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Abstract. Zero-shot learning (ZSL) aims to discriminate images from
unseen classes by exploiting relations to seen classes via their semantic
descriptions. Some recent papers have shown the importance of localized
features together with fine-tuning the feature extractor to obtain discrim-
inative and transferable features. However, these methods require com-
plex attention or part detection modules to perform explicit localization
in the visual space. In contrast, in this paper we propose localizing rep-
resentations in the semantic/attribute space, with a simple but effective
pipeline where localization is implicit. Focusing on attribute representa-
tions, we show that our method obtains state-of-the-art performance on
CUB and SUN datasets, and also achieves competitive results on AWA2
dataset, outperforming generally more complex methods with explicit
localization in the visual space. Our method can be implemented easily,
which can be used as a new baseline for zero shot-learning. In addition,
our localized representations are highly interpretable as attribute-specific
heatmaps.

Keywords: zero-shot Learning; Localized Attribute Representation

1 Introduction

Visual classification with deep convolutional neural networks has achieved re-
markable success [13,24], even surpassing humans in some benchmarks [12]. This
success, however, requires that the training data contain enough images per class
(tens or hundreds of images), which is often not the case in practice, and visual
data to learn new classes may be scarce (i.e. few-shot learning -FSL-) or inexis-
tent (i.e. zero-shot learning -ZSL-). Humans, in contrast, are able to infer new
classes from few or even no visual examples, just from a semantic description that
connects them to known concepts (e.g. a zebra is like a horse but with stripes).
Thus, ZSL is a desirable capability in computer vision systems, allowing them
to recognize a much larger set of classes via their semantic descriptions.

The key component of a ZSL system is the semantic model, which connects
seen and unseen classes in a common semantic space that enables the transfer-
ence of seen visual representations to infer unseen classes. The most common
semantic spaces are visual attributes, word embeddings and textual descrip-
tions. We focus on visual attributes. In addition, generalized zero-shot learning
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Fig. 1. Semantic representations for (G)ZSL. We propose (c) localized attribute repre-
sentations that explicitly localize and disentangles attribute information, in contrast to
(a) global representations, and (b) part-based and (c) attention-based approaches that
focus on few regions in the visual space and do not disentangle attribute information
until the global representation.

(GZSL) addresses the setting where the test image could belong to seen classes
(in addition to unseen classes). In this case the main challenge is the inherent
bias towards seen classes. Thus, discriminative and transferable representations,
together with properly designed semantic spaces, are key for effective and unbi-
ased inference on unseen classes. In this paper we focus on attributes as semantic
model and learning representations that are transferable to unseen classes with
low bias.

The common approach is to align visual and semantic representations in a
common embedding space via a ranking loss or metric learning losses. The visual
representation is extracted with a visual model and the semantic representation
is a mapping of the class to the semantic space (e.g. a class prototype in terms of
attributes). During inference, seen and unseen classes are mapped to the common
embedding space and the class nearest to the visual representation is selected.

The most common representations in ZSL are global visual features extracted
from an (ImageNet-)pretrained feature extractor (see Fig. 2a), which are even
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readily available off-the-shelf from previous works [29,36]. These global visual
features are then projected to the semantic space [1,11] or to an intermediate
space [37], where the comparison with semantic representations takes place. Most
papers have focused on designing and learning a good visual-semantic alignment.
Notably, Zhang et al. [36] suggest that the choice of the embedding space is
crucial, and argue that the projection to low dimensional semantic spaces or
intermediate spaces shrinks the variance of the visual feature, limiting its dis-
criminability and increasing the so-called hubness problem [22]. They suggest
that the visual space is more discriminative and robust to hubness, and propose
to embed classes directly in the visual space and then perform nearest neighbor
search. In this paper we argue that this conclusion only holds for global repre-
sentations, and that the choice of space where features are localized is even more
critical.

