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Abstract—For future learning systems incremental learning
is desirable, because it allows for: efficient resource usage by
eliminating the need to retrain from scratch at the arrival of
new data; reduced memory usage by preventing or limiting the
amount of data required to be stored — also important when
privacy limitations are imposed; and learning that more closely
resembles human learning. The main challenge for incremental
learning is catastrophic forgetting, which refers to the precipitous
drop in performance on previously learned tasks after learning a
new one. Incremental learning of deep neural networks has seen
explosive growth in recent years. Initial work focused on task
incremental learning, where a task-ID is provided at inference
time. Recently we have seen a shift towards class-incremental
learning where the learner must classify at inference time between
all classes seen in previous tasks without recourse to a task-ID. In
this paper, we provide a complete survey of existing methods for
incremental learning, and in particular we perform an extensive
experimental evaluation on twelve class-incremental methods.
We consider several new experimental scenarios, including a
comparison of class-incremental methods on multiple large-scale
datasets, investigation into small and large domain shifts, and
comparison on various network architectures.

I. INTRODUCTION

Incremental learning, also often referred to as continual
or lifelong learning, aims to develop artificially intelligent
systems that can continuously learn to address new tasks
from new data while preserving knowledge learned from
previously learned tasks [1f], [2]. In most incremental learning
(IL) scenarios, tasks are presented to a learner in a sequence
of delineated training sessions during which only data from a
single task is available for learning. After each training session,
the learner should be capable of performing all previously
seen tasks on unseen data. The biological inspiration for this
learning model is clear, as it reflects how humans acquire and
integrate new knowledge: when presented with new tasks to
learn, we leverage knowledge from previous ones and integrate
newly learned knowledge into previous tasks [3].

This contrasts markedly with the prevailing supervised
learning paradigm in which labeled data for all tasks is jointly
available during a single training session of a deep network.
Incremental learners only have access to data from a single
task at a time while being evaluated on all learned tasks
so far. The main challenge in incremental learning is to
learn from data from the current task in a way that prevents
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forgetting of previously learned tasks. The naive approach of
finetuning, so fruitfully applied to domain transfer problems,
suffers from the lack of data from previous tasks and the
resulting classifier is unable to classify data from them. This
drastic drop in performance on previously learned tasks is a
phenomenon known as catastrophic forgetting [4], [5], [6].
Incremental learning aims to prevent catastrophic forgetting,
while at the same time avoiding the problem of intransigence
which inhibits adaptation to new tasks [7].

In addition to the biological motivations for study, there
are numerous practical advantages to incremental learning.
Incremental learners optimize computational resources better
than classical supervised learning. In the classical supervised
learning approach, when presented with new tasks to incorpo-
rate into the scope of an artificially intelligent system, the best
(often only) option is to jointly retrain over all tasks, previous
and new. However, in many scenarios data from previous tasks
may not be available due to privacy considerations.

We adopt the viewpoint on continual learning first proposed
along with the iCaRL approach [1f] and the terminology used
in [8]]. In incremental learning the training is divided into a
sequence of tasks, and in any training session the learner has
only access to the data of the current task (optionally, some
methods can consider a small amount of stored data from
previous tasks). Most early methods for incremental learning
considered the scenario, known as task-incremental learning
(task-IL), in which the algorithm has access to a task-ID at
inference time. This has the clear advantage that methods do
not have to discriminate between classes coming from different
tasks. More recently, methods have started addressing the
more difficult scenario of class-incremental learning (class-
IL)[] where the learner does not have access to the task-ID
at inference time, and therefore must be able to distinguish
between all classes from all tasks. In the last few years a wide
variety of methods for class-incremental learning have been
proposed, and we believe the time is ripe to provide a broad
overview and experimental comparison of them in one place.

