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Abstract: In this work, we propose a CNN-based approach to estimate the spectral reflectance of
a surface and the spectral power distribution of the light from a single RGB image of a V-shaped
surface. Interreflections happening in a concave surface lead to gradients of RGB values over
its area. These gradients carry a lot of information concerning the physical properties of the
surface and the illuminant. Our network is trained with only simulated data constructed using a
physics-based interreflection model. Coupling interreflection effects with deep learning helps
to retrieve the spectral reflectance under an unknown light and to estimate the spectral power
distribution of this light as well. In addition, it is more robust to the presence of image noise than
the classical approaches. Our results show that the proposed approach outperforms the state of
the art learning-based approaches on simulated data. In addition, it gives better results on real
data compared to other interreflection-based approaches.

© 2021 Optical Society of America

1. Introduction

When one observes an isolated flat paper under perfect diffuse light, no color variation appears
and each elementary surface provides the same information about the light and the surface
reflectance of the paper. Most of the time, this information is not rich enough to deduce anything
about the light or the surface. For example, a paper appearing blue can be a blue paper under
white light or a white paper under blue light. If one decides to fold the paper, the beams
coming from the light source will bounce between the elementary surfaces thereby creating
color variations across the paper (see Fig.1 and 4). This phenomenon is called interreflections
and is well modeled by physics-based equations [1–3]. These models clearly explain that two
elementary surfaces appear with different colors because they received different spectral lights.
So creating interreflections in a scene can be compared to observing the surface under a wide
range of different lights. Thus each elementary surface provides different and complementary
information about the original light and the surface reflectance. This is why interreflections can
be considered as extra information to extract physical properties of the observed scene.
The problem of interreflection estimation has typically been addressed with physics-based

approaches [1–4]. These methods are based on image formation models which consider intrinsic
properties such as material reflectances, camera sensitivity, illuminant colors, and scene geometry.
However, finding the inverse function of these image formation models is known to be very
difficult. It is only after imposing additional assumptions that these problems can be solved.
These assumptions include Lambertian surfaces, a single known illuminant in a scene, a known
geometry, etc. They also include more technical assumptions regarding the absence of noise; the
reason for which these algorithms are often evaluated on high quality laboratory images or even
only on synthetic data. The advantage of these methods is that when the assumptions hold they
obtain exact solutions. However, in more realistic situations - as our experiments will show âĂŞ
the assumptions do not hold; and for example the presence of noise, a change in geometry, and
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non spatially homogeneous light can greatly influence the quality of the estimation of the scene
intrinsic parameters.

In recent years, deep learning algorithms have shown an impressive ability to learn non-linear
functions for problems were abundant data is available. Even though these networks often consist
of millions of parameters they do not tend to overfit quickly. The advantage of using deep
networks for deriving an inverse function is that we only require the image formation equations
which are typically simpler than their inverse. The field of computer graphics studies realistic
models for image formation [5–7]. With these equations we can generate training data consisting
of generated scenes and known input intrinsic parameters. In addition, we can add noise to the
process which more realistically models the world. After generation of the data we can use deep
networks to find the inverse function and return the intrinsic parameters of the scene given an
input image. In conclusion, using deep networks to find inverse functions of the image formation
model has two advantages: 1. for many realistic image formation settings there are currently
no inverse functions known, however when the forward image formation equations are known
we can generate the data to train a deep network, and 2. we can easily consider more realistic
scenarios, e.g. by adding noise in the image formation model, which make the system robust to
situations which might be hard to model by physics-based methods.

Fig. 1: Examples of interreflections. Note how the colors are changing when moving towards the
fold.

In this paper, we investigate the application of deep network to find the inverse function
for interreflections. We first train a network on simulated data built using an infinite-bounce
physics-based interreflection model [3,8]. Next, we loosen the assumption of a known illuminant
and leave this task also to the network. For this case no inverse solution is currently available.
We show that:

1. Even though our datasets are constituted of only physics-based simulated data, our proposed
method significantly outperforms the physics based methods in the presence of realistic
settings with noise.

2. Deep networks can be applied to inverse problems for which no solution exists, i.e.
estimation of interreflection with unknown illuminant. In experiments, we obtain better
results than approaches that require knowledge of the illuminant spectral distribution.