Little attention has been paid to the role of locality in the design of good se-
mantic representations that are discriminative and transferable to unseen classes.
This is particularly critical in fine-grained scenarios where the differences be-
tween classes are highly local and subtle (e.g. the color of the beak or the tail
could be the only aspect that can discriminate between two classes of birds).
This has been confirmed in recent analysis [26]. In this paper we show that the
semantic space is indeed a better choice to project local features, and using a
suitable spatial aggregation strategy, the resulting global semantic feature re-
mains highly discriminative and effective for classification of unseen (and seen)
classes.

In this paper we focus on localized semantic representations, and, in par-
ticular we propose localized attributes as representations. They can be obtained
easily if we rethink the ZSL pipeline and switch the order between spatial aggre-
gation (i.e. local to global) and projection to the semantic space (see Fig. 1d).
We also investigate how a proper choice of the spatial aggregation mechanism
can significantly boost the performance of the semantic representation in some
datasets. We show that a simple convolutional layer and global max pooling
(GMP) are enough to achieve highly competitive performance and outperform
most part-based and attention-based methods. Its simplicity also entails mul-
tiple advantages, including easier and efficient training (simply using standard
cross-entropy loss), no additional hyperparameters and better transferability to
unseen classes (i.e. seen and unseen accuracies are more balanced).

Localized representations have been proposed earlier in ZSL [8,35,38,39].
However, they are mostly limited to the detection or discovery of discrimina-
tive parts [8,38] (see Fig. 1b) or attention mechanisms in the visual space [35,39]
(see Fig. 1c), rather than explicitly localizing attributes in a local semantic space
as we propose here. In addition, part detectors are often trained separately with
additional part-specific annotations (e.g. bounding boxes). Sometimes, extract-
ing local features may also require larger images [39]. The number of extracted
regions or attention maps is typically low (typically 2-15), in contrast to our
localized attributes (85-312 in typical datasets). In addition, the few features ex-
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tracted from detected parts or attention maps are not necessarily disentangling
attribute information, while we obtain one dedicated map for every attribute.

In short, we summarize our contributions as follows:

– We propose a simple and effective localized attribute representation (SE-
LAR) for (G)ZSL, which is both discriminative and transferable to un-
seen classes. The representation is also interpretable as attribute-specific
heatmaps.

– We study the role of the aggregation mechanism to improve localization and
reduce the bias. This analysis shows that global max pooling in the localized
attribute space leads to significant performance gains, especially improving
performance on the unseen classes.

– We achieve state-of-the-art performance on the SUN and CUB dataset. No-
tably, our method, which implicitly localizes the attributes, outperforms
other more complicated methods with networks with explicit localization,
such as attention-based [35,39] and part-based [8,38] methods.

2 Related work

Zero-shot learning The original ZSL task focuses on achieving good predictions
on unseen classes. Early approaches tackle this problem via visual-semantic align-
ment in a common space [2,3,9,11,20,23,25,30,37]. The common space can be the
semantic space, the visual space [15,36] or an intermediate space [37]. The align-
ment can be achieved via linear projections [2,3,11], non-linear projections [25,30]
or combinations of seen embeddings [6,20]. Typically, a ranking loss is used to
enforce alignment, but L2 loss [36] and adversarial loss [38] have also been used.

Generalized zero-shot learning This more challenging, yet more realistic, set-
ting evaluates the classifier on the union of seen and unseen classes [7]. The
additional problem of bias towards seen classes becomes critical for good GZSL
performance, and requires specific techniques to address it [7,10,15,17,33]. Sev-
eral of these works relax some assumptions of the GZSL setting and achieve
better performance. For example, one of such relaxations is considering that the
descriptions of unseen classes are available during training. In that case, a gener-
ative model can be trained to generate synthetic features of unseen classes, and
then combine them with real seen samples to train a joint and balanced classi-
fier for both seen and unseen classes [10,19,31,33]. Another assumption is having
access to unseen images and labels which can help to calibrate the bias between
the scores of seen and unseen classes [7,17]. In this paper, we assume that nor
the unseen descriptions are available during training, nor we can calibrate the
classifier.