In this survey we set out to identify the main challenges
for class-IL, and we organize the proposed solutions in three
main categories: regularization-based solutions that aim to
minimize the impact of learning new tasks on the weights
that are important for previous tasks; exemplar-based solutions
that store a limited set of exemplars to prevent forgetting of
previous tasks; and solutions that directly address the problem
of task-recency bias, a phenomenon occurring in class-IL

'We do not refer to the scenario where each task only contains a single
class, but consider adding a group of classes for each task.
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methods that refers to the bias towards recently-learned tasks.
In addition to an overview of progress in class-IL in recent
years, we also provide an extensive experimental evaluation
of existing methods. We evaluate several of the more popu-
lar regularization methods (often proposed for task-IL), and
extend them with exemplars for a more fair comparison to
recently developed methods. In addition, we perform extensive
experiments comparing twelve methods on several scenarios
and also evaluate class-IL methods on a new, more challenging
multi-dataset setting. Finally, we are the first to compare these
methods on a wide range of network architectures. We will
provide code for our extensible class-IL evaluation framework
that will ensure reproducibility of all results.

This paper is organized as follows. In Sec. |lIf we describe
related work, focusing mainly on the incremental learning
literature not included in our survey. In Sec. we define
class-incremental learning and the main challenges which
need to be addressed. In Sec. we start by defining the
scope of methods we consider for our experimental evaluation
based on a list of desiderata. Then we introduce the main
approaches that have been proposed for class-IL. In Sec.|V] we
outline our experimental setup and follow with an extensive
experimental evaluation in Sec. In Sec. we discuss
several emerging trends in Class-IL and then finish with
conclusions in Sec. [VIII

II. RELATED WORK

In this section we broadly review related work from the
literature on incremental learning. Detailed discussion of class-
incremental methods specifically covered by this review is
deferred until Sec.

Existing surveys. The problem of catastrophic forgetting has
been acknowledged for many years. Already in the eighties,
McCloskey and Cohen [6] showed that while human sub-
jects suffered from gradual forgetting of previously learned
tasks, algorithms trained with backpropagation suffered from
catastrophic forgetting. Radcliff [9] confirmed this finding
on a wider range of tasks trained with backpropagation. An
excellent review on early approaches to mitigating catastrophic
forgetting is by French [3]]. This review also discusses how the
brain prevents catastrophic forgetting and lays out possible
solutions for neural network design. With the resurgence of
deep learning from around 2011 [10], after breakthroughs in
hardware (GPUs) and availability of large labeled datasets (like
ImageNet [11]), the problem of catastrophic forgetting quickly
gained renewed attention [4]], [5]. This led to a surge of work in
incremental learning, continual learning and lifelong learning.

This surge of new research has also resulted in recent
surveys on the subject. Parisi et al. [12] provide an exten-
sive survey on lifelong learning. This review is especially
valuable because of its in-depth discussion of how biological
systems address lifelong learning. They thoroughly discuss
biologically-motivated solutions, such as structural plasticity,
memory replay, curriculum and transfer learning. Another
review [|13]] focuses on continual learning for robotics, and puts
special effort into unifying evaluation methodologies between
continual learning for robotics and non-robotics applications,

with the aim of increasing cross-domain progress in continual
learning. These reviews, however, do not provide an experi-
mental performance evaluation of existing methods in the field.

Some recent surveys do include evaluation of methods.
Pfulb and Gepperth [14] propose a training and evaluation
paradigm for task-IL. methods. Their evaluations are limited
to two tasks. Lomonaco and Maltoni [15]] evaluate several
strategies on weight initialization: random initialization, start-
ing from a pretrained network and starting from a pretrained
but only learning the classifier. De Lange et al. [|16] perform an
extensive survey of task-IL with an experimental evaluation,
including an analysis of model capacity, weight decay, and
dropout regularization within context of task-IL. In addition,
they propose a framework for continually determining the
stability-plasticity trade-off of the learner — which we also
apply in our evaluation. Existing surveys focus on task-IL,
and to the best of our knowledge there is no survey which
categorizes and broadly evaluates class-IL approaches. Given
the increased attention to class-IL in recent years, we think
such a survey is timely.

