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Abstract

The influence of class orderings in the evaluation
of incremental learning has received very little
attention. In this paper, we investigate the im-
pact of class orderings for incrementally learned
classifiers. We propose a method to compute var-
ious orderings for a dataset. The orderings are
derived by simulated annealing optimization from
the confusion matrix and reflect different incre-
mental learning scenarios, including maximally
and minimally confusing tasks. We evaluate a
wide range of state-of-the-art incremental learn-
ing methods on the proposed orderings. Results
show that orderings can have a significant impact
on performance and the ranking of the methods.

1. Introduction

Incremental learning (IL) has gained popularity over the last
years as a way to continuously introduce new concepts to
an existing model. Incrementally learning tasks relieves the
issues of maintaining and retraining large datasets, and costs
associated with it. However, retaining knowledge when re-
training on different data in artificial neural networks is not a
trivial task. Whenever a network is trained only on new data,
the abrupt loss of previously acquired knowledge manifests.
This phenomenon is know as catastrophic forgetting (Mc-
Closkey & Cohen, 1989). In recent years, many methods
have been proposed to alleviate this problem which stands
in the way to advanced life-long learning systems (Lesort
et al., 2020; De Lange et al., 2019; Parisi et al., 2019).

The problem of continual learning is often simplified to
an incremental learning of new concepts (classes) in a
well-defined, equally divided, sequence of tasks. This
may sound artificial, but is a common choice in recent
works (Aljundi et al., 2017; Li & Hoiem, 2017; Rebuffi
et al., 2017; Chaudhry et al., 2018; Belouadah & Popescu,
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Figure 1. Accuracies of CIFAR-100 classes after a single non-
incremental training on ResNet-32 incrementally ordered by class
accuracy (top), and grouped with provided coarse-grained labels
(bottom). Dashed lines represent task boundaries for an equally
divided 10-task split. Colors denote coarse-grained group labels.

2019). Having the same experimental settings makes it easy
to compare results and performance. Specifically, class-
incremental learning (class-IL) defines the setting where the
task-ID is unknown at inference time, making the predic-
tions of the learned models task-agnostic. Most class-IL
methods consider multi-class incremental learning (Hou
et al., 2019), where only tasks that at least have two or
more classes are considered. Those also conform to the
prevalent practise of making all tasks have the same number
of classes. This rises the question about data preparation:
are we missing something important when ordering the
tasks and classes? In this work we investigate how rele-
vant is class ordering and how it can affect the results of
well-known class-IL methods.

It has become common to compare different approaches by
using CIFAR-100, while recently some other larger datasets
have been getting more exposure. In Fig. 1, we show that
class ordering can influence task accuracy within a particular
split for an already trained model. Therefore, some influence
can be expected to multi-class-IL. Overall performance—
measured as a value of mean avg. accuracy across all tasks
after reaching the last one—can depend on how hard is
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Figure 2. CM from CIFAR-100 with original class order (left)
and coarse grained labels order (right) after a joint training on
ResNet-32. Diagonal values are skipped for better visualization.

the ordering. In our research, we propose a method based
on confusion matrix (CM) ordering (see Fig. 2) that helps
explore the difficulty of the incrementally learned classifier
even further.

The main contributions of this paper are: 1) proposing a
novel method for class ordering in IL scenarios based on
confusion matrix values, 2) investigating IL. methods robust-
ness to class ordering, 3) analysing of some commonly used
split strategies in comparison to the random ones.

2. Related work

Class-IL: We chose some class-IL methods that are com-
mon comparison in the literature, and some that are current
state-of-the-art. LwF (Li & Hoiem, 2017) is a regularization-
based method which adds a constrain loss to the outputs of
older classes to not change too much when learning a new
task. Similarly, EWC (Kirkpatrick et al., 2017) also applies
a regularization constrain on the weights to limit their shift.
iCaRL (Rebuffi et al., 2017) proposed to extend LwF by
keeping a small memory with data exemplars which is re-
played during training. Following this idea, BiC (Wu et al.,
2019) and LUCIR (Hou et al., 2019) extend the usage of dis-
tillation and exemplars to also apply a bias correction to the
outputs of different tasks, allowing to compensate the im-
balance introduced by new tasks. Finally, IL2M (Belouadah
& Popescu, 2019) also proposes bias correction, although
over Finetuning since they show that it works better than
applying it over LwF.