Localized features Most (G)ZSL approaches focus on the role of the classifier and
the semantic models, directly relying on global representations extracted by a
pretrained classifier (typically a ResNet-101 trained on ImageNet). The poten-
tial of local representations for (G)ZSL has been explored only recently in two
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directions: part detection [8,38] and attention mechanisms [35,39]. In the former
group, Zhu et al. uses a part detector trained for fine-grain recognition, where
a fixed number of parts is extracted (e.g. seven parts for birds in CUB dataset,
such as beak, belly, wings, etc.). Then adversarial learning is used to align se-
mantic and visual representations. The model was improved including a loss
encouraging creativity in the model [8]. The main limitation of these approaches
is that the part detector requires additional and expensive annotation data (i.e.
part ids, bounding boxes) to train the part detector. In the latter group, atten-
tion mechanisms focus on discovering discriminative regions. AREN [35] includes
an attention layer, combined with an adaptive thresholding mechanism and a
second order pooling representation. SGMA [39] first computes part attention
maps (only two maps in their case), which subsequently guide a part extrac-
tor where local features are extracted. In general, the feature extractor in these
methods is fine-tuned to improve the localization ability. Part detectors and at-
tention mechanisms are significantly more complex and arguably more difficult
to train (having additional hyperparameters) than the proposed approach, and
essentially different since the attributes are not explicitly localized but only a
few visual regions.

3 Zero-shot learning with localized attribute
representations

3.1 Task Definition

In the ZSL task, the training set contains seen classes and is defined as S ≡
{(xs

i , y
s
i )}Ns

i=1, where i denotes the i-th image of the seen class and ysi ∈ YS
is its class label. The test set contains unseen classes and is defined as U ≡
{(xu

j , y
u
j )}Nu

j=1. The sets of seen and unseen classes are disjoint, i.e. YS ∩YU = ∅.
The semantic information about a particular class y is obtained by the class em-
bedding function as ψ (yi). In the case of attribute-based representations with L
attributes, the class prototype ψi = ψ (yi) is simply a L-dimensional (binary or
real valued) attribute vector encoding the presence or absence of each attribute.
In this way, the semantic information about all seen classes can be conveniently
captured in

∣∣YS ∣∣× L-dimensional attribute matrix AS ≡
[
ψ1, . . . , ψ|YS |

]ᵀ
. Sim-

ilarly, for unseen classes we obtain AU ≡
[
ψ1, . . . , ψ|YU |

]ᵀ
. Finally, evaluation in

the GZSL setting considers a test set that includes both seen and unseen classes,
i.e. YSU = YS ∪ YU .

3.2 Classification pipeline

We formulate ZSL as a classification problem, using a deep convolutional neural
network (CNN) that internally projects visual features to the semantic space and
is trained end-to-end with cross-entropy loss on seen data (see Fig. 2a). In partic-
ular we are interested in some of the intermediate representations: the local visual
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feature ṽ ∈ RM×M×D, the global visual feature v ∈ RD, the global semantic fea-

ture a ∈ RL, and the logits or unnormalized class-scores z ∈ R|Y
S |. These inter-

mediate representations lie in three distinctive spaces: the D-dimensional visual
space, the L-dimensional semantic space (where L is the number of attributes
in our case) and the

∣∣YS ∣∣-dimensional class space. For convenience, we can also
split the deep network into several modules: the feature extractor ṽ = φ (x), the
spatial aggregation operation v = f (ṽ), and the linear projection to the seman-
tic space a = Wv, parametrized by the projection matrix W ∈ RL×D, i.e. a fully
connected layer. The projection matrix is trainable, while the feature extractor
is usually pretrained and can be optionally fine-tuned. Finally, the overall loss
to minimize is

L = E(x,y)∼S
[
CE

(
softmax

(
ASWf (φ (x))

)
, y
)]

(1)

where CE is the cross-entropy loss. During test, the predicted class yi∗ is the one
with highest cross-product score

i∗ = arg max
i

ψᵀ
i Wf (φ (x)) (2)

with yi ∈ YU for ZSL, and yi ∈ YSU for GZSL.
A common choice for spatial aggregation is global average pooling (GAP),

and a pretrained network in ImageNet as feature extractor. GoogleNet [27] and
ResNets [13] that fit in this case, and those global features for common ZSL
datasets are commonly provided off-the-shelf and used in benchmarks [29]. Thus,
we can also conveniently compare to those previous methods using GAP and
fixing the feature extractor. In addition, this pipeline enjoys several advantages:
is easy to train, has few additional parameters (i.e. the projection matrix W ) and
no additional hyperparameters. This simplicity allows our method to generalize
better to unseen classes, resulting in a lower bias to seen classes (see Table 2),
which is critical in GZSL.

