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On Implicit Attribute Localization for Generalized
Zero-Shot Learning

Shiqi Yang, Kai Wang, Luis Herranz and Joost van de Weijer

Abstract—Zero-shot learning (ZSL) aims to discriminate im-
ages from unseen classes by exploiting relations to seen classes
via their attribute-based descriptions. Since attributes are often
related to specific parts of objects, many recent works focus
on discovering discriminative regions. However, these methods
usually require additional complex part detection modules or
attention mechanisms. In this paper, 1) we show that common
ZSL backbones (without explicit attention nor part detection) can
implicitly localize attributes, yet this property is not exploited.
2) Exploiting it, we then propose SELAR, a simple method that
further encourages attribute localization, surprisingly achieving
very competitive generalized ZSL (GZSL) performance when
compared with more complex state-of-the-art methods. Our find-
ings provide useful insight for designing future GZSL methods,
and SELAR provides an easy to implement yet strong baseline.

Index Terms—Zero-shot learning, Attribute Localization

I. INTRODUCTION

Visual classification with deep convolutional neural net-
works has achieved remarkable success [1], [2], even surpass-
ing humans on some benchmarks [3]. This success, however,
requires enough training images per class (tens to hundreds of
images), which is often not the case in practice. The visual data
to learn new classes may be scarce (i.e. few-shot learning) or
inexistent (i.e. zero-shot learning -ZSL-). Humans, in contrast,
are able to infer new classes from few or even no visual
examples, just from a semantic description that connects them
to known concepts . Thus, ZSL is a desirable capability for
computer vision systems, allowing them to recognize a larger
set of classes via their semantic descriptions.

The most common representations in zero shot learning
are global visual features extracted from a pretrained feature
extractor, which are readily available off-the-shelf from pre-
vious works [4], [5]. These global visual features are then
projected to a semantic space [6], [7] or to an intermediate
space [8], where the comparison with semantic representations
takes place. In this paper, we focus on generalized zero-shot
learning (GZSL), where the test set includes both seen and
unseen classes. A major problem in GZSL is the model bias
towards seen classes. Existing works can be roughly divided
into two lines: generative and non-generative. Non-generative
methods [6], [7], [8], [4], [5], [9], [10], [11], [12], [13], [14],
[15], [16] focus on designing and learning a good visual-
semantic alignment. Generative methods [17], [18], [19], [20],
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[21], [22], [23] adopt generative models to synthesize visual
features of unseen classes. Generative methods have much
higher performance than non-generative methods, since the
classifier is trained with synthetic visual features of both seen
and unseen classes (real and synthetic features, respectively),
thus successfully avoiding the prediction bias towards seen
classes. Note that generative methods usually need access to
the descriptions of unseen classes during training (however
a counter-example is [22]), while non-generative GZSL
methods generally assume they do not have access. Thus, a
comparison between these two settings is not fair.

Most non-generative approaches focus on the role of the
classifier and the semantic models, directly relying on global
representations extracted by a pretrained network. The po-
tential of local representations has been explored mainly re-
cently in two directions: part detection [9], [10], and attention
mechanisms [11], [12], [13]. [16] takes a step further, and
combines part attention and leverages graph convolutional
networks to reason about the parts relations. However, training
part detectors normally requires additional and expensive
annotation data (i.e. part ids, bounding boxes) to train the part
detector. In contrast, attention mechanisms focus on discov-
ering discriminative regions without requiring explicit region
annotations. Both part detectors and attention mechanisms
are significantly more complex and arguably more difficult
to train than our proposed approach. Their representations
are also essentially different to ours, since the attributes are
not localized separately, but only a few regions are extracted.
Besides of those, [15] tries to find a more discriminative latent
attribute space, and [14] learns another label space where
labels of unseen classes can be regarded as linear combination
of labels of seen classes, which is more suitable for the GZSL.
However, none of these methods notices the potential for
attribute localization implicit in the feature extractor itself.