3. The proposed networks can provide an accurate estimate of the material reflectance from a
single interreflection compared to kernel-based learning approaches. The scene illuminant
is estimated with good accuracy too. This has potential applications for color measurements
for online shopping, fruit quality assessment from mobiles, etc.



The paper is organized as follows. In Section 2 we discuss the related work. In Section 4
we describe the method used to create the dataset. In Section 5 we describe the deep network
architecture we propose for reflectance and light estimation. In Section 6we show the experimental
results, and finally in Section 7 we conclude.

2. Related Work

2.1. Spectral Reflectance Estimation

State of the art in spectral reflectance estimation of surfaces from RGB data can be divided
into two categories: direct methods as called in [9, 10], also named observational-model based
methods in [11], and indirect methods as called in [9, 10], also named learning-based methods
in [11]. Spectral responses of sensors and spectral power distribution (SPD) of illuminants are
considered to be known when direct methods are used. A common approach of these methods is
to combine trichromatic imaging with multiple light sources [12–18]. Park et al. [12] obtained
spectral information by using RGB camera with a cluster of light sources with different spectra.
They model the spectral reflectance of surfaces with a set of basis functions in order to reduce the
dimensionality of the spectral space. Later, Jiang et al. [17] proposed to use commonly available
lighting conditions, such as daylight at different times of a day, camera flash, ambient, fluorescent
and tungsten lights. More recently, Khan et al. [18] proposed the use of a portable screen-based
lighting setup in order to estimate the spectral reflectance of the considered surface. The portable
screen was used to give three lightings with green, red and blue colors and the spectral reflectance
of the surface is expressed by nine coordinates in a basis of nine spectra. These basis functions are
obtained by eigendecomposition of spectral reflectances of 1257 Munsell color chips discarding
the wavelengths corresponding to the sensor-illuminant null-space.
On the other hand, learning-based approaches do not require prior knowledge of the spectral

response of the sensors or the SPD of the lighting system. In addition, they can be used with a
single light source [11, 13, 19, 20]. In [11], screen-based lighting is used to reconstruct spectral
reflectances from multiple images. In this last paper, the used approaches are the ones introduced
in [20], which are mostly based on the non-linear ridge regression and whose differences are in
the choice of the used kernel (e.g. polynomial or MatÃľrn) or of the link function (e.g. logit or
Gaussian copula). The link functions are applied as a pre-processing step to the input reflectance
vectors before learning and their inverse counterpart are applied to the output vectors to recover
the reconstructed reflectance. Their main aim is to constrain the reconstructed spectra to be in
the range [0,1] due to physical reasons.However, these last approaches depend on the quality of
the training set and on the choice of the regression method. It has been shown in [11], that when
no high quality training set is available, using multiple light sources becomes important in order
to improve the quality of the results.
Recently, some works aimed at recovering the spectral curves of all the pixels of a single

RGB image [21–24]. The idea of [22] is to model the mapping between camera RGB values
and scene reflectance spectra with a radial basis function network. Arad et al. [21] exploit the
prior on the distribution of hyperspectral signatures in natural images in order to construct a
sparse hyperspectral dictionnary. The projection of this dictionary into RGB provides a mapping
between RGB atoms and hyperspectral atoms. Thus, given RGB values that can be decomposed
into RGB atoms, their spectral reflectance is obtained by using the same combination of the
corresponding hyperspectral atoms. The accuracy and efficiency of this approach was improved
by Aeschbacher et al. [23] who proposed to learn the dictionary projection between the training
RGB and hyperspectral data and to extract anchor points from this projection. At test time,
a simple nearest anchor search is run for each RGB triplet in order to reconstruct its spectral
curve. Finaly, Alvarez et al. proposed a convolutional neural network architecture that learns an
end-to-end mapping between pairs of input RGB images and their hyperspectral counterparts [24].
They adopt an adversarial framework-based generative model that takes into account the spatial



contextual information present in RGB images for the spectral reconstruction process. For these
last works, even if the aim is also to reconstruct spectral functions from RGB data, the objective
appears to be different from the task addressed in this paper. Recovering a full resolution
hyperspectral image is much more challenging and can not provide results as accurate as the ones
provided by approaches that concentrate on a single surface observed under calibrated conditions.
For example, the best results in terms of root mean square error (RMSE) reported in [23] are
more than 1.00, while the RMSE provided by [8] on real images is around 0.05.