3.3 Localized attribute representations

Previous approaches using local representations perform localization (via part
detection or attention) in the visual space, then extract local visual features and
eventually aggregate them to a global visual representation, which is projected
to the semantic space. We instead propose projecting local visual features to the
semantic space, obtaining localized semantic representations, i.e. localized at-
tributes in our case. We modify our classification baseline by switching the order
of spatial aggregation and projection. Now projection is performed first using a
1×1 convolution with kernel w ∈ R1×1×D×L resulting from reshaping W . Spatial
aggregation is performed on the resulting localized attribute representation (see
Fig. 2b). The resulting global semantic representation is a = ASf (w ∗ φ (x)).

Localized attributes provide a representation where attribute information is
explicitly disentangled, where each map corresponds to a different attribute (see
Fig. 3a), and every attribute has a unique attribute map. In contrast, attention
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Fig. 2. Local and global representations and embedding spaces in ZSL: (a) projec-
tion to the semantic space after spatial aggregation, and (b) spatial aggregation after
projection. Trainable/tunable modules are highlighted in red.

maps and discovered regions essentially weight visual representations or guide the
extraction of visual representations. Thus, they are not necessarily disentangling
attribute information (e.g. one region could be related to many attributes or even
to none), and also suffer from a more limited number of regions or attention
maps, compared to the number of attributes.

In our approach, no explicit attention or detection module performs localiza-
tion. In contrast, we rely on the implicit localization of visual features that the
feature extractor already performs. This highlights that fine-tuning the feature
extractor is often crucial to improve the discriminability and transferability of
the proposed local semantic representations.

3.4 Spatial aggregation with localized attributes

In this section, we investigate the role of spatial aggregation in the semantic
space. While aggregating local visual representations, GAP has been proved a
very effective strategy. However, localized semantic representations may behave
differently, and the proposed localized attributes provide a rich and highly disen-
tangled representation where averaging may not be the best strategy. In general,
the choice of aggregation strategy is also related to how local the attributes are
in a particular task. For instance, attributes in fine-grained datasets such as
CUB are very local (e.g., ‘has wing pattern spotted’, ‘has throat color orange’).
In contrast, other datasets such as SUN contain global attributes or attributes
covering wide areas (e.g.,‘man-made’,‘trees’). We study two aggregation strate-
gies: GAP and global maximum pooling (GMP).

It is worth observing that GAP is a linear operation, so local linear projection
followed by GAP and GAP followed by global linear projection are equivalent. In
other words, the approaches in Figs. 2a and 2b are equivalent1 when the spatial

1 In our experiment, the bias term in 1x1 convolution does not influence the results.
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(a) Attribute maps (top: GAP, bottom: GMP)

(b) GAP (seen) (c) GAP (unseen) (d) GMP (seen) (e) GMP (unseen)

Fig. 3. Comparison between spatial aggregation methods (GAP and GMP) in CUB
(fine-tuned feature extractor). Note that the attribute maps of GMP more accurately
identify the relevant regions. (b-e) Global semantic representations (rows) of 50 images
per class (randomly selected) of 6 classes (super-rows). Each column corresponds to
one of the 312 attributes. The description corresponding to the class is shown in red.
Note that GMP generates sparser and more discriminative feature patterns than GAP.
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aggregation method is GAP. Therefore, our method with off-the-shelf pretrained
feature extractors that are already using GAP, such as GoogleNet or ResNet, is
already implicitly localizing attributes. When implemented as Fig. 2a, localized
attributes are never explicitly computed. However, they can be recovered by
reshaping W as w, and computing ã = w ∗ ṽ.