In this paper, we show a simple pipeline with fundamental
modules is actually localizing attributes implicitly, a fact that
is overlooked in literature. Then we show that the specific
spatial aggregation method (implicitly, global average pooling
- GAP - in most existing methods) becomes a critical choice
in the design, since it can influence the degree of localization
of the attributes. We then propose SELAR, a simple yet
powerful variant of the previous baseline that uses global
maximum pooling (GMP) as aggregation method. This simple
modification further encourages attribute localization, boosting
the performance and outperforming most GZSL methods with
explicit attention. This suggests that implicit attribute local-
ization provides better and more efficient representations than
those learned with complex explicit attention modules.
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Fig. 1: A simple pipeline. Trainable modules are highlighted in
red. The final fully connected layer is initialized with attribute
matrix A and fixed.

Fig. 2: Attribute Activation Maps (AAMs) output by 1x1 conv
from baseline (top) and SELAR (bottom) on CUB.

II. METHOD

A. Task Definition

In the GZSL, the training set contains seen classes and
is defined as S ≡ {(xs

i , y
s
i )}Ns

i=1, where i denotes the i-
th image of the seen class and ysi ∈ YS is its class la-
bel. The test set contains unseen classes and is defined as
U ≡ {(xu

j , y
u
j )}Nu

j=1. The sets of seen and unseen classes are
disjoint, i.e. YS ∩YU = ∅. The semantic information about a
particular class y is obtained by the class embedding function
as ψ (yi). In the case of attribute-based representations with
L attributes, the class prototype ψi = ψ (yi) is simply a L-
dimensional (binary or real valued) attribute vector . In this
way, the semantic information about all seen classes can be
conveniently captured in a

∣∣YS ∣∣ × L-dimensional attribute
matrix AS ≡

[
ψ1, . . . , ψ|YS |

]ᵀ
. Similarly, for unseen classes

we obtain AU ≡
[
ψ1, . . . , ψ|YU |

]ᵀ
. Finally, the evaluation in

the GZSL setting considers a test set that includes both seen
and unseen classes, i.e. YSU = YS ∪ YU .

B. Implicit Attribute Localization in ZSL

We formulate ZSL as a classification problem, using a deep
convolutional neural network (CNN) that internally projects
visual features to the semantic space and is trained end-
to-end with cross-entropy loss on seen data. In particular,
we are interested in certain intermediate representations: the
local visual feature ṽ ∈ RM×M×D, the global visual feature
v ∈ RD which is output by spatial aggregation, the global
semantic feature a ∈ RL, and the logits or unnormalized
class-scores z ∈ R|Y

S |. These intermediate representations lie
in three distinctive spaces: the D-dimensional visual space,
the L-dimensional semantic space (where L is the number
of attributes in our case) and the

∣∣YS ∣∣-dimensional class
space. For convenience, we can split the deep network into
several modules: the feature extractor ṽ = φ (x), the spatial
aggregation operation v = f (ṽ), and the linear projection to
the semantic space a = Wv, parametrized by the embedding
(or mapping) matrix W ∈ RL×D, i.e. a fully connected layer.
The embedding matrix is trainable from scratch, while the

feature extractor is usually pretrained and can be optionally
fine-tuned. Finally, the overall loss to minimize is

L = E(x,y)∼S
[
CE
(
softmax

(
ASWf (φ (x))

)
, y
)]

(1)

where CE is the cross-entropy loss. The ASWf(φ(x)) is
known as bilinear compatibility score. It measures the similar-
ity between the attribute vector and embedded visual features.

Normally in ZSL, the feature extractor is a pretrained
VGG [2] or ResNet [1] network, where spatial aggregation
is global average pooling (GAP). Since both are linear oper-
ations, we can switch the order of GAP and the linear layer
W (which now becomes a 1 × 1 convolution), as shown in
Fig. 1. We emphasize that this simple pipeline (denoted as
baseline) already includes the key elements of ZSL methods
operating on local features, that is, feature extractor (with the
spatial aggregation) and embedding/mapping layer, since most
methods at least contain these modules.