Task-incremental learning.  As discussed in [16], most
task-IL methods can be grouped into families of techniques
having similar characteristics. Most regularization-based and
replay-based methods can be applied to both task-IL and
class-IL. Those are described more in depth in Sec.
Parameter isolation methods are usually applied to task-IL
problems since they become computationally expensive or
under-perform without access to the task-ID.

Mask-based methods reduce or completely eliminate catas-
trophic forgetting by applying masks to each parameter or
to each layer’s representations. However, by learning useful
paths for each task in the network structure, the simultaneous
evaluation of all learned tasks is not possible. This forces
several forward passes with different masks, which makes
such methods very effective for task-aware evaluation, but
impractical for task-agnostic settings [16], [17]. Piggyback
learns masks on network weights while training a back-
bone [18]]. PackNet learns weights and then prunes them to
generate masks [[19]. HAT [20] applies attention masks on
layer activations to penalize modifications to those that are
important for a specific task. TFM [17]] applies masks on the
activations during training so that weights can be reused but
not modified if they relate to already learned tasks. DAN [21]]
combines existing filters to learn filters for new tasks. Finally,
PathNet [22] learns selective routing through the weights using
evolutionary strategies.

Architecture growing methods dynamically increase the
capacity of the network to reduce catastrophic forgetting. They
rely on promoting a more intransigent model capable of main-
taining previous task knowledge, while extending that model
in order to learn new tasks. This makes some of these methods
impractical when the task-ID is not known, or adds too many
parameters to the network which makes them unfeasible for
large numbers of tasks. EG [23]] duplicates the model for each
new task in order completely eliminate forgetting. PNN [24]]
duplicates each layer and adds lateral connections between
duplicates for each task. Old weights are fixed, allowing access



PREPRINT UNDER REVIEW

to that information while learning the new task. However,
at each task the networks grows quadratically. To solve that
issue, P&C [25] proposes duplicating the network only once to
keep the number of parameters fixed, and use Elastic Weight
Consolidation (EWC [5]]) to mitigate forgetting. RCL [26]]
adaptively expands each layer of the network and uses an RNN
controller to determine the number of filters to add for each
task. In LtG [27]], the authors propose an architecture search
approach to avoid catastrophic forgetting. A network structure
optimization component allows each individual layer to be
reused, extended or duplicated, while a learning component
finetunes parameters.

Online learning. Online methods are based on streaming
frameworks where learners are allowed to observe each ex-
ample only once instead of iterating over a set of examples in
a training session [28]]. Instances are non-i.i.d and usually have
temporal correlation. Lopez-Paz [29]] establishes definitions
and evaluation methods for this setting and describes GEM,
which uses a per-task exemplar memory to constrain gradients
so that the approximated loss from previous tasks is not
increased. A-GEM [30] improves on GEM in efficiency by
constraining based on the average of gradients from previous
class exemplars. However, the authors of [31]] show that simply
training on the memorized exemplars, similar to the well-
established technique in reinforcement learning [32]], outper-
forms previous results. GSS [33]] performs gradient-based ex-
emplar selection based on the GEM and A-GEM procedure to
allow training without knowing the task boundaries. MIR [34]
trains on the exemplar memory by selecting exemplars that
will have a bigger loss increase after each training step. In [35]]
the memory is used to store discrete latent embeddings from
a Variational Autoencoder that allows generation of previous
task data for training. MER [36] combines experience replay
with a modification of the meta-learning method Reptile [37]]
to select replay samples which minimize forgetting.

Variational continual learning. Variational continual learn-
ing is based on the Bayesian inference framework. VCL [3§]]
proposes to merge online and Monte Carlo variational in-
ference for neural networks yielding variational continual
learning. It is general and applicable to both discriminative
and generative deep models. VGL [39] introduces Variational
Generative Replay, a variational inference generalization of
Deep Generative Replay (DGR), which is complementary
to VCL. UCL [40] proposes uncertainty-regularized contin-
ual learning based on a standard Bayesian online learning
framework. It gives a fresh interpretation of the Kullback-
Leibler (KL) divergence term of the variational lower bound
for the Gaussian mean-field approximation case. FBCL [41]]
proposes to use Natural Gradients and Stein Gradients to better
estimate posterior distributions over the parameters and to
construct coresets using approximated posteriors. [UVCL [42]]
proposes a new best-practice approach to mean-field vari-
ational Bayesian neural networks. These methods normally
consider only the task-aware setting. BGD [43|] updates the
posterior in closed form and that does not require a task-ID.