Regardless of the aggregation method, our representation already achieves
pretty good localization of the attributes, as shown in Fig. 3a. While GAP con-
siders all locations equally important, GMP focuses on the most salient location
of each attribute map. This can be useful in datasets such as CUB where each
attribute is very localized in a single small area. In addition, when combined with
fine-tuning, this encourages the feature extractor to generate maps where salient
regions are smaller than with GAP (compare the effect of GAP and GMP on
the attribute maps on Fig. 3a). An important difference with GAP is that GMP
is not a linear operation, so the order of projection and aggregation matters in
this case. Since we are interested in aggregating in the semantic space, GMP is
performed after the convolution (as in Fig. 2b).

The aggregated representations, i.e. the global semantic representations, ob-
tained with our method (see Fig. 3b-e) are very discriminative and robust. The
patterns of the representations obtained for unseen classes are very similar to
those obtained for seen classes (compare Fig. 3b and c for GAP, and Fig. 3d
and e for GMP), which suggest that the usual bias towards seen classes is rela-
tively low. Finally, we can compare the effect of the aggregation strategy on the
global semantic feature. In particular we observe that GMP, by focusing on the
most salient location for each attribute, generates sparser and arguably more
discriminative feature patterns than GAP, which seems to be more sensitive to
noise.

4 Experiments

4.1 Datasets and Implementation Details

We evaluate our method on three datasets: the fine-grained dataset CUB [28],
SUN [21] and AWA2 [29]. Among them, CUB has 11,788 images with 200 differ-
ent classes of birds annotated with 312 attributes. SUN contains 14,340 images
from 717 types of scenes with 102 attributes. Finally, AWA2 is a dataset with 50
categories of animals, which is composed of 37,322 images and 85 attributes. We
follow the proposed split from [29] which is commonly used in ZSL/GZSL, re-
sulting in a 150/50, 645/72 and 40/10 (seen/unseen) category division for CUB,
SUN and AWA2 datasets respectively.

We provide results for both the conventional zero-shot learning (ZSL) and
generalized zero-shot learning setting (GZSL), but mainly focus on GZSL, the
most challenging setting. We denote the accuracy on unseen classes and seen
classes as AccU and AccS , respectively, and the evaluation metric for GZSL is the
harmonic mean on the accuracy of seen classes and unseen classes, calculated as
H = 2∗AccU ∗AccS/(AccU +AccS). We apply L2-normalization on the attribute
matrix, commonly used in previous works.
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Table 1. Zero-shot learning results on SUN, CUB, and AWA. PS = Proposed Split.
The results report top-1 accuracy in %. The † means adopting ResNet101 as feature
extractor. We highlight the best result for fine-tuning and non-finetuning respectively.

SUN CUB AWA2
Method PS PS PS

Without fine-tuning

†SYNC [6] 56.3 55.6 44.6
†DEVISE [11] 56.5 52.0 59.7
†ALE [2] 58.1 54.9 62.5
†PSR [4] 61.4 56.0 63.8
†DCN [17] 61.8 56.2 65.2
†MIIR [5] 63.5 63.8 67.9

Ours without fine-tuning

†SELAR-GAP 57.8 57.7 64.2
†SELAR-GMP 58.3 65.0 57.0

Attention model based with fine-tuning

†AREN [35] 60.6 72.5 67.9
†JLA [16] 59.6 59.4 70.4
AttentionZSL [18] 61.5† 67.6∗ 68.1∗