Class ordering: Most works on class-IL report results by
using a random order of classes on CIFAR-100, i.e. iCaRL,
LUCIR, BiC. Furthermore, the popularity of iCaRL and
the interest in comparing with it, makes quite common
their specific class ordering (their code fixes the random
seed to 1993). However, none of them look deeper into
the choosing of that specific class order. In (Masana et al.,
2020) and (De Lange et al., 2019), the authors touch the
subject of class ordering, showing that some methods report

different results based on different class orderings. Only
a random ordering and a semantically split ordering were
investigated, without any dedicated method to order classes
harder or easier, as this was not their main focus.

Curriculum Learning and Classification Complexity:
In contrast to curriculum learning, our objective is not to
obtain the best model performance (Pentina et al., 2015),
but to propose an evaluation for class-IL methods under
different scenarios. Another similar research direction is
assessing how complex is a classification task. In our case,
we could use a known measure (Lorena et al., 2019), or the
one proposed in (Nguyen et al., 2019) for IL.

3. Class ordering

In multi class-IL for image classification, a sequence of
tasks where each consists of m; classes is learned one at a
time, extending the knowledge of the model in incremental
steps. Given a set of paired data x; with their respective
class labels y; € C*, where C* = {c},c}, ..., ¢! .} denotes
the set of m? classes of task t. When training on task ¢, only
data (x;,y;) ~ D! is available. We consider disjoint classes
between all tasks, C* N C¢ = & for t # s as in (Aljundi
et al., 2017; Chaudhry et al., 2018; Dhar et al., 2019; Hou
et al., 2019; Liu et al., 2018; Rebuffi et al., 2017; Yu et al.,
2020). After training each task we evaluate the learned
model on all classes seen so far C' =, _, C".

Let M € NICIXICl be the confusion matrix from learning
all classes in a non-incremental way (usually known as
Jjoint training), where each element M;; defines how many
times samples of class ¢ are predicted as class j. Based
on the information contained in M, we can estimate how
confusing class 7 is by looking at how much it gets wrongly
classified as any another class j. Consequently, also how
easy or difficult they are to tell apart when having all data
available during the training session. We assume that any
advantage that comes by having all information available
can be mitigated or removed when changing to an IL setting.
In joint training, specific features in the network can be
learned to focus on differentiating two classes that can easily
be confused. However, in an IL setting, those discriminative
features become more difficult to learn or can be modified
afterwards, especially when the classes belong to different
tasks. Thus, the difficulty of the task can be perceived
differently in each scenario. Depending on the method, it
may handle this issue differently, and therefore lead to more
catastrophic forgetting.

As aresult, we define different class orderings. In order to
illustrate the effect of class ordering, we take the CIFAR-
100 dataset (Krizhevsky, 2009) as an example, although the
proposed strategies are extensible to other datasets. First,
we define the baseline class ordering as:
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Figure 3. Class ordering objectives (top) and resulting confusion
matrices (bottom).

e random: takes a permutation of the class order. By
default taking the original class ordering which the
dataset provides (usually alphabetically ordered or sim-
ilar), or otherwise a permutation corresponding to a
random seed. As explained in Sec. 2, in the case of
CIFAR-100, some works decide to fix the seed to the
same as iCaRL (Rebuffi et al., 2017).

If we train a model in a single training session (joint training)
with all data for all classes, we can calculate CM, as seen on
Fig. 2. Based on that, we define two more class orders as:

e max confusion (maxConf): highly miss-classified
classes are next to each other—max confusion is hap-
pening around the CM diagonal. This creates an IL
split with more difficult intra-task classification.

e min confusion (minConf): enforces classes which are
rarely miss-classified to be in the same task—max con-
fusion is happening at the corners of the CM. Intra-task
and adjacency tasks classification becomes easier, but
also pushes the most miss-classified classes towards
the first and last tasks.