Since the baseline in Fig. 1 (with GAP) is identical to a
normal classification pipeline, we can get the Class Activation
Map (CAM) [24]. The CAM is computed as:

Cc =

Natt∑
i=1

Ac,i · ãi (2)

where the Cc is the CAM of class c. It shows the most
contributing region for the current class prediction. Natt is
the number of attributes, and Ac,i means the i-th value in the
attribute vector Ac. And the ãi is the i-th channel of the feature
map which is output by the feature extractor in Fig. 1.

CAM shows which part of the image contributes more to
the current class prediction. The attribute vector Ac gives the
importance of all attributes for the class c. It actually weighs
the different feature maps ãi to achieve object localization.
It is reasonable to conjecture that each feature map ãi is
related to a specific attribute (the i−th attribute in the attribute
vector). When we visualize the four feature maps (referred
to as Attribute Activation Map, AAM) output by the feature
extractor from the baseline, as shown in the upper part of
Fig. 2, those four AAMs correspond to the four attribute which
have the highest values in the attribute vector, i.e., having a
higher contribution to the current class. We can observe that
the AAMs are quite accurate performing weakly supervised
attribute localization. Thus, the visual-semantic embedding is
actually implicitly localizing the attribute regions.

C. SELAR: a simple yet effective method

In Figs. 3a and 3b, we first visualize the embedded visual
vectors (for both seen and unseen classes) from the baseline
on the CUB dataset (312 dimension corresponding to 312
attributes) for 300 images (50 images per class). Each row
is one embedded visual vector. We put together those vectors
from the same class and join them with the attribute vector of
this specific class (depicted in red). Because those features are
already embedded into the semantic space, they are expected
to be similar to the attribute vector. Ideally, the discriminative
features are expected to have high values only for those
attributes with high values in the ground-truth class attribute
vector. But observing Figs. 3a and 3b, embedded visual feature
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(a) Baseline (seen) (b) Baseline (unseen) (c) SELAR (seen) (d) SELAR (unseen)

Fig. 3: Global semantic representations (rows) of 50 images per class (randomly selected) of 2 classes (super-rows). Each
column corresponds to one of the 312 attributes. The description corresponding to the class (attribute vector) is shown in red
(scaled to multiple rows). The ideal features (white one) should only have similar and sparse activation as the attribute
vectors (red one).

vectors are also activated for some non-existing attributes (the
ones which are not red in the attribute vector).

We posit that this is due to the fact that GAP aggregates
all spatial information of the feature maps (i.e. AAMs). Each
spatial location in AAMs already corresponds to a large
receptive field, while most attributes are typically localized in
a particular region, thus producing noisy features from GAP.

In order to make the embedded visual vector more sparse
and discriminative, we focus on obtaining more accurate
AAMs. Therefore, we replace the GAP with global max
pooling (GMP). The rationale behind this choice is that GMP
has to focus on a single spatial location of the input AAMs
(instead of averaging them as in GAP), thus enforcing the
model to learn AAMs that are more localized . The framework
is shown in Fig. 1. We refer to this approach as SELAR
(Simple and Effective Localized Attribute Representation).
Compared with the baseline, SELAR produces AAMs which
correspond to more relevant regions, as shown in Fig. 2.
And the visualization of embedded visual vector shown in
Figs. 3c and 3d clearly shows that SELAR generates more
sparse and discriminative feature vectors, resembling more the
actual attribute vectors describing the class.

III. EXPERIMENTS

Settings. We evaluate our method on three datasets: CUB [30],
SUN [31] and AWA2 [4] under the challenging GZSL setting.
We denote the accuracy on unseen classes and seen classes
as AccU and AccS , respectively, and the evaluation metric for
GZSL is the harmonic mean, calculated as H = 2 ∗ AccU ∗
AccS/(AccU +AccS). Our model is built on top of ImageNet
pretrained model. We initialize the last fully connected layer
with the L2-normalized attribute matrix, then remaining fixed.
For fair comparison, we distinguish between methods that
assume the descriptions of unseen classes are unknown during
training (typically non-generative methods), and methods that
assume they are known (generative methods).