2.2. Interreflections

Interreflections refer to the phenomenon that each point in a concave surface reflects light towards
each other point, and thus re-illuminates it to a more or less extent according to its reflective
properties and the geometrical shape of the surface. The simplest case is a flat diffusing surface
bent into two flat panels with an angle between them.
This phenomenon has been studied in the domain of computer vision, mainly in order to

remove this effect from the images to be able to retrieve the shape of an object in an image
(shape-from-shading methods) [1, 2, 4, 25–27]. Recently, interreflections have been exploited in
the context of color camera calibration [28]. Some approaches in the literature [29–31] used
interreflections as extra source of information in order to obtain the surface spectral reflectance
and the light SPD. Only adjacent panels having different spectral reflectances are used while
taking into consideration one bounce of interreflected light. Recently, Deeb et al. [8] exploited
infinite bounces of interreflections in order to help the estimation of the spectral reflectance of
surfaces. Given the light SPD and the camera spectral responses, they formulate this estimation as
an optimization problem. We use their physics-based interreflection model to create the training
dataset but instead of solving the inverse problem explicitly, we apply deep learning to learn the
inverse function.

2.3. Deep Learning for Physics Based Vision

Deep learning approaches have also been applied to physics based vision, where most of the works
try to solve the color constancy problem. For example, since the choice of the pooling between
local and global estimates is not an easy task, Fourure et al. [32] proposed a deep network that
can choose between the different poolings. The output of this network was a global light color
estimate. Shi et al. [33] rather proposed two interacting sub-networks that locally estimate the
light color. Their idea is to create multiple hypotheses for each patch with the first sub-network
and then use the second one to vote for the best hypotheses. Recently, Hu et al. [34] proposed
a fully convolutional network to create a confidence map that selects (weights) the patches in
the image which provide the best light color estimate. On the other hand, deep networks were
also applied to intrinsic images decomposition. For example, Narihira et al. [35] proposed to
use a convolutional neural network to predict lightness difference between pixels learned from
human judgment on real images. Shi et al. [36] extended this approach to non-Lambertian objects
and proposed a CNN that is able to recover diffuse albedo, shading, and specular highlights
from a single image of an object. Recently, Janner et al. [37] proposed the Rendered Intrinsic
Network that contains two convolutional encoder-decoders: one to decompose the input image
into reflectance, shape and lighting and another that is reconstructing the input for these resulted
images. The advantage of this network is that it can learn from unlabeled data because it is using
the unsupervised reconstruction error as a loss function.

3. Motivation

Our work is based on the hypothesis that from interreflections only a neural network can learn to
estimate both the spectral reflectance of the surface and the spectral power distribution of the light.
In order to demonstrate the motivation behind this hypothesis, let us study how interreflections



(a) Flat brown surface under a
white light.

(b) Flat white surface under a
brown light.

(c) Folded brown surface under a white
light.

(d) Folded white surface under a brown
light.

Fig. 2: Interreflections and metamerism: two Metameric flat surfaces show no metamerism
when folded with an angle of 45◦. The graphics are computed with the spectral infinite-bounce
interreflection model explained in Section 4.

happen and what kin of information they hold. When a point on a concave surface receives a
light ray from the light source, this ray might bounce several times before being able to exit the
surface. The total energy carried with a light ray when it arrived to the camera sensor is the sum
of the energies it carried with each bounce it encounters. In fact, with each bounce the energy
carried with the light ray decreases. The sooner this energy vanishes the less bounces the light
ray carrying it encounters.
It has been demonstrated in [1, 3, 8] that the total irradiance at a given point of a concave

surface is the sum of the irradiance directly received from the light source and the indirect
irradiance coming from multiple reflections of the source on the other points constituting the
surface. For a given wavelength, the irradiance received by a point P1 of a Lambertian surface S
after a single bounce of the light source on the other points Pi ∈ S with infinitesimal area dPi

and characterized by the reflectance ri , is defined as:

E1(P1) =
∫
Pi ∈S

ri
E0
π

K(Pi, P1)dPi, (1)



where E0 is the irradiance received form direct light source and K(Pi, Pj) is the geometrical
kernel K defined for every pair of points, Pi and Pj as:

K(Pi, Pj) =
( ®Ni · ®PiPj)( ®Nj · ®PjPi)V(Pi, Pj)

(∆i j)4
. (2)

