
corresponding to the air and clouds. Basically, an image is
over-segmented into superpixels [8], each of which belongs
to a particular geometric class. Each superpixel is described
by depth cues, including color, location, perspective, and
texture. Then, from a logistic regression form of AdaBoost
previously trained, the geometric class of each superpixel is

inferred. An example of the result of this process is shown
in Fig. 1(b).

B. Depth Information

Even though depth estimation has been traditionally fo-
cused on techniques requiring two or more images (e.g.,
depth from stereo, structure from motion, etc.), recently,
some proposals on depth estimation from a single image have
been done [9], [10]. They try to estimate exact distances to
elements in the scene, and this is achieved by a procedure
requiring high computation. However, it is possible to obtain
rough but valuable information of the depth of the scene with
low computation methods.

Here, instead of estimating a continuous depth map, we
segment the distance space into different ranges. Each range
is selected taking into account the object’s scale variability,
whose image projection onto image plane is affected due to
perspective effects.

For computing such “coarse” depth map, we train three
binary Real AdaBoost classifiers [11] based on a set of
discriminative features to distinguish between the different
depth ranges. We use the following features: RGB and HSV
color mean and histograms for each channel to distinguish
between different objects, texture gradients characterized by
Weibull parameters [12] and Gabor filters to capture surface
orientations, and pixel location to distinguish different re-
gions in the image (sky, ground, etc.) [13]. Each image is
segmented into a regular grid of 10 × 10 pixel windows,
and the feature vector is computed for each window.

To train our classifiers, we require a set of images with
depth information available. In our case, we use a set of
images, where each one has an associated stereo depth map.
Depth maps are used to label positive and negative examples
for each depth range.

Given a new image described by our set of features, the
probability of belonging to each depth range is computed
for each grid window by applying the previously trained
classifiers. Then, we segment the image by taking for each
window the maximum confidence result. An example of the
result of this process is shown in Fig. 1(c).

III. CANDIDATE WINDOW GENERATION

From the previous intermediate results, we hypothesize
about which vertical objects at different depths are interesting
in the ADAS context. Basically, we start by dividing an
image into superpixels, which is an attempt to divide the
image such that boundaries coincide with image edges,
grouping similar pixels into regions. Then, we combine
geometric and depth information by an agglomerative hierar-
chical clustering [14] over the computed superpixels until the
bounding box enclosing a set of superpixels has a coherent
size with respect to the object size to be detected.

Our hierarchical clustering is based on the following set
of physical/spatial assumptions:

• Gestalt constraints: We take into account two grouping
principles of Gestalt school. On the one hand, the prin-
ciple of good continuation which states that a regions
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which are connected have smooth boundaries. On the
other hand, the principle of similarity which states that
the elements in a region are similar, including similar
color, brightness, and texture [15]. To fulfill the Gestalt
principles, the image is over-segmented into superpixels
by using Turbopixels approach [16].

• Gravity constraint: Elements in the driving environment
should stand on the ground plane.

• Depth constraint: All superpixels belonging to an object
are located at the same depth region, and must be
grouped together.

• Size constraint: In our context, the size of an interesting
object is constrained to certain range according with
its depth, taking into account the camera calibration
properties (i.e., focal length, and image size).

Inspired by [17], we use an agglomerative clustering
method on the Euclidean distances between the coordinates
of the superpixels centroids. The algorithm is composed of
the following steps:

1) Start with two sets of superpixels: G of vertical super-
pixels whose distance to the ground plane is below a
threshold, and V of the rest of vertical superpixels.

2) Find the most similar pair of superpixels, say pair
(g, v), where g ∈ G and v ∈ V , and the Euclidean
distance d(g, v) between centroids of g and v is the
minimum.

3) Combine g and v to form the superpixel g = g ∪ v if
the following conditions hold:

a) Both g and v are located at the same depth range,
and

b) The size of the merged superpixel g = g ∪ v is
within a certain range, according with its depth.

4) If the size of g is within the minimum and maximum
sizes of an interesting object, generate a new candidate
window for g.

5) Remove v from V .
6) While g fulfills the size condition, repeat from step 2.

Otherwise, select a new g ∈ G and start again from
step 2, until V is empty.

At the end of this process, candidate windows which has
certain overlapping between them can be fused to generate a
new candidate as long as size and depth constraints are still
satisfied.

