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Disentanglement of Color and Shape Representations for Continual Learning

David Berga !

Abstract

We hypothesize that disentangled feature repre-
sentations suffer less from catastrophic forgetting.
As a case study we perform explicit disentangle-
ment of color and shape, by adjusting the net-
work architecture. We tested classification ac-
curacy and forgetting in a task-incremental set-
ting with Oxford-102 Flowers dataset. We com-
bine our method with Elastic Weight Consolida-
tion, Learning without Forgetting, Synaptic Intel-
ligence and Memory Aware Synapses, and show
that feature disentanglement positively impacts
continual learning performance.

1. Introduction

Convolutional Neural Networks have shown to increasingly
achieve better performances in several recognition tasks
over the past years (Krizhevsky et al., 2012; LeCun et al.,
2015; Guo et al., 2016). In common image classification
tasks, the network learns the whole dataset in a single train-
ing session. Thus, the network is only capable of doing
inference on seen classes. If more classes would be learned
without using a continual learning approach (i.e. finetuning
on each task), the network would suffer of what is known
as catastrophic forgetting (McCloskey and Cohen, 1989;
French, 1999; Kirkpatrick et al., 2017). Catastrophic for-
getting appears when neurons optimize their weights for a
new task without taking into account previous knowledge;
meaning previous classes performance is buried in favor
of the new ones. Lifelong Learning and Continual Learn-
ing (CL) propose a more realistic scenario where the learner
continually adapts to a sequence of tasks while avoiding said
catastrophic forgetting. One of the reasons of catastrophic
forgetting could be the lack of adaptability from network
parameters in the stability-plasticity trade-off from task to
task, this interference can cause the network to entangle all
trained representations.
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Figure 1. Illustration of feature disentanglement for a simple case
of color “red/blue” and shape ”square/circle”. Left: Blue circles
and red squares are entangled in the binding phase. Right: In a
disentangled space, all shapes are separated along with colors.

Disentanglement of features, such as illumination, view-
point object orientation or surface reflectance has been a
long desired objective in computer vision (Tappen et al.,
2003). It is also believed to play an important role in the
success of deep learning (Bengio, 2009). In this paper, we
hypothesize that disentanglement of features also plays an
important role in continual learning settings. The main
idea is that disentangled features can better generalize to
new tasks (Bengio et al., 2013). As an example (Fig. 1),
consider a system which should learn two tasks. The first
task requires to distinguish between red circles and blue
squares, while the second tasks requires to distinguish be-
tween blue circles and red squares. A network which would
have learned a shape-color disentangled representation on
the first task can easily adapt to the second task. However,
a network which has learned an entangled representation
(neurons firing for red-circles) might have more problems to
generalize to other feature. While learning the second task,
neurons specific to detect red-circles would instead detect
blue-circles, consequently leading to catastrophic forgetting
on the previous task.

Motivated by the biological evidence for separate process-
ing of color and shape, we propose a two-branch network
for image classification which fuses both at the end. This
explicit color and shape disentanglement allows us to assess
feature representation importance for continual learning and
a way to fuse networks before binding.
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2. Related Work

Latest reviews on CL (Parisi et al., 2019; Lange et al.,
2019; Maltoni and Lomonaco, 2019) focus on evaluating
approaches by equally distributing classes from a dataset
into multiple tasks. Those tasks are then learned in an in-
cremental fashion by fitting the network parameters to each
new group of classes. To avoid catastrophic forgetting, ap-
proaches regularize the model, store information or replay
data (Rebuffi et al., 2017; Shin et al., 2017; Lopez-Paz and
Ranzato, 2017). Some of the first methods applied to neural
networks, are focused on regularizing the weights or feature
representations in order to keep those as close as possible to
the older weights or representations while learning the new
task. Learning without Forgetting (LwF) (Li and Hoiem,
2016) adds a regularization term to the cross-entropy loss
which tries to push the outputs of previous classes to be
similar to the outputs of new tasks before learning the task
at hand. Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017) calculates the Fisher Information for all weights,
which is then used as an importance measure on the regu-
larization loss. We consider these approaches in addition to
Synaptic Intellingence (SI) (Zenke et al., 2017) and Memory
Aware Synapses (MAS) (Aljundi et al., 2018).

AlexNet (Krizhevsky et al., 2012; Flachot and Gegenfurtner,
2018) used 2 GPUs processing images in different groups
of convolutions in parallel, sharing information in certain
layers. By visualizing the filters in the first convolutional
layer, the network showed sparse features that were distinct
on the 2 network branches. These were similar to ”gabor-
like” filters for the gray branch and sinusoidal/concentric
filters for the color branch, similar to receptive fields in
V1 (see (Krizhevsky et al., 2012)-Fig. 3 and (Flachot and
Gegenfurtner, 2018)-Fig. 2). Rafegas et al. (Rafegas and
Vanrell, 2017; 2018; Rafegas et al., 2019) indexed selectiv-
ity of individual neurons to specific features in a VGG-M.
By grouping these by color statistics (e.g. Hue), some ap-
peared to be highly color selective and others low- or non
color selective. Previous work (Khan et al., 2012) proposed
an algorithm that processes shape and color separately (us-
ing SIFT features for shape features and color naming and
pixel-wise hue descriptors for color features). Fusing these
features showed improved accuracy in classification. From
the aforementioned studies, we think a disentanglement
procedure focused on separating color and shape feature
computations in a network could be useful to acquire higher
accuracy as well as preventing catastrophic interference, due
to the specificity of neurons to each of these features.