GZSL performance. Table I shows the results. Regarding
methods that do not assume knowledge about unseen classes,
SELAR achieves state-of-the-art performance on CUB and
competitive results on SUN and AWA2. Notably, it surpasses
other more complex methods on the fine-grained CUB dataset

significantly. We conjecture that this is likely due to the fact
that attributes of CUB are very localized, and easily linked to
visual patterns, unlike in AWA2 and SUN, which have abstract
attributes such as smart and domestic. Among the methods in
Table I, AREN [11], JLA [28] and AttentionZSL [29] utilize
extra modules to localize parts or obtain attention maps. AREN
also has one branch with explicit self-attention and GMP, and
SGMA [12] has additional part detection modules. However,
these methods obtain inferior results on most datasets com-
pared to our method, despite of their increased complexity.
While SGMA achieves state-of-the-art performance on AWA2,
however, it requires four forward passes through the feature
extractor and larger input resolution. Specifically for SUN,
using GAP or GMP does not make much difference. We
posit that this is due to the fact that attributes in the SUN
dataset are not always clearly localizable (like the attribute
natural light); whether to consider all these regions by GAP
or only a single location by GMP does not influence a lot.
We also report the average H over all these datasets (we do
not include here methods with results only on two datasets) in
Table I. For this metric SELAR has the highest value among
all these methods. The ratio S/U (only for non-generative
and without calibration) suggests that our method has lower
seen-unseen bias than others. In general, we observe that two
simple modifications of the backbone network (i.e. mapping
to localized semantic space with a 1 × 1 convolution and
encouraging more discriminative localization with GMP )
result in significant gains and lower bias, and surprisingly good
results, especially considering that the other methods use much
more complex architectures.

We also report results for SELAR with calibration stack-
ing [32]. Calibration stacking helps to avoid bias towards
seen classes by decreasing the prediction score for all seen
classes during evaluation. However, finding the precise factor
requires observing a small set of validation images (both seen
and useen). In addition, for reference, we also include results
of several generative models that assume knowledge (except
IZF-NBC [22]) of the descriptions of unseen classes (i.e.
images are unseen, but class descriptions are seen), which
synthesize features for unseen data, and thus training a less
biased classifier with seen and unseen classes.
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SUN CUB AWA2
Method U S H S/U U S H S/U U S H S/U H̄

Non-generative methods (Unseen class descriptions are unknown during training)
PSR [25] w/o 20.8 37.2 26.7 1.79 24.6 54.3 33.9 2.21 20.7 73.8 32.3 3.57 31.0
DCN [26] w/o 25.5 37.0 30.2 1.45 28.4 60.7 38.7 2.14 25.5 84.2 39.1 3.30 36.0
MIIR [27] w/o 22.0 34.1 26.7 1.55 30.4 65.8 41.2 2.16 17.6 87.0 28.9 4.94 32.3
AREN [11] 19.0 38.8 25.5 2.04 38.9 78.7 52.1 2.02 17.5 93.2 29.5 5.33 35.7
JLA [28] 23.2 36.6 28.4 1.58 36.6 59.8 45.4 1.63 24.5 91.6 38.3 3.74 37.4
AttentionZSL [29] 18.5 40.0 25.3 2.16 36.2∗ 80.9∗ 50.0∗ 2.23 27.0∗ 93.4∗ 41.9∗ 3.46 39.1
SGMA [12] − − − − 36.7∗ 71.3∗ 48.5∗ 1.94 37.6∗ 87.1∗ 52.5∗ 2.32 −
Baseline w/o 23.8 32.0 27.3 1.34 32.1 63.0 42.5 1.96 12.0 87.2 21.0 7.27 30.3
Baseline 23.4 37.2 28.7 1.59 39.0(37.1∗) 74.2(73.2∗) 51.1(49.2∗) 1.97 13.7(14.6∗) 90.4(77.0∗) 23.8(24.5∗) 6.60 33.9
SELAR w/o 22.8 31.6 26.5 1.39 43.5 71.2 54.0 1.64 31.6 80.3 45.3 2.54 41.9
SELAR 23.8 37.2 29.0 1.56 43.0(51.4∗) 76.3(75.2∗) 55.0(61.0∗) 1.46 32.9(29.5∗) 78.7(80.2∗) 46.4(43.2∗) 2.39 45.5