Part detection based with fine-tuning

SGMA [39] − 71.0∗ 68.8∗

GAZSL [38] 61.3 − 58.9
CIZSL [8] 63.7 − 67.8

Ours with fine-tuning

SELAR-GAP∗ − 68.7∗ 64.0∗

SELAR-GMP∗ − 68.1∗ 62.7∗

†SELAR-GAP 61.4 70.4 66.7
†SELAR-GMP 61.4 63.8 57.9

We report results with Imagenet pretrained ResNet101 [13] and VGG19 [24]
as feature extractors, depending on the experiment, for fair comparison with
previous methods. The size of the input image is 224×224 pixels. Similarly,
we report results with fixed and fine-tuned feature extractors, depending on
the experiment. As for learning rate, we use the following setting when using
VGG19: for CUB dataset, the learning rates for feature extractor (FE) and
convolutional layer (conv 1x1) are 1e-3 and 0.2; the learning rate decays by a
factor 0.1 after 15 epochs. For AWA2, the learning rates are 1e-5 and 0.5 for FE
and conv 1x1. When using ResNet101 on CUB and AWA2, all learning rates are
10 times smaller. For SUN, we use ResNet101 as other methods did, the learning
rates are set to 1e-3 and 1e-2 for FE and conv 1x1 respectively, and they decay
by 0.1 every 6 epochs. The learning rate will just get decayed once.

4.2 Quantitative Results for zero-shot Learning

In the experiments, we compare our method with the most related state-of-the-
art approaches, some of which design extra modules to find regions of interest or
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Table 2. Generalized Zero-Shot Learning on Proposed Split (PS). U = Top-1 accuracy
on YU , S = Top-1 accuracy on YS , H = harmonic mean, S/U can show the bias towards
seen class, H̄ denotes the average over the H on three datasets. The underline means the
second high result. † indicates results using ResNet101 as feature extractor. * indicates
results using VGG19 as feature extractor. We highlight the best result with fine-tuned
and fixed feature extractors respectively.

SUN CUB AWA2
Method U S H S/U U S H S/U U S H S/U H̄

Without fine-tuning

†SYNC [6] 7.9 43.3 13.4 5.48 11.5 70.9 19.8 6.17 10.0 90.5 18.0 9.05 17.1
†DEVISE [11] 16.9 27.4 20.9 1.62 23.8 53.0 32.8 2.23 17.1 74.7 27.8 4.37 27.2
†ALE [2] 21.8 33.1 26.3 1.52 23.7 62.8 34.4 2.65 14.0 81.8 23.9 5.84 28.2
†PSR [4] 20.8 37.2 26.7 1.79 24.6 54.3 33.9 2.21 20.7 73.8 32.3 3.57 31.0
†DCN [17] 25.5 37.0 30.2 1.45 28.4 60.7 38.7 2.14 25.5 84.2 39.1 3.30 36.0
†MIIR [5] 22.0 34.1 26.7 1.55 30.4 65.8 41.2 2.16 17.6 87.0 28.9 4.94 32.3

Ours without fine-tuning

†SELAR-GAP 23.8 32.0 27.3 1.34 32.1 63.0 42.5 1.96 12.0 87.2 21.0 7.27 30.3
†SELAR-GMP 22.8 31.6 26.5 1.39 43.5 71.2 54.0 1.64 31.6 80.3 45.3 2.54 41.9

Attention model based with fine-tuning

†AREN [35] 19.0 38.8 25.5 2.04 38.9 78.7 52.1 2.02 17.5 93.2 29.5 5.33 35.7
†JLA [16] 23.2 36.6 28.4 1.58 36.6 59.8 45.4 1.63 24.5 91.6 38.3 3.74 37.4
AttentionZSL [18] 18.5 40.0 25.3† 2.16 36.2 80.9 50.0∗ 2.23 27.0 93.4 41.9∗ 3.46 39.1

Part detection based with fine-tuning

SGMA [39] − − − − 36.7 71.3 48.5∗ 1.94 37.6 87.1 52.5∗ 2.32 −
GAZSL [38] − − 26.7 − − − − − − − 15.4 − −
CIZSL [8] − − 27.8 − − − − − − − 24.6 − −