3. Proposed Method

In this paper, we propose disentangled architecture able
to prevent catastrophic inference restricting specific fea-
ture representations. We process color and Shape features
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Figure 2. Structure of the standard ResNet18 network, color and
shape networks. Every layer (represented in a different color)
sums (+) its activation at every residual block.

separately. We do so using a ResNet18-DS architecture
(Fig. 3) processing each feature representation separately
in each branch (Fig. 2). The objectives are: a) Compute
representations of Color and Shape separately. b) Learn dis-
entangled representations for CL while retaining capacity.
¢) Provide an architectural mechanism able to be applied
in combination with other CL algorithms (approach- and
model-agnostic).

3.1. Independent Representations of Color and Shape

We first discuss the networks we use for the computation
of shape-only, and color-only features. Separation of these
two features might better represent task-dependent combi-
nations of color and shape (see Fig. 1). We consider two
network parts: the Feature Extractor (FE) and the Head /
Classifier. Here we use a ResNetl8 as our base network,
(Fig. 2-Left), but the idea could be applied to other models.
The network feature extractor is composed of a convolu-
tional+maxpooling layer, followed by four convolutional
blocks with batch normalization, and an average pooling
layer, and the classifier contains a fully-connected (FC).

To uniquely process color (ResNetl8-Color), we changed
all convolutional operations (in ResNet18 are conv7x7 in
first layer and conv3x3 in all blocks) by a convolution of
1x1 kernels (conv1lx1). This ResNetI8-Color network (Fig.
2-Mid) will learn each pixel independently from spatial
computations, therefore it is only able to process color infor-
mation. The absence of filters with spatial extend prevent it
from being able to learn shape information.

For the case of shape (ResNet18-Shape), we transformed
the RGB image to grayscale and used the original ResNet18
architecture. The ResNet1S§-Shape network (Fig. 2-Right) is
processing local information only using intensity informa-
tion (thus, unable to process RGB chromaticities).
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Figure 3. Disentangled network (ResNet18-DS) based on Late Fu-
sion of ResNet18-Color and ResNet18-Shape. The 3 layers on the
Head (gray) are independent for each task.

3.2. Fusing Color and Shape Representations in a
Multi-Branch network (ResNet18-DS)

Having established architecture which process color and
shape separately in the previous section, we here propose
an architecture to combine the two branches. The main
requirements of our architecture are:

o Feature disentanglement: The layers which are shared be-
tween the different tasks should only contain disentangled
color and shape features. The entanglement should only
happen in the task-specific head.

e Spatial binding: the combination of color and shape should
be entangled before any pooling operation.

A system which would lack spatial binding is one where
you would perform average pooling on the feature extractor
of the color and shape branch and then combine the infor-
mation. Such a system would know there are certain colors
and shapes present, but could not say with certainty which
color is connected to which shape. In Fig. 3 the architecture
which fulfills our design requirements is presented. The two-
branch network forwards two versions of the input (color
and gray) to the FE part of each branch (color and shape).
Next the output of both branches is concatenated (the out-
put of each branch is 7x7x512 and after concatenation the
dimension is 7x7x1024). Until here the color and shape in-
formation are disentangled and all layers are shared among
the tasks. Then processing moves on to task-specific heads,
in which the entanglement is performed. The task-specific
head consists of four layers. First a 1x1 convolutional layer
which maps the disentangled features, to entangled task spe-
cific features, followed by a ReLLu. Then we a perform an
average pooling operation to the output of the convolution
and flatten to a feature vector. Finally, a Linear layer (FC)
maps the entangled features to the number of classes of each
particular task. A softmax operation is added after the FC
before computing the gradient loss.

Accuracy after last task (Task Aware) after last task (Task Aware)
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Figure 4. Average classification results (Left: Accuracy, Right:
Forgetting) per task in finetuning on Oxford-102 dataset.

4. Experiments

We performed a set of experiments with the standard
ResNet18 as well as with the ResNet18-Color, ResNet18-
Shape and our ResNetl8-DS (Color+Shape) with the
Oxford-102 dataset in an incremental setting of 10 tasks. To
define this setting, we split the dataset (102 categories) into
10 tasks and processed the same network through each task
split through the FE. We considered backpropagating the
Head part for each task separately (task-aware) or concate-
nated in one unique Head (task-agnostic). The capacity of
the FE of ResNet-18 is 11.2M, while the capacity of Shape
and Color branches FE are 11.2M and 1.5M respectively.
The total capacity ResNet18-DS FE is 12.6M (about 112.5%
with respect the ResNet-18). For the each head (Linear Head
and Task Head) there is a distinct capacity per task, given
that we compared performance from original ResNet18 with
same Task Head (ResNet18-H).