An example of how the clustering algorithm works is
shown in Fig. 2. Fig. 2(a) shows the information sources used
during clustering, as we described above. In this case, we
are devoted to pedestrian candidates generation, considering
pedestrian’s sizes for merging. In Fig. 2(b), we can observe
how the superpixels are fused together into a single one as
the algorithm progresses. In Fig. 2(c) each region is enclosed
into a bounding box to conform a candidate window.

IV. EVALUATION RESULTS

In this section, we evaluate the performance of our al-
gorithm for candidate windows generation with respect to
state-of-the-art methods, using a public available dataset.

Original
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Fig. 2. Hierarchical Clustering. (a) Information sources used in our
clustering algorithm, (b) An example of how superpixels are merged as
the clustering algorithm progresses, and (c) Bounding boxes surrounding
regions.

TABLE I
PEDESTRIAN SIZES

Distance Minimum Size Maximum Size
(m) (pixels) (pixels)

0 - 10 70× 140 120× 240
10 - 25 30× 60 70× 140
25 - 50 12× 24 30× 60

A. Dataset and Ground Truth

Our dataset consists of 15 sequences taken from a stereo-
rig rigidly mounted in a car while it is driving on an
urban scenario. Each image has an associated depth map
computed from stereo images. In total, there are 4364
frames, which correspond to 7983 manual annotated pedes-
trians visible at less than 50 meters. This dataset is public
available at http://www.cvc.uab.es/adas/index.
php?section=other_datasets.

Table I shows the minimum and maximum size of a
pedestrian at certain distance from the camera for the con-
sidered configuration. We use these pedestrian sizes as size
constraints in our candidate windows generation process.

Mainly focusing on variation of pedestrians sizes along
distance, we define three distance ranges: 0-10 m, 10-25 m,
and more than 25 m [18]. The first two ranges are high-
risk areas in case of vehicle collision against an object. The
last range are a low-risk areas, where pedestrians are less
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vulnerable to suffer the consequences of an accident.
During the training phase of our depth-based segmentation

method, we use a training set consisting of 700 images
randomly taken from different sequences. The corresponding
stereo depth maps are used to label a set of positive/negative
examples for each distance range.

B. Evaluation Methodology

The aim of the proposed hypothesis generation is to
yield few false negatives (FN, i.e. the number of missed
pedestrians), while keeping the number of false positives (FP,
i.e. the number of regions corresponding to non-pedestrians)
low.

To judge the benefits of our approach, we compare how
well the generated candidates are related to ground truth
pedestrian annotations. Based on the evaluation protocol
proposed by Gerónimo in [18], we measure the performance
our approach in terms of the following criteria:

1) Minimizing the amount of pedestrian candidates gen-
erated PC = TP + FP.

2) Maximizing the True Positive Rate TPR = TP
TP+FN .

Each candidate window c is compared against the ground
truth annotation a using the area of overlap between both
bounding boxes by the formula

overlap(c, a) =
area(a ∩ c)

area(a ∪ c)
, (1)

A candidate is classified as TP, FP or FN using the
overlapping measure proposed by Everingham et al. [19] for
object detection evaluation in the PASCAL Challenge,

classify(c, a) =


TP if overlap(c, a) > Γ
FP if overlap(c, a) ≤ Γ
FN if a does not have any associated

candidate c .
(2)

In our case, for a candidate c to be a TP, we require that
this overlap exceeds a threshold Γ = 50%.

C. Performance Evaluation

In the literature, there are several methods to generate
pedestrian candidates. Here, we only briefly describe the
most relevant strategies for comparing them with our method
in terms of performance. A detailed description of the
following strategies can be found in [18].

The simplest candidate generation method for pedestrian
detection is the sliding window approach [20] which is
an exhaustive scan over the input image with windows of
different scales at all the possible positions. The drawback
of this approach is that requires generating a big number of
candidates to reach an acceptable performance. A big number
of candidates implies a higher computation time during
classification, which is undesirable. Additionally, many of
these candidates are false positives since this method does
not use any prior knowledge.

Other technique is based on the so-called flat world
assumption [21]. In this case, pedestrians are assumed to be
on a planar road. This is a strong constraint which implies

(a) Sliding windows (0.1%) (b) Flat world assumption (5%)

(c) Adaptive road scanning (5%) (d) Our approach (100%)

Fig. 3. Qualitative evaluation. Here, we can see the candidate windows
generated by the considered approaches versus our results. The number
in parenthesis indicates the percentage of displayed windows. The number
of candidate windows is significantly reduced by applying our approach.
Figures (a)-(c) were taken from [18].

that the road geometry and its position with respect to the
camera is known and remains constant along time. Under
these conditions, the algorithm generates candidates over the
presupposed road plane with pedestrian-sized windows.