Ours with fine-tuning
∗SELAR-GAP − − − − 37.1 73.2 49.2∗ 1.97 14.6 77.0 24.5∗ 5.27 −
∗SELAR-GMP − − − − 51.4 75.2 61.0∗ 1.46 29.5 80.2 43.2∗ 2.72 −
†SELAR-GAP 23.4 37.2 28.7 1.59 39.0 74.2 51.1 1.90 13.7 90.4 23.8 6.60 34.5
†SELAR-GMP 23.8 37.2 29.0 1.56 43.0 76.3 55.0 1.77 32.9 78.7 46.4 2.39 43.5

attention maps. We will show that in zero-shot learning, there is no necessity to
add these extra modules. We refer to the pipeline with GAP as SELAR-GAP,
and with GMP as SELAR-GMP. We compare essentially with methods using
fixed feature extractors and global representations, and methods using fine-tuned
feature extractors which is typically used for localized representations. In this
case, we distinguish between methods with attention models and methods with
part detectors. We do not compare with generative methods [10,14,32,34] that
use a GAN or VAE to generate synthetic visual feature vectors for the unseen
classes. These methods obtain excellent results, however they require access to
the attribute vectors for the unseen classes during training, and not only during
inference as for our method. Furthermore, these methods can be seen as a way
of data augmentation, and can potentially be combined with the method we
propose in this paper.

Fixed feature extractor. We first evaluate our approach with a fixed ResNet-
101 feature extractor, which is the most common representation in approaches
using global representaitons. We report the ZSL and GZSL results in Table 1
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and Table 2, respectively. Interestingly, even without fine-tuning, SELAR-GAP
can achieve very competitive performance, in particular for GZSL. Replacing the
GAP with GMP, i.e. SELAR-GMP, can achieve state-of-the-art performance on
CUB and AWA2. We argue that the main reason could be that the local features
from ImageNet-pretrained networks generalize well to other datasets, and have
very good generic localization ability. SELAR in this case simply trains a linear
mapping that is enough to obtain an effective localized representation in the
attribute space. We show additional attribute maps for both the fine-tuning and
non-finetuning pipeline in the supplementary material.

Fine-tuned feature extractor. We also evaluate performance with fine-tuned
feature extractors in order to compare with methods using attention and part
detection. Table 1 shows results for ZSL, where our two pipelines can get com-
parable performance on CUB and SUN datasets.

Table 2 shows the results for GZSL. SELAR-GMP achieves state-of-the-art
performance on both CUB and SUN datasets, and get compelling results on
AWA2 dataset, especially it surpasses other significantly more complex methods
on the CUB dataset. Among the methods in Table 2, AREN [35], JLA [16] and
AttentionZSL [18] utilize extra modules to generate location or attribute atten-
tion, and SGMA [39], GAZSL [38] and CIZSL [8] have additional part detection
modules. However, these methods obtain inferior results on most datasets com-
pared to our method. SGMA achieves state-of-the-art performance on AWA2,
however, it requires four forward passes through the feature extractor and a two
times larger input resolution (448×448 pixels). Specifically for SUN, using GAP
or GMP does not make much difference for the results. We posit that this is
due to the fact that attributes in SUN dataset are not always clearly localiz-
able (like the attribute ’natural light’ and ’trees’); whether to consider all these
regions (i.e. GAP) or only a single location (i.e. GMP) does not make a very
significant difference. We also report the average H over all these datasets (we
do not include here methods with results only on two datasets) in Table 2, and
our SELAR-GMP has the highest value with/without fine-tuning. Given the
simplicity of our approach, we think that the excellent results of our method
are rather astonishing, especially considering the often much more complicated
architectures used by the compared methods.

From the results of ZSL and GZSL, we can see that our pipeline does not
stand out in ZSL, but almost surpasses all other methods on the three dataset in
GZSL. In GZSL, the ideal model should learn a better visual-semantic mapping
during training, and this knowledge should be transfered to unseen classes. The
results on CUB and AWA2 of our pipeline show that GMP for spatial aggregation
indeed performs better than GAP, as discussed in Section 3.4.

Aggregation method and aggregation space. We investigate the optimal
location to perform the aggregation of local features to global ones. The ablation
study shown in Table 3 evaluates GAP and GMP in three different spaces: visual,
attribute and class (ṽ, ã and z̃ following Fig. 2b), which also correspond to the
order in which features are mapped to the different spaces in our classification
pipeline.
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Table 3. Ablation study of pooling operations and pooling spaces. The results are
reported on the CUB dataset.

