|
M. Li, Xialei Liu, Joost Van de Weijer, & Bogdan Raducanu. (2020). Learning to Rank for Active Learning: A Listwise Approach. In 25th International Conference on Pattern Recognition (pp. 5587–5594).
Abstract: Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
|
|
|
Mikel Menta, Adriana Romero, & Joost Van de Weijer. (2020). Learning to adapt class-specific features across domains for semantic segmentation.
Abstract: arXiv:2001.08311
Recent advances in unsupervised domain adaptation have shown the effectiveness of adversarial training to adapt features across domains, endowing neural networks with the capability of being tested on a target domain without requiring any training annotations in this domain. The great majority of existing domain adaptation models rely on image translation networks, which often contain a huge amount of domain-specific parameters. Additionally, the feature adaptation step often happens globally, at a coarse level, hindering its applicability to tasks such as semantic segmentation, where details are of crucial importance to provide sharp results. In this thesis, we present a novel architecture, which learns to adapt features across domains by taking into account per class information. To that aim, we design a conditional pixel-wise discriminator network, whose output is conditioned on the segmentation masks. Moreover, following recent advances in image translation, we adopt the recently introduced StarGAN architecture as image translation backbone, since it is able to perform translations across multiple domains by means of a single generator network. Preliminary results on a segmentation task designed to assess the effectiveness of the proposed approach highlight the potential of the model, improving upon strong baselines and alternative designs.
|
|
|
Mikhail Mozerov, Fei Yang, & Joost Van de Weijer. (2019). Sparse Data Interpolation Using the Geodesic Distance Affinity Space. SPL - IEEE Signal Processing Letters, 26(6), 943–947.
Abstract: In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.
|
|
|
Fei Yang, Yongmei Cheng, Joost Van de Weijer, & Mikhail Mozerov. (2020). Improved Discrete Optical Flow Estimation With Triple Image Matching Cost. ACCESS - IEEE Access, 8, 17093–17102.
Abstract: Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.
|
|
|
Adrian Galdran, Aitor Alvarez-Gila, Alessandro Bria, Javier Vazquez, & Marcelo Bertalmio. (2018). On the Duality Between Retinex and Image Dehazing. In 31st IEEE Conference on Computer Vision and Pattern Recognition (8212–8221).
Abstract: Image dehazing deals with the removal of undesired loss of visibility in outdoor images due to the presence of fog. Retinex is a color vision model mimicking the ability of the Human Visual System to robustly discount varying illuminations when observing a scene under different spectral lighting conditions. Retinex has been widely explored in the computer vision literature for image enhancement and other related tasks. While these two problems are apparently unrelated, the goal of this work is to show that they can be connected by a simple linear relationship. Specifically, most Retinex-based algorithms have the characteristic feature of always increasing image brightness, which turns them into ideal candidates for effective image dehazing by directly applying Retinex to a hazy image whose intensities have been inverted. In this paper, we give theoretical proof that Retinex on inverted intensities is a solution to the image dehazing problem. Comprehensive qualitative and quantitative results indicate that several classical and modern implementations of Retinex can be transformed into competing image dehazing algorithms performing on pair with more complex fog removal methods, and can overcome some of the main challenges associated with this problem.
Keywords: Image color analysis; Task analysis; Atmospheric modeling; Computer vision; Computational modeling; Lighting
|
|
|
Abel Gonzalez-Garcia, Joost Van de Weijer, & Yoshua Bengio. (2018). Image-to-image translation for cross-domain disentanglement. In 32nd Annual Conference on Neural Information Processing Systems.
|
|
|
Rada Deeb, Joost Van de Weijer, Damien Muselet, Mathieu Hebert, & Alain Tremeau. (2019). Deep spectral reflectance and illuminant estimation from self-interreflections. JOSA A - Journal of the Optical Society of America A, 31(1), 105–114.