The vectors ®Ni and ®Nj are the surface normals at Pi and Pj , ∆i j is the Euclidean distance between
the two points, and V(Pi, Pj) is a visibility term which takes 1 if the areas around these points
can see each other and 0 otherwise.
Similarly, after two bounces of light ray the irradiance can be written as:

E2(Pi) =
∫
Pj ∈S

∫
Pj′ ∈S

rjrj′
E0

π2 K(Pi, Pj)K(Pj, Pj′)dPjdPj′, (3)

One can observe from these equations that, in contrast to highlights, the spectral radiation of a
light ray is changed with each bounce depending on the spectral reflectance of the point it hits.
Thus, each bounce can be considered as a new light source with different spectral properties. In
addition, the number of bounces exchanged between a pair of points, Pi and Pj is related to their
relative geometrical relation defined by the term K(Pi, Pj). Close face to face points have big
geometrical kernel values, thus they would exchange a high number of rays, while far points will
exchange much less, having a small value in the corresponding geometrical kernel. However,
even for two close points with a high kernel value, the energy carried with a light ray reflecting
from Pj toward Pi will be low at a given wavelength if rj is low at this wavelength. The number
of bounces and the energy carried with each bounce are the cause of the color gradients over the
concave surface.

Let us take into consideration a special case of interreflection: self-interreflections happening
over a Lambertian surface which is the case we are studying in this paper. In this case, the surface
has the same spectral reflectance, r all over its area. Then, previous equations can be written as:

E1(P1) =
∫
Pi ∈S

r
E0
π

K(Pi, P1)dPi, (4)

E2(Pi) =
∫
Pj ∈S

∫
Pj′ ∈S

r2 E0

π2 K(Pi, Pj)K(Pj, Pj′)dPjdPj′, (5)

From these equations, one can observe that the RGB values of an area with interreflections
have different relations with the surface spectral reflectance and the light SPD. With each bounce
the reflectance is risen to a higher power, whereas the relation with light SPD is kept linear.
One of the advantages of the asymmetry between the surface reflectance and light SPD is

that it allows us to distinguish materials which might appear as metamers in the absence of
interreflections. As an example consider Figure 2 where we show an example of metamerism:
a flat brown surface with a white illuminant is indistinguishable from a white surface with a
brown illuminant. However, when we fold the surface and consider inter-reflections the observed
surfaces do significantly differ. We therefore argue that two surfaces which show metamerism
when they are flat, have almost no chance to show the same color gradients when they are folded
into a concave shape. For this reason, interreflections can be seen as an important sources of
information to get both surface reflectance and light SPD while avoiding the case of metamerism.
In this paper, we investigate the usage of deep networks to extract intrinsic scene information
from interreflections.



4. Datasets

Simulated datasets built using an infinite-bounce interreflection model for Lambertian surfaces
are considered. In this section, we first present the used model, then the proposed datasets and the
data augmentation performed on them. The used model in the one proposed by Deeb et al. [8].
In this work, we adopt this model to build simulated datasets to be used to train the network.

4.1. The interreflection Model

Starting from Equations (1) and (3), a discrete version of the model was proposed by Nayar et
al. [1], and can be obtained by sampling the surface into a finite number m of small facets, where
each facet is assumed uniformly illuminated, flat and uniform in reflectance. The area of a facet
centered on a point Pi is denoted Si and Ki j is the geometrical kernel between Pi and Pj . The
irradiance in a facet centered on P1, after one bounce can be re-written as:

E1(P1) =
m∑
i=1

ri
E0
π

Ki1Si, (6)

Similarly, if the light rays reflect twice on every pair of points Pi and Pj with respective
reflectances ri and rj , the irradiance received by a point P1 is:

E2(P1) =
m∑
j=1

m∑
i=1

rjri
E0

π2 Ki jKj1SjSi . (7)

These equations can be written in a matrix form:

E1 = KRE0, (8)

and
E2 = (KR)2E0, (9)

where K is a square matrix, symmetric when all the facets are of equal size, with zeros on the
diagonal due to the fact that rays cannot transit to a facet from themselves:

K =
1
π



0 K12S2 . . K1mSm

K21S1 0 . . K2mSm

. . 0 . .

Km1S1 . . . 0


, (10)

R is a diagonal matrix grouping all spectral reflectances of the different facets for the considered
wavelength:

R =



r1 0 ...... 0

0 r2 .... 0

. . . ....