Aggregation CUB
Type Space U S H

GAP visual, attribute, class (all equivalent) 37.1 73.2 49.2
GMP visual 39.1 80.7 52.7
GMP attribute (ours) 51.4 75.2 61.0
GMP class 26.3 74.7 38.9

Since GAP is a linear mapping, and also the other operations (linear layer
or 1x1 convolution, and attribute mapping), in this case pooling in either of the
three spaces is equivalent. This is not the case in GMP, which is non-linear. In
this case, Table 3 shows that optimal location is the attribute space (after the
1x1 convolutional layer).

Seen/unseen classes bias. Since no images from unseen classes are observed
during training, the network will inevitably be biased towards the seen classes.
This bias may also increase when also fine-tuning the feature extractor.

We can evaluate the bias towards seen classes by comparing the accuracy in
ZSL (see Table 1) and the accuracy on unseen classes and also the harmonic mean
H in GZSL (see Table 2). Our two variants have close or slightly lower accuracy
under ZSL, but achieve much higher accuracies on unseen and harmonic means
than almost all the other methods. This shows our method is less biased towards
the seen classes.

Another useful metric to compare seen-unseen biases between different meth-
ods is the ratio S/U in GZSL (see Table 2). A large ratio indicates large bias
towards seen classes. SELAR-GMP obtains the lowest ratio on all datasets ex-
cept for SUN (without fine-tuning) where SELAR-GAP obtains slightly better
results. Again, we conjecture that there are two reasons behind this: our method
is simple and does not add new hyperparameters making the localized attributes
representation generalized well to unseen classes, and secondly, GMP is less sen-
sitive to noise and encourages more localized attributes.

4.3 Visualization

Localized attribute map on SUN dataset. Since we have shown the visual-
ization of attribute maps on CUB in Section 3.4, here we visualize some attribute
maps ã in the localized attribute space, for both SELAR-GAP and SELAR-GMP
(with fine-tuning) on SUN dataset in Fig. 4. Whereas on the CUB and AWA
datasets the attributes are present in clearly localizable small regions, for the
SUN dataset this is not the case. This maybe the reason why the SELAR-GAP
and SELAR-GMP have similar performance on SUN.

One thing to emphasize is that we can not guarantee that each attribute
map really corresponds to the true attribute, since there is no other constraint.
For example, the attribute map for attribute ’neck color - red’ is not necessarily
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Fig. 4. Visualization of attribute maps on SUN dataset from the SELAR-GAP (top
one) and SELAR-GMP (bottom one). Below the image are the corresponding at-
tributes.

localizing the neck region, the network learns to correlate the related region with
its attribute value automatically. But we find that those feature maps with high
attribute values (>85) in the attribute vector are always highly related to the
corresponding attribute. We show additional attribute maps with lower attribute
values in Fig. 5, those attributes has either middle value or do not exist (0) in the
attribute vector of that class, you can see sometimes the attribute map indeed
corresponds to the specific attribute, but sometimes not.

5 Conclusions

In this paper, we focus on localized semantic representations, and provide a
simple but effective pipeline for zero-shot learning, dubbed as SELAR. In this
pipeline the localized attribute can be obtained. Each feature map in the lo-
calized attribute space corresponds to one specific attribute. We also study the
role of spatial aggregation to improve the localization ability in the localized
attribute space, and show that global max pooling can lead to significant per-
formance improvement in generalized zero shot learning. This is mainly caused
by a drastic improvement on the unseen classes. Finally, we achieve state-of-
the-art performance on CUB and AWA2 dataset under both fine-tuning and
non-finetuning setting, and also obtain compelling results on AWA2 dataset.
This simple pipeline can be a new baseline in zero-shot learning.
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Fig. 5. Visualization of attribute maps on CUB dataset from the SELAR-GAP (upper
part) and SELAR-GMP (lower part). Below the image are the corresponding attributes.
Those attributes has lower value (decreasing from left to right) in the attribute vector.
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