Pseudo-rehearsal methods. In order to avoid storing ex-
emplars and privacy issues inherent in exemplar rehearsal,

some methods learn to generate examples from previous tasks.
DGR [44] generates those synthetic samples using an uncondi-
tional GAN. An auxiliary classifier is needed to assign ground
truth labels to each generated sample. An improved version is
proposed in MeRGAN [45], where a label-conditional GAN
and replay alignment are used. DGM [46] combines the
advantages of conditional GANs and synaptic plasticity using
neural masking. A dynamic network expansion mechanism
is introduced to ensure sufficient model capacity. Lifelong
GAN [47] extends image generation without catastrophic
forgetting from label-conditional to image-conditional GANS.
As an alternative to exemplar rehearsal, some methods perform
feature replay [48)]], [49], which need a fixed backbone network
to provide good representations.

Incremental Learning beyond image classification.
Shmelkov et al. [50] propose to learn object detectors
incrementally. They use Fast-RCNN [51] as the network and
propose distillation losses on both bounding box regression
and classification outputs. Additionally, they choose to distill
the region proposal with the lowest background scores, which
filters out most background proposals. Hao et al. [52] extend
Faster-RCNN [53] with knowledge distillation. Similarly,
Michieli et al. [54] propose to distill both on the output
logits and on intermediate features for incremental semantic
segmentation. Recently, Cermelli et al. [55] model the
background by revisiting distillation-based methods and the
conventional cross entropy loss. Specifically, previous classes
are seen as background for the current task and current classes
are seen as background for distillation. Incremental semantic
segmentation has also been applied to remote sensing [56]
and medical data [57].

Catastrophic forgetting has been mainly studied in feed-
forward neural networks. Only recently the impact of catas-
trophic forgetting in recurrent LSTM networks was stud-
ied [58]. In this work, they observe that catastrophic forgetting
is even more notable in recurrent networks than feed-forward
networks. This is because recurrent networks amplify small
changes of the weights. To address catastrophic forgetting an
expansion layer technique for RNNs was proposed in [59]. A
Net2Net technique [60] was combined with gradient episodic
memory in [61]. In addition, they propose a benchmark of
tasks for training and evaluating models for learning sequen-
tial problems. Finally, preventing forgetting for the task of
captioning was studied in [62].

III. CLASS-INCREMENTAL LEARNING

In this section, we define the specifics of the class-
incremental learning setup we consider and discuss the main
challenges that class-IL. methods must address.

A. General class-incremental learning setup

Our investigation focuses on class-incremental learning
scenarios in which the algorithm must learn a sequence of
tasks. By task, we refer to a set of classes disjoint from
classes in other (previous or future) tasks. In each training
session the learner only has access to data from a single task.
We optionally consider a small memory that can be used to
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store some exemplars from previous tasks. Tasks consist of a
number of classes, and learners are allowed to process the
training data of the current task multiple times during the
training session. We do not consider the online learning setting
used in some papers [29] in which each data sample is only
seen once.

More formally, an incremental learning problem 7 consists
of a sequence of n tasks:

T = [(C*, DY), (C? D?),...,(C",D")], (1)

where each task t is represented by a set of classes

={c{,c5....cl,} and training data D'. We use N’
to represent the total number of classes in all tasks
up to and including task : N'=3'_ |C|. We con-
sider class-incremental classification problems in which
Di={(x1,y1),(x2,¥2); - (Xmt,¥Ymt) }» where x are input
features for a training sample and y € {0,1 } " is a one-hot
ground truth label vector corresponding to x;. During training
for task ¢, the learner only has access to D?, and the tasks do
not overlap in classes (i.e. C* n C7 = & if i # §).