0 0 .. rm


, (11)

and E0 is a vector of dimension m representing the direct irradiance received by the m facets.
Based on this matrix form, the cumulated irradiance values on each facet after n bounces of

light, grouped into an irradiance vector of size m, can be written as:



E0→n =

n∑
b=0

Eb =

n∑
b=0
(KR)bE0. (12)

This sum corresponds to a geometric series. In case of non fluorescent surfaces, when n tends
to infinity, this series converge to:

E = (I −KR)−1E0. (13)
This is a general expression of irradiance for a single wavelength after infinite bounces of light

for Lambertian surfaces. A more handy form can be obtained from this equation by writing the
radiance reflected towards the camera in terms of direct irradiance (L = 1

π RE):

L =
1
π
(R−1 −K)−1E0. (14)

Since we are working with RGB values captured by camera sensors, we need to integrate
this radiance value over the wavelength range of the sensor sensitivities. So we need to use
an extended version of this equation (defined for a single wavelength), in order to take into
consideration all pixels and all wavelengths simultaneously. This version has been proposed
in [3] as follow:

Lext =
1
π
(Rext

−1 −Kext)−1E0ext, (15)

where E0ext is a vector of length mq which is obtained by concatenating the wavelength-specific
E0 vectors. R is extended to another square diagonal matrix Rext of size mq×mq, where q is the
number of wavelengths. Renaming R defined for the wavelength λi as Rλi , Rext is expressed as:

Rext =



Rλ1 0 ...... 0

. Rλ2 ..... .

. .... . 0

0 . ...... Rλq


. (16)

Likewise, K is extended to the square matrix Kext of size mq × mq:

Kext =



K 0 ...... . . . . 0

. K . .... . . . .

. . . .... . . . .

0 0 .. . . . ...... K


. (17)

Let consider s sensors (s = 3 for classical RGB cameras) whose spectral sensitivities are
inserted in the ms × mq matrix Cext as follow:

Cext =



C1
λ1 C1

λ2 ...... . . . . C1
λq

C2
λ1 C2

λ2 ...... . . . . C2
λq

. . . . . . . .

Cs
λ1 Cs

λ2 ...... . . . . Cs
λq


. (18)

where the m × m matrix Ci
λ is associated to the sensor i:

Ci
λ = ciλIm, (19)



where Im is the m-dimensional identity matrix.
Thus, the camera sensor responses can be obtained as a ms-dimensional vector:

ρext =
[
ρ1

1 .. ρ1
m ρ2

1 .. ρ2
m ... ρs1 .. ρsm

]T
, (20)

thanks to the equation:

ρext =
1
π

Cext (R−1
ext −Kext )−1E0ext. (21)

Since we consider in this paper only self-interreflections, we assume that all the facets of a
considered surface have the same reflectance. Consequently, we can exploit the eigendecomposi-
tion of Kext proposed by Deeb et al. in [8] in order to speed up the evaluation of the camera
sensor responses from equation (21).

4.2. Self-Interreflection Dataset Construction

To train our network, we created datasets of simulated images of size 10 × 10 corresponding to
one side of a folded V-shaped surface for each of the 1269 Munsell patches. A dataset is built for
a specific camera with known spectral response functions and a specific angle. Datasets are built
taking into consideration multiple light sources. However, they can be built using a single light
source also.
Each image in the dataset corresponds to a V-shaped configuration of a surface with a

homogeneous spectral reflectance. In order to do this, geometrical kernel values are obtained
using Monte Carlo integration after choosing the angle, the sizes of the planar surfaces, and the
discretization size as suggested in [3]. We consider a single collimated light source, parallel to
the bisecting plane of the two panels, illuminating the V-cavities frontally. As a consequence the
irradiance received at each facet of the V-cavities from direct light is considered constant:

∀i, j : E0(Pi) = E0(Pj). (22)
For a surface with a known spectral reflectance, and after choosing the camera spectral response

functions and the spectral power distribution of illuminant, RGB values can be obtained using
the previously explained interreflection model.
The images are then pre-processed by applying mean subtraction and normalization. Data

augmentation is performed at batch level by adding different levels of noise to each image. We
adopt two types of noise to be added to images at batch level: Poisson noise is added to each
image, and a Gaussian noise of one of 5 different variances might be added to some images based
on a random decision.