Finding the above orderings based on the CM values is
a non-trivial task, where a brute-force naive approach of
O(n!) cannot be applied even to moderate size problems.
To reduce the complexity, we re-formulate finding the class
ordering as an optimization problem where the objective is
to maximize the value of the fitness function to a desired
M. Then, we use an objective weight matrix W € NICI<IC
(see Fig. 3) which is used to calculate a score value:

score(M, W) = tr(WT M), (1)

to assess adaptation in a search for a solution. In this case,
a global optimum is not necessary since it is hard to estab-
lish. Instead, we use the simulated annealing optimization
algorithm to find an ordering in a constrained time limited

by the number of fitting iterations. The same approach has
been previously used for CM ordering for better visualiza-
tion of large matrices in (Thoma, 2017a) and for HASYv2
dataset (Thoma, 2017b).

We can also define an objective CM, and try to converge to a
permutation that better accommodates to incremental tasks
by introducing their boundaries. If the splits of C1, ..., C*
can be know upfront, which is usually the case, we can
incorporate task boundaries in the weighting matrix for both
scenarios. Therefore, we can define three more orderings:

e increasing task confusion (incTaskConf): maximize
confusion in all tasks around the diagonal of M with
increasing confusion between them. The objective
matrix is presented in Fig. 3 (right).

e equal task confusion (eqTaskConf): similar to max
confusion, but introducing task boundaries should
cause less confusion between adjacent tasks.

e decreasing task confusion (decTaskConf): maximize
confusion in all tasks around the diagonal while de-
creasing it between them. Similar to increasing, but
with inverted diagonal weights from Fig. 3 (right).

In the specific case of CIFAR-100, since a coarse grained hi-
erarchy of the classes exists, we can also define an ordering
based on the provided two level taxonomy. In each task we
can have classes related to the same group or similar groups
in order to make the classification harder.

e coarse grained: ordered by a provided grouping or
taxonomy. For CIFAR-100 classes are divided into 20
groups, as shown with bar colors in Fig. 1 and labels
in Fig. 2 (right).

4. Experimental results

We compare the class orderings on CIFAR-100 considering
ten equal tasks trained on ResNet-32 from scratch. Training
starts with learning rate (LR) of 0.1, momentum of 0.9,
weight decay of 2e-4, and a LR scheduler with ten epochs
patience and a LR factor of /3 until LR is lower than 1e-4 or
200 epochs have passed. Method hyperparameter are chosen
following the framework from (De Lange et al., 2019) for
the first 3 tasks, and fixed afterwards.

We compare all orderings proposed in Sec. 3 on Finetuning
(FT) and LwF in Fig. 4. Both methods seem to have very
little difference in general behaviour on the different order-
ings. Random, iCaRL seed and minConf provide a better
performance after all tasks. The results point to minConf
being the most stable, and Random being generally closer
to it. After the first task, incTaskConf has the highest per-
formance since it learns the less confusing group of classes.
However, after all tasks, it ends up having one of the lowest
performances, together with maxConf.
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Table 1. CIFAR-100 results for class-IL with growing memory of 20 exemplars per class (10 runs average and standard deviation). The
best score for each task of each method is in bold. Underscore marks the lowest score.