We processed distinct hyperparameters for each model to
convergence (with learning rates Se-2, Se-3 and Se-4 and
batch size 32) for 200 epoch. We also applied a weight
decay of 0.0002, momentum of 0.9 and we considered a
patience of 15 (lowering the learning rates by a factor of 3
when loss does not improve after 15 epoch, until Ir<1e-6).

In Table 1 we show results from the ablation results of each
separate branch (ResNetl8-Color and ResNetl8-Shape).
We have also processed the standard ResNetl18 and our
ResNet18-DS (Color+Shape) network with CL regulariza-
tion algorithms (LwF, EWC, SI and MAS). Our model out-
performs the standard state-of-the-art both in finetuning and
with these two algorithms. Considering the classification
results, our model presents lower forgetting with respect
the standard ResNet, this means that our models is capa-
ble of disentangling activity of each task split at a feature
level (the FE). In terms of accuracy per task our model
performance is able to retain similar accuracy over tasks,
whereas the standard ResNet18 accuracy lowers in both task-
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Task-Aware  ResNetl8 ResNet18-H* ResNetl8-Color ResNet18-Shape ResNetl18-DS
Finetune 424 40.1 47.8 37.0 54.8
LwF 58.3 55.8 53.8 50.9 62.8
EWC 46.4 45.4 529 41.3 55.5
MAS 52.0 43.6 50.1 43.0 56.9
ST 434 453 50.1 42.0 53.8
Task-Agnostic  ResNetl8 ResNet18-H* ResNetl8-Color ResNet18-Shape ResNetl18-DS
Finetune 10.6 10.2 10.0 10.2 13.8
LwF 13.7 9.8 7.4 11.6 12.6
EWC 10.3 11.3 12.4 9.1 17.0
MAS 11.2 7.1 9.0 83 11.8
SI 10.7 10.5 8.8 10.0 14.6

Table 1. Average accuracy classification results for Oxford-102 dataset in a incremental setting of 10 tasks. Mean Accuracy calculated
from all tasks after the 10th task. * Same task-specific head (and head capacity) as ResNet18-DS (Fig.3). Bold is TOP-1 accuracy.

Task-Aware  ResNetl8 ResNet18-H* ResNetl8-Color ResNet18-Shape ResNetl18-DS
Finetune -29.2 -29.8 -19.8 -24.0 -19.3
LwF -12.5 -134 -13.8 -14.9 -11.0
EWC -22.6 -24.9 -14.3 -20.2 -17.1
MAS -11.9 -9.1 -12.1 -4.6 94
SI -26.1 -25.3 -14.7 -19.4 -18.0
Task-Agnostic ~ ResNetl8 ResNet18-H* ResNetl8-Color ResNet18-Shape ResNetl18-DS
Finetune -43.0 -47.6 -28.4 -31.3 -22.7
LwF -31.6 -35.6 -24.1 -38.7 -23.5
EWC -31.6 -38.6 -18.0 -23.6 -36.2
MAS -9.5 -6.9 -8.3 2.7 -9.3
SI -34.9 -44.6 -20.2 -32.6 -30.7

Table 2. Average forgetting for Oxford-102 dataset in a incremental setting of 10 tasks. Mean Forgetting calculated as drop of accuracy
from all tasks after the 10th task. * Same task-specific head (and head capacity) as ResNet18-DS (Fig.3). Bold is lowest forgetting.
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Figure 5. Task-sequence results for 10 tasks in Task-Aware setting
for Finetune, LwF, EWC, SI and MAS.

aware and task-agnostic settings. We showed in Figs. 4-5
that our model acquires overall higher accuracy and lower
forgetting across all tasks. We believe this is due to the
interference between features of the FE (specially at latter

layers, which bind higher-level information). The standard
ResNet shares all representations (e.g. color and shape) in a
unique branch, which struggles on adapting weights for each
new task representations. This interference prevented by
our disentanglement procedure. We would like to point out
that overall classification results for Task-Agnostic would
be higher with exemplars.

5. Conclusion

In this study we propose a novel architectural design that al-
lows disentanglement of color and shape representations in
a convolutional neural network. This method prevents catas-
trophic interference between these feature types, showing
lower forgetting in comparison with standard networks. We
show this strategy can be useful to be combined with other
CL approaches (outperforming results based on standard
architectures) and the potential to be used with distinct archi-
tectures and datasets (e.g. shapes, attributes). As such, we
hope this paper inspires more research into the importance
of disentangled representation for continual learning.
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