5. Network Structure & Loss Functions

For our regression problem, we use the convolutional neural network structure presented in
Figure 3, in order to obtain both the spectral reflectance of the surface and the spectral power
distribution of the lighting from raw image RGB values. The network architecture starts with
a shared part which consists of three convolutional layers; the first and second convolutional
layers are of size 5 × 5 with padding of 2. The size of the input starts to get smaller with the
pooling layer of size 2× 2 and then with the latest convolutional layer of size 3× 3 and a stride of
3. Subsequently, the network is split into two branches; one for the estimation of the surface
reflectance and one for the spectral power distribution. These specialized branches consist of two
fully connected layers each.
Let us denote by Rλ, R̂λ, the ground truth spectral reflectance vector and the estimated one,

respectively, and by E0λ, Ê0λ, the ground truth SPD and the estimated one respectively. Each of
these vectors contains the values of all the considered wavelengths. For this reason we put the
subscript λ to distinguish these vectors from the ones introduced previously.
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Fig. 3: Diagram of the proposed network for surface reflectance and illuminant estimation from
interreflections.

Three loss functions are used to obtain accurate spectral reflectance and SPD. The first loss
function, LR(Rλ) is regarding the error on the spectral reflectance defined as:

R(Rλ) =
1
2
(Rλ − R̂λ)2. (23)

The second loss function is related to the error in the SPD of illuminant and is defined as:

E (E0λ) =
1
2
(E0λ − Ê0λ)2. (24)

In principle the network can be trained with only the LR and LE loss. However, in addition
we introduce a consistency loss. We would like the multiplication of the estimated reflectance
and illuminant to be close to the real color signal Sλ = Rλ � E0λ, where � is the component-size
multiplication operator so that Sλ is also a spectral signal. This loss enforces consistency between
the separately estimated surface reflectance and light SPD. We use the CIE 1931 XYZ color
matching functions to obtain an estimation which minimizes a perceptually relevant error because
it gives more importance to wavelengths with high visual response [20]. This consistency loss is
defined as:

S(Sλ) =
1
2
(X̄ � Rλ � E0λ − X̄ � R̂λ � Ê0λ)2

+
1
2
(Ȳ � Rλ � E0λ − Ȳ � R̂λ � Ê0λ)2

+
1
2
(Z̄ � Rλ � E0λ − Z̄ � R̂λ � Ê0λ)2, (25)

where X̄, Ȳ and Z̄ are the CIE 1931 XYZ color matching functions.
The network is initialized using Xavier [38]. The learning rate is set to 10−4 and is reduced

every 20 epochs by a factor 10. The momentum is set to 0.9 and the batch size to 50.
The choice of network structure was done experimentally. The idea was to use a simple network

that works well for our regression problem. We found that batch normalization cannot be used in
these sort of regression problems where the exact intensity of the output signal is crucial for the
quality of the estimation. Moreover, as the output spectral values for both surface and light are in
the range [0, 1], one may think to add a sigmoid layer to accelerate the convergence. However,
putting a sigmoid layer played the opposite role in our case leading to a non convergence of the
network. This is probably due to the fact that our network is relatively shallow, so a sigmoid is
being an obstacle in the learning process.



In order to verify the importance of the third loss function, LS , we performed an ablation study.
We trained the network twice under the same settings and on the exact same dataset, the only
difference is that we deactivated the consistency loss LS for one training and activated it for the
other. Table 1 shows the percentage of enhancement in RMSE, PD and DE00 errors when the
consistency loss is activated compared to when it is deactivated.

Table 1: Error enhancement when using the consistency loss

RMSE PD DE00

Error enhancement (%) 7.7 11.6 14,8

6. Experiments & Results

In this section, our results on both simulated images and real camera outputs are presented. We
consider a V-shaped configuration consisting of two planar square surfaces with an angle of 45◦
between them (see Figure (4)). The dataset and the test images contain only the area of one side
of the planar surface discretized into 10 × 10 facets.
Different metrics are used in order to evaluate our approach and to compare our results with

those obtained using other spectral reflectance estimation approaches. The root mean square
error (RMSE), and the Pearson distance (PD) are used to show the accuracy of spectral estimation.
The performance is also evaluated in terms of color distance. We use CIEDE00 distance [39]
with CIE D65 lighting and a 2◦ viewing angle. This distance is computed between the color
signal obtained with the ground truth spectral reflectance and the one obtained with the estimated
spectral reflectance.