task Random iCaRL seed coarse maxConf minConf decTaskConf eqTaskConf incTaskConf
LwF 2 51.845.3 50.8+£2.6 459427 524420 44.6£19 41.543.2 53.1£3.9 62.5+2.7
5 31.8+3.9 33.2+3.3 36.3+£2.2 33.0+£2.9 33.8+2.3 33.942.6 35.9+3.2 37.4+2.9
10 24.84+2.6 27.3+£2.2 26.5+2.0 32.6+3.1 254+£1.4 29.9+2.4 31.6%+3.3 29.4+1.9
iCaRL 2 61.443.8 58.7£3.6 49943.1 55.1+1.6 55.5+1.3 449424 60.0+2.7 67.2+£3.9
5 42.0+£3.6 42.542.7 417422 39.6+2.3 43.7+24 33.4+2.6 44.542.4 45.9+3.6
10 33.8+3.7 34.2+2.6 32.841.7 354426 33.4+£23 28.0+2.2 35.4+3.0 32.0£3.1
BiC 2 61.2+5.3 56.443.8 50.443.0 52.842.6 51.5+2.7 41.2+2.1 57.9+4.1 69.7+2.7
5 448432 452430 444426 40.7£3.7 47.7+£1.3 37.14£2.9 45.343.1 52.4+2.8
10  39.3+19  40.14+2.8 39.342.3 375427 40.1+£1.3 37.242.9 38.64+2.0 37.842.6
LUCIR 2 63.2+34  59.64+3.3 534429 54.043.2 53.3+£3.3 47.2+1.9 61.2+2.0 72.0+2.2
5 40.0+34  40.74£3.5 403426 372456 39.5+2.8 36.54+2.9 45.8+1.4 47.3+1.9
10 27.242.7 29.64+3.2  26.24+3.1 289458 27.7£1.9 29.143.3 31.9+2.0 28.5+1.6
IL2M 2 58.2+5.1 52.2+3.7 432459 51.2+1.1 51.1£3.0 42.142.7 54.442.7 65.31+2.6
5 442441 41.04£3.7 44.0+2.4 40.6+2.6 47.5+1.7 37.1+£3.0 43.61+2.6 51.0+2.4
10 38.2+2.0 37.9+£2.0 38.6+2.1 38.5+2.7 36.84+1.7 37.4+2.4 38.3+£2.3 37.6+2.3
100 100
-#- random (11.1) -&- random (29.3)
-@- iCaRL seed (11.2) -#- iCaRL seed (30.5)
maxConf. (6.8) maxConf. (15.0)
8o minConf. (11.1) 80 h\ minConf. (29.8)
—e— decTaskConf (6.2) \ —o— decTaskConf (18.1)
eqTaskConf (4.6) *\ AN eqTaskConf (17.5)
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Figure 4. FT (left) and LwWF (right) with different class orderings for CIFAR-100 on ResNet-32 from scratch without exemplars memory.

Results on different methods are presented in Tab. 1, us-
ing 20 exemplars per class with herding selection — LwF
is adapted to use exemplars. As expected, decTaskConf
results in the most confusing class ordering for the first tasks
with the lowest performance. Analogously, incTaskConf
achieves the best performance. This is due to not having
learned all classes at this point but only the most or least con-
fusing, respectively. This behaviour is different than the one
seen in the setting without exemplars, where incTaskConf is
only better until task 2. LwF and LUCIR have a similar task
10 overall performance (avg. 28%), iCaRL follows (avg.
33%), while BiC and IL2M have a better one (avg. 38%). In
addition, the standard deviation across all orderings is low
for BiC and IL2M (~2.3). Next comes iCaRL and LUCIR
with a bit larger deviation (~3.4), and LwF being the least
robust (~3.6). Interestingly, looking at the best performance
at task 10 for each method individually, each of them does
well at a different class ordering, thus changing the optic of
the result and the ranking of the methods.

5. Conclusions

Class orderings for class-IL influence the overall evaluation
performance. For a single method the spread between most
extreme orderings can be significant. Comparing the order-
ings, we found that the random ordering obtains among the
highest performances when used by non-exemplar methods.
The proposed class orderings based on the confusion matrix
can be used as a tool for checking robustness of class-IL
approaches. A direct extension of this work would be to use
different datasets and ordering methods. For a fairer com-
parison of methods, we recommend to compare methods on
several class orderings.
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Appendices

A. Plots for growing memory setting

In this appendix we present plots that reflect evaluation of each method from Table 1 for different class orderings after

learning each task.
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Figure 5. LWF results for different class orderings for CIFAR-100
on ResNet-32 from scratch with 20 exemplars per class growing
memory.
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Figure 6.1CaRL results for different class orderings for
CIFAR-100 on ResNet-32 from scratch with 20 exemplars per
class growing memory.

100

-4~ random (39.3)
-#- iCaRL seed (40.1)
~o— maxConf. (37.5)
—o— minConf. (40.1)
—o— decTaskConf (37.2)
—e— eqTaskConf (38.6)
——
—-—

80

60 incTaskConf (37.8)

coarse (39.3)

Accuracy (%)

20

10 20 30 40 50 60 70 80 90 100
Number of classes

Figure 7. BiC results for different class orderings for CIFAR-100
on ResNet-32 from scratch with 20 exemplars per class growing
memory.
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Figure 8. LUCIR results for different class orderings for
CIFAR-100 on ResNet-32 from scratch with 20 exemplars per
class growing memory.
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Figure 9. IL2M results for different class orderings for CIFAR-100
on ResNet-32 from scratch with 20 exemplars per class growing
memory.