Abstract: In this work, we propose a convolutional neural network based approach to estimate the spectral reflectance of a surface and spectral power distribution of light from a single RGB image of a V-shaped surface. Interreflections happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a lot of information concerning the physical properties of the surface and the illuminant. Our network is trained with only simulated data constructed using a physics-based interreflection model. Coupling interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown light and to estimate spectral power distribution of this light as well. In addition, it is more robust to the presence of image noise than classical approaches. Our results show that the proposed approach outperforms state-of-the-art learning-based approaches on simulated data. In addition, it gives better results on real data compared to other interreflection-based approaches.
|
|
|
Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew Bagdanov, & Joost Van de Weijer. (2020). Recurrent attention to transient tasks for continual image captioning. In 34th Conference on Neural Information Processing Systems.
Abstract: Research on continual learning has led to a variety of approaches to mitigating catastrophic forgetting in feed-forward classification networks. Until now surprisingly little attention has been focused on continual learning of recurrent models applied to problems like image captioning. In this paper we take a systematic look at continual learning of LSTM-based models for image captioning. We propose an attention-based approach that explicitly accommodates the transient nature of vocabularies in continual image captioning tasks -- i.e. that task vocabularies are not disjoint. We call our method Recurrent Attention to Transient Tasks (RATT), and also show how to adapt continual learning approaches based on weight egularization and knowledge distillation to recurrent continual learning problems. We apply our approaches to incremental image captioning problem on two new continual learning benchmarks we define using the MS-COCO and Flickr30 datasets. Our results demonstrate that RATT is able to sequentially learn five captioning tasks while incurring no forgetting of previously learned ones.
|
|
|
Yaxing Wang, Lu Yu, & Joost Van de Weijer. (2020). DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs. In 34th Conference on Neural Information Processing Systems.
Abstract: Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.
|
|
|
Yaxing Wang, Salman Khan, Abel Gonzalez-Garcia, Joost Van de Weijer, & Fahad Shahbaz Khan. (2020). Semi-supervised Learning for Few-shot Image-to-Image Translation. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: In the last few years, unpaired image-to-image translation has witnessed remarkable progress. Although the latest methods are able to generate realistic images, they crucially rely on a large number of labeled images. Recently, some methods have tackled the challenging setting of few-shot image-to-image translation, reducing the labeled data requirements for the target domain during inference. In this work, we go one step further and reduce the amount of required labeled data also from the source domain during training. To do so, we propose applying semi-supervised learning via a noise-tolerant pseudo-labeling procedure. We also apply a cycle consistency constraint to further exploit the information from unlabeled images, either from the same dataset or external. Additionally, we propose several structural modifications to facilitate the image translation task under these circumstances. Our semi-supervised method for few-shot image translation, called SEMIT, achieves excellent results on four different datasets using as little as 10% of the source labels, and matches the performance of the main fully-supervised competitor using only 20% labeled data. Our code and models are made public at: this https URL.
|
|
|
Rahma Kalboussi, Aymen Azaza, Joost Van de Weijer, Mehrez Abdellaoui, & Ali Douik. (2020). Object proposals for salient object segmentation in videos. MTAP - Multimedia Tools and Applications, 79(13), 8677–8693.
Abstract: Salient object segmentation in videos is generally broken up in a video segmentation part and a saliency assignment part. Recently, object proposals, which are used to segment the image, have had significant impact on many computer vision applications, including image segmentation, object detection, and recently saliency detection in still images. However, their usage has not yet been evaluated for salient object segmentation in videos. Therefore, in this paper, we investigate the application of object proposals to salient object segmentation in videos. In addition, we propose a new motion feature derived from the optical flow structure tensor for video saliency detection. Experiments on two standard benchmark datasets for video saliency show that the proposed motion feature improves saliency estimation results, and that object proposals are an efficient method for salient object segmentation. Results on the challenging SegTrack v2 and Fukuchi benchmark data sets show that we significantly outperform the state-of-the-art.
|
|
|
Marc Masana, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). On Class Orderings for Incremental Learning. In ICML Workshop on Continual Learning.