6.1. Simulated Data

For simulated data tests, the datasets are built using the CIE 1931 XYZ color matching functions
as sensor spectral responses. This is done in order to compare our results to the ones in [20]
under the exact same configurations. Wavelengths are taken between 400nm a 700nm with a
5nm step, giving a total of 61 wavelengths. Two datasets are considered for this case, the first is
built using only the CIE D65 SPD. The network structure in this case is adapted so that the layers
corresponding to the SPD of light are deactivated leading to only two loss functions LR and
LS . In addition, both E0 and Ê0 are replaced by the SPD of CIE D65 in the calculation of LS .
Following the same process as in [20], the network is trained using 90% of Munsell patches and
tested on the remaining 10%. The second dataset is built using 23 different SPDs corresponding
to illuminants on the Planckian locus with color temperatures ranging from 4000K to 15000K
with steps of 500K between them. In this case, the network whose structure is shown in Figure
(3) is also trained using 90% of Munsell patches under various illuminants and tested on the
remaining 10%.
Our results on both datasets are shown in Table 2. They are compared to the best results

regarding the average error in [20] obtained using a logit link function with different kernel
models. The results are shown in terms of average, max and 95th percentile RMSE and PD
values. It can be observed from the results that when training the network with the dataset built
using a single illuminant, which represents the setting of reflectance estimation with known
illuminant, our approach outperforms the state of the art approaches. In addition, when training
using the dataset built with different lightings, which is equal to the setting of unknown scene
illuminant, our results are still better than the state of the art ones except for the maximum error



values. However, in this case, the SPD of light is learned also with an average RMSE of 0.0154.
The average DE00 values are 0.6379 and 0.7279 for the single illuminant dataset and the multiple
illuminant dataset respectively. It is worth mentioning that, in this case, our algorithm is able to
reconstruct the unknown light SPD while for the other tested methods in Table 2, this SPD is a
known input.

Table 2: Spectral error values for simulated data

Method RMSE Avg. RMSE Max. RMSE 95th PD Avg. PD max. PD 95th

Gaussian kernel 0.0103 0.0508 0.0333 0.00104 0.0154 0.00462

MatÃľrn kernel 0.0092 0.0558 0.0326 0.00088 0.0083 0.00420

TPS kernel 0.0092 0.0556 0.0332 0.00088 0.0083 0.00411

Ours (1 light) 0.0087 0.0460 0.0191 0.00081 0.0068 0.0041

Ours (23 lights) 0.0088 0.0771 0.0213 0.0012 0.0639 0.0041

6.2. Real Data

For real data tests, a new simulated dataset is built using Munsell spectral reflectances, the
Canon EOS 1000D spectral response functions and the 23 planckian illuminants. The network
is trained with this dataset except the green and red patches in order to make sure that no
overfitting is happening. The same camera is then used to take photos of V-shaped surfaces
with an approximative angle of 45◦ of six colored surfaces: a red Munsell paper, and five other
textile pieces of different colors. The photos are taken under direct sunlight in the early afternoon.
The area of the photo corresponding to one side of the V-shaped surface is selected manually
to be then automatically discretized into 10 × 10 facets each represented by the mean RGB
values over its area. In Table 3 our results are compared to the state of the art ones on real
images under a known illuminant [3, 12, 18]. The results show that our approach outperforms the
sate of the art ones in terms of spectral error even when a pre-calibration step using the XRite
ColorChecker is performed to help these approaches. This pre-calibration is detailed in [8] and is
mandatory for the classical approaches [12, 18] in order to get accurate reconstructions when
used in non-calibrated configuration. It requires to add a color checker in the image, which is a
strong constraint. Moreover, when compared to physics-based interreflection approach [8], a
significant enhancement in the spectral estimation is obtained when no pre-calibration step is
used. The SPD of light is not known in our approach and is guessed with an average RMSE of
0.1 in comparison to CIE D50 spectral power distribution.

Figure (4) shows the estimated surface spectral reflectance compared to the ground truth one
using a single photo taken under daylight for Munsell red paper, and cyan textile piece. The
estimated illuminant SPD is also shown next to the one of CIE D50 which was chosen in [8] as a
representative of direct sunlight.

6.3. Generalization to other angles

One important thing to verify is how well our approach generalizes to other geometries. One
way to check this can be done by training the network on other V-shaped surfaces with different
angles between the two planar surfaces. Thus, we trained the network on new datasets built using
V-shaped surfaces of all Munsell patches with angles of 30◦, 60◦, 90◦, 120◦ and 150◦. All the
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Fig. 4: Examples of estimated surface spectral reflectance and light SPD using our approach.