Generative methods (Unseen class descriptions are known during training)
f-CLSWGAN [17] 42.6 36.6 39.4 − 43.7 57.7 49.7 − 52.1 68.9 59.4 − 49.5
f-VAEGAN-D2 [18] 45.1 38.0 41.3 − 48.4 60.1 53.6 − 57.6 70.6 63.5 − 52.8
CADA-VAE [19] 47.2 35.7 40.6 − 51.6 53.5 52.4 − 55.8 75.0 63.9 − 52.3
attr-BImag [20] 22.4 40.1 29.2 − 41.3 77.7 53.9 − 60.0 73.8 66.2 − 49.8
class-attr-BImag [20] 21.7 40.7 28.2 − 44.1 73.6 55.9 − 51.4 76.9 61.6 − 48.6
‡IZF-NBC [22] 44.5 50.6 47.4 44.2 56.3 49.5 58.1 76.0 65.9 54.3
†SELAR 40.5 32.9 36.3 − 62.4 64.9 63.6 − 52.0 71.9 60.3 − 53.4

TABLE I: Generalized Zero-Shot Learning on Proposed Split (PS). U = Top-1 accuracy on YU , S = Top-1 accuracy on YS , H
= harmonic mean, S/U can show the bias towards seen class, H̄ denotes the average over the H on three datasets. * indicates
results using VGG19 as feature extractor while others use ResNet-101. w/o means not finetuning feature extractor. We highlight
the best results for both non-generative and generative methods. † indicates using calibration, which assumes access to a small
validation set of seen and unseen classes. ‡ means not requiring accessing to unseen class descriptions.

Type Space U S H
GAP visual, attribute, class (all equivalent) 37.1 73.2 49.2
GMP visual 39.1 80.7 52.7
GMP attribute (ours) 51.4 75.2 61.0
GMP class 26.3 74.7 38.9

TABLE II: Ablation study of pooling operations and pooling
spaces. The results are reported on the CUB dataset.

Fig. 4: Visualization of attribute maps on SUN from the
baseline (top one) and SELAR (bottom one). Below the image
are the corresponding attributes.

Aggregation method and aggregation space. We investigate
the optimal location to aggregate local features into global
ones. The ablation study shown in Table II evaluates GAP
and GMP in three different spaces: visual (before the em-

Fig. 5: Visualization of attribute maps on CUB from baseline
(upper part) and SELAR (lower part). Those attributes have
lower value in the attribute vector.

bedding layer), attribute (after embedding layer) and class
(after attribute mapping), which also correspond to the order
in which features are mapped to the different spaces in our
classification pipeline. Note that GAP in either of the three
spaces is equivalent due to linearity. Results suggest that the
best performance is achieved by GMP in the attribute space.

Attribute Activation Maps. Here we visualize AAMs ã, for
both the baseline and SELAR on SUN in Fig. 4. Whereas on
the CUB and AWA datasets the attributes are present in clearly
localizable small regions, for the SUN dataset this is not the
case. This maybe the reason why SELAR and the baseline
have similar performance on SUN. While we cannot guarantee
that each AAM corresponds to the true attribute, the network
learns to correlate the related region with its activation value
automatically. We find that AAMs with high activation values
(>85) are always highly related to the corresponding attribute.
We show additional AAMs with lower attribute values in
Fig. 5, those attributes have either middle value or do not
exist (0). In those cases, the AAM sometimes corresponds to
a specific attribute, but sometimes not.

IV. CONCLUSIONS

In this paper, we highlight an overlooked fact in zero-
shot learning research, that is, that the feature extractor
backbones of common ZSL pipelines can implicitly localize
attributes without any explicit region localization module such
as attention or part detection. Based on this finding, we
propose SELAR, a simple GZSL framework that efficiently
extracts highly discriminative representations based on local-
ized attributes. Our method is surprisingly effective, achieving
competitive results compared to much more complex state-
of-the-art methods. Our findings provide useful insight into
how to further design effective and efficient (G)ZSL methods,
and advocate SELAR as a strong, yet simple and easy to
implement, baseline for future zero-shot learning research.
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