Abstract: The influence of class orderings in the evaluation of incremental learning has received very little attention. In this paper, we investigate the impact of class orderings for incrementally learned classifiers. We propose a method to compute various orderings for a dataset. The orderings are derived by simulated annealing optimization from the confusion matrix and reflect different incremental learning scenarios, including maximally and minimally confusing tasks. We evaluate a wide range of state-of-the-art incremental learning methods on the proposed orderings. Results show that orderings can have a significant impact on performance and the ranking of the methods.
|
|
|
David Berga, Marc Masana, & Joost Van de Weijer. (2020). Disentanglement of Color and Shape Representations for Continual Learning. In ICML Workshop on Continual Learning.
Abstract: We hypothesize that disentangled feature representations suffer less from catastrophic forgetting. As a case study we perform explicit disentanglement of color and shape, by adjusting the network architecture. We tested classification accuracy and forgetting in a task-incremental setting with Oxford-102 Flowers dataset. We combine our method with Elastic Weight Consolidation, Learning without Forgetting, Synaptic Intelligence and Memory Aware Synapses, and show that feature disentanglement positively impacts continual learning performance.
|
|
|
Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew Bagdanov, & Joost Van de Weijer. (2022). Class-incremental learning: survey and performance evaluation. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, .
Abstract: For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.
|
|
|
Shiqi Yang, Yaxing Wang, Joost Van de Weijer, & Luis Herranz. (2020). Unsupervised Domain Adaptation without Source Data by Casting a BAIT.
Abstract: arXiv:2010.12427
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. Existing UDA methods require access to source data during adaptation, which may not be feasible in some real-world applications. In this paper, we address the source-free unsupervised domain adaptation (SFUDA) problem, where only the source model is available during the adaptation. We propose a method named BAIT to address SFUDA. Specifically, given only the source model, with the source classifier head fixed, we introduce a new learnable classifier. When adapting to the target domain, class prototypes of the new added classifier will act as a bait. They will first approach the target features which deviate from prototypes of the source classifier due to domain shift. Then those target features are pulled towards the corresponding prototypes of the source classifier, thus achieving feature alignment with the source classifier in the absence of source data. Experimental results show that the proposed method achieves state-of-the-art performance on several benchmark datasets compared with existing UDA and SFUDA methods.
|
|
|
Shiqi Yang, Kai Wang, Luis Herranz, & Joost Van de Weijer. (2020). Simple and effective localized attribute representations for zero-shot learning.
Abstract: arXiv:2006.05938
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their semantic descriptions. Some recent papers have shown the importance of localized features together with fine-tuning the feature extractor to obtain discriminative and transferable features. However, these methods require complex attention or part detection modules to perform explicit localization in the visual space. In contrast, in this paper we propose localizing representations in the semantic/attribute space, with a simple but effective pipeline where localization is implicit. Focusing on attribute representations, we show that our method obtains state-of-the-art performance on CUB and SUN datasets, and also achieves competitive results on AWA2 dataset, outperforming generally more complex methods with explicit localization in the visual space. Our method can be implemented easily, which can be used as a new baseline for zero shot-learning. In addition, our localized representations are highly interpretable as attribute-specific heatmaps.
|
|
|
Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes, et al. (2021). Avalanche: an End-to-End Library for Continual Learning. In 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 3595–3605).
Abstract: Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
|
|
|
Shiqi Yang, Kai Wang, Luis Herranz, & Joost Van de Weijer. (2021). On Implicit Attribute Localization for Generalized Zero-Shot Learning. IEEE Signal Processing Letters, 28, 872–876.
Abstract: Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their attribute-based descriptions. Since attributes are often related to specific parts of objects, many recent works focus on discovering discriminative regions. However, these methods usually require additional complex part detection modules or attention mechanisms. In this paper, 1) we show that common ZSL backbones (without explicit attention nor part detection) can implicitly localize attributes, yet this property is not exploited. 2) Exploiting it, we then propose SELAR, a simple method that further encourages attribute localization, surprisingly achieving very competitive generalized ZSL (GZSL) performance when compared with more complex state-of-the-art methods. Our findings provide useful insight for designing future GZSL methods, and SELAR provides an easy to implement yet strong baseline.
|
|