Table 3: Results on real data

Method Pre-calibration Illuminant RMSE PD DE00

Park et al. [12] Yes Known 0.060 0.009 3.76

Khan et al. [18] Yes Known 0.059 0.009 3.87

Deeb et al. [3] Yes Known 0.046 0.008 3.82

Deeb et al. [3] No Known 0.061 0.012 5.62

Ours No Unknown 0.045 0.004 4.12

other settings are exactly the same as those used in our tests on simulated data. Table 4 shows the
RMSE, PD, DE00 errors regarding the spectral reflectance, as well as the RMSE error regarding
the light SPD when testes on the same angle used for training. One can see that the approach
generalizes well whenever the angle is small enough to give significant amount of interreflections.
Our results show that both spectra are estimated with a very good accuracy for angles reaching
120◦. For much bigger angles, 150◦ for example, interreflections happen less leading to less
important color gradients which are not enough for the network to learn the inverse solution.

However, one possible limitation is that till now we propose to train the network on a specific
geometry. Thus, and in order to provide a more concrete application of our approach, we tried to
train the network on three angles together, 30◦, 60◦ and 90◦. Table 5 shows the results in terms
of RMSE, PD, and DE00 for spectral reflectance and RMSE of light SPD when the network is
tested on one of the angles included in the training set, and also on a new angle which the network
did not encounter before. As it can be observed, the approach generalizes very well to training
on different geometries even when it is tested on a new geometry. Error values obtained when
the network is tested on one of the angles used for training are very close to those obtained when
the network is trained only on that specific angle (see Tables 4 and 5). On the other hand, when
the network is tested on a new angle, most of the error values increase significantly. However,
it is noticeable that while all the other errors increase, it is not the case for the PD one. This
observation leads us to think that the network is falling in some metamerism traps for some of
the patches. This is probably happening when the network is failing to recognize if the color
gradients are due to high reflectance with big angle or to lower reflectance with smaller angle.
Thus, the network in this case is getting the shape of the spectrum correctly but is not able to
accurately identify the exact spectral reflectance. However, training on more angles with smaller
steps between them would be a solution for this problem. In this case, more detailed association
between the color gradients and the angles would be learned reducing as a consequence the
previous case of error.

7. Conclusion

In this paper, a convolutional neural network was trained in order to solve the inverse problem
of surface spectral reflectance estimation form a single RGB image of interreflection under
unknown lighting. Datasets were built from synthetic images simulated using infinite-bounce
physics-based interreflection model. Different noise types and levels were added to the images
during the training in order to better cope with noise< in camera outputs. Our experiments on
simulated data showed that our approach even under an unknown illuminant outperforms the
state of the art learning-based spectral reflectance estimation approaches trained for a specific
known lighting. In addition, real data results showed that our method gets a better accuracy of



Table 4: Results of training with different angles

Surface reflectance Light SPD

Trained and tested angle RMSE PD DE00 RMSE

30◦ 0.0090 0.0014 0.6976 0.0173

60◦ 0.0090 0.0014 0.6976 0.0173

90◦ 0.0091 0.0014 0.6704 0.0160

120◦ 0.0093 0.0011 0.6775 0.0146

150◦ 0.0260 0.0073 4.1055 0.1050

Table 5: Results of training with different angles

Surface reflectance Light SPD

Trained angle Tested angle RMSE PD DE00 RMSE

30◦ & 60◦ & 90◦ 60◦ 0.0099 0.0013 0.8382 0.0178

30◦ & 60◦ & 90◦ 45◦ 0.0134 0.0014 1.1498 0.0203

spectral reflectance estimation under unknown lighting than physics-based approaches under a
light with a known SPD. The improvement of our method over physics-based methods could be
explained by the fact that we incorporate realistic noise models in the dataset creation, whereas it
is very difficult to propagate the impact of noise through physics-based methods.
However, our approach handles only direct collimated lighting. In the future, datasets can be

further enhanced by using more realistic lighting conditions. This can be done for example, by
modeling ambient light, shadowing and different incidence angles. In addition, the approach can
be extended to take into consideration interreflection between surfaces with different spectral
reflectances and under different geometrical configuration.
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