However, due to road imperfections, car accelerations, and
changes in the road slope, the camera pose changes, and the
image is scanned sub-optimally. Then, road geometry and
camera pose cannot be assumed as constant. The limitations
of flat world assumption-based method can be overcome
by adjusting the scanning grid to a road surface estimated
dynamically, as Gerónimo proposes [18]. The algorithm
estimates the road surface based on 3D points provided by
a stereo camera, and then performs a road scanning in the
same way that the previous method.

Figure 3 depicts a qualitative comparison between our
proposal and the methods described above. We can observe
that our approach selects a reduced number of candidate
windows with respect to the rest of considered methods.
Table II shows the results in terms of TPR and PC per frame
of each algorithm.

Although sliding window has the best performance with
respect to TPR, the number of candidates to classify is
big, which affects the time consumption in a posterior
classification stage.

Assuming a flat world the search space is significantly
reduced, but the TPR is low. This implies that many pedes-
trians will be lost during this process. The TPR drops due to
the camera motion (mainly, pitch angle variations) produced
by road slopes, which produce that in many cases the fixed
plane does not coincide with the real one, and hence the
generated candidate windows are not correct.

A trade-off between TPR and the number of candidates is
reached using adaptive road scanning. However, the TPR is
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TABLE II
COMPARISON BETWEEN APPROACHES

Algorithm PC TPR
Sliding Window (perfect) 1.300.000 100%
Sliding Window (dense) 700.000 98%
Sliding Window (sparse) 220.000 75%
Flat World Assumption 42.000 35%
Adaptive Road Scanning 32.000 74%
Our approach 500 84%

not perfect.
Still far from being perfect, our method reduces remark-

ably the search space but, at same time, maintains a high
performance with respect to TPR. The obtained reduction
in the number of candidates is very significantly since we
combine strong clues about the physical world for filtering
the search space. The used priors regarding vertical surfaces
and its depths, coupled with our spatial restrictions, allow us
to focus on image regions where the probability of having
pedestrians is relatively high.

To reach a similar performance to our method, sliding
window approach requires generating approximately 300.000
windows, which is 600 times more than the candidates
generated by our method.

Figure 4 shows qualitative results obtained with our
method. Figures 4(b) and (c) show geometric and depth
information used in our candidates generation process. As
we depict in Fig. 4(d), the windows are posed only over in-
teresting regions for our context, while large image portions
are discarded.

Figure 5 shows an histogram of the number of pedestrians
not included in the hypothesis generated by our process.
We can see that lost pedestrians are mainly located at far
distances from the car. This is because the far pedestrians
have smaller sizes (i.e., very few pixels) due to the sensor
resolution. Then, they are hard to be segmented into their
constituents parts by the superpixel algorithm and to agglom-
erate by our approach. However, these pedestrians are outside
the high-risk area, and will be further detected with very
high probability when the car approaches to them, since our
proposal includes 99.4% of pedestrian in the range 0-10 m.
From our opinion, this candidate distribution with respect to
distances is preferable since closer pedestrians are the most
vulnerable ones and require special efforts.

V. CONCLUSIONS

In this paper, we have presented a novel monocular method
for generating pedestrian candidates. Our method is based
on cues which involve two relevant sources of information
about a scene: geometric relationships and depth. Geometric
information is extracted by using the approach proposed by
Hoiem et al. [4], whereas depth is roughly computed by a
multiclass classifier approach. Both clues are combined to
generate pedestrian candidates by a hierarchical clustering.
This clustering agglomerates pixels which are related through
physical properties like appearance, gravity, proximity, and
size constraints that we impose.
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Fig. 5. Histogram of pedestrians which are lost during our process. We
can see that mainly they are pedestrian located at far distances from the car,
and they will be further detected.

We have evaluated our model for pedestrian candidates
generation and compared it with respect to other approaches
in the state-of-the-art. The results shown that our method is
useful for that task since significantly reduces the number of
candidates to be evaluated by a posterior pedestrian classifier,
loosing few pedestrians as the high value for TPR shows.

As future work, we plan to integrate our method in a
pedestrian detection system to evaluate how it benefits the
overall performance of such system. We also are interested in
improving pedestrian classifiers by using depth information.
Due to the high variability of the pedestrian at different
distances, we are planning to train different classifier models
depending on the target distance provided by our approach
to compute rough depth maps.
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