Our incremental learners are deep networks parameterized
by weights 6 and we use o(x) = h(x;60) to indicate the output
logits of the network on input x. We further split the neural
network in a feature extractor f with weights ¢ and linear
classifier g with weights V' according to o(x) = g(f(x;¢); V).
We use y = o(h(x;0)) to identify the network predictions,
where o indicates the softmax function. After training on task
t, we evaluate the performance of the network on all classes
Uf=1 C". This contrasts with task-IL where the task-ID ¢ is
known and evaluation is only over task C*? at inference time.

Most class-IL classifiers are trained with a cross-entropy
loss. When training only on data from the current task ¢, we
can consider two cross-entropy variants. We can consider a
cross-entropy over all classes up to the current task:

eXp(Ok)

yplog ————
Z 21 1 eXp(OZ)

Note that in this case, since the softmax normalization is
performed over all previously seen classes from all previous
tasks, errors during training are backpropagated from all
outputs — including those which do not correspond to classes
belonging to the current task.

Instead, we can consider only network outputs for the
classes belonging to the current task ¢ and define the following
cross-entropy loss:

L.(x,y;0 2
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This loss only considers the softmax-normalized predictions
for classes from the current task. As a consequence, errors
are backpropagated only from the probabilities related to these
classes from task ¢.

When using exemplars representing data from previous
tasks, it is natural to apply Eq. [2] which considers the estimated
probabilities on both previous and new classes. However,
in the results we will show that when no exemplars are
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Fig. 1: A network trained continually to discriminate between
task 1 (left) and task 2 (middle) is unlikely to have learned
features to discriminate between the four classes (right). We
call this problem inter-task confusion.

used, Eq. 3 results in significantly less catastrophic forgetting.
Interestingly, finetuning with Eq. [3] leads to a much stronger
baseline than finetuning with Eq.[2} which is generally reported
in literature.

B. Challenges of class-incremental learning

The fundamental obstacles to effective class-incremental
learning are conceptually simple, but in practice very chal-
lenging to overcome. These challenges originate from the
sequential training of tasks and the requirement that at any
moment the learner must be able to classify all classes from
all previously learned tasks. Incremental learning methods
must balance retaining knowledge from previous tasks while
learning new knowledge for the current task. This problem is
called the stability-plasticity dilemma [63]]. A naive approach
to class-IL which focuses solely on learning the new task
will suffer from catastrophic forgetting: a drastic drop in the
performance on previous tasks [4], [|6]. Preventing catastrophic
forgetting leads to a second important problem of class-IL,
that of intransigence: the resistance to learn new tasks [7].
There are several causes of catastrophic forgetting in class-
incremental learners:

o Weight drift: While learning new tasks, the network
weights relevant to old tasks are updated to minimize a
loss on the new task. As a result, performance on previous
tasks suffers — often dramatically.

« Activation drift: Closely related to weight drift, changing
weights result in changes to activations, and consequently
in changes to the network output. Focusing on activations
rather than on weights can be less restrictive since this
allows weights to change as long as they result in minimal
changes in layer activations.

« Inter-task confusion: in class-IL the objective is to
discriminate all classes from all tasks. However, since
classes are never jointly trained the network weights
cannot optimally discriminate all classes (see Fig. [T). This
holds for all layers in the network.

« Task-recency bias: Separately learned tasks might have
incomparable classifier outputs. Typically, the most dom-
inant task bias is towards more recent task classes. This
effect is clearly observed in confusion matrices which il-
lustrate the tendency to miss-classify inputs as belonging
to the most recently seen task (see Fig. [2).
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Fig. 2: Examples of task and class confusion matrices for
Finetuning (top row) and Finetuning with 2,000 exemplars
(bottom row) on CIFAR-100. Note the large bias towards the
classes of the last task for Finetuning. By exploiting exemplars,
the resulting classifier is clearly less biased.

The first two sources of forgetting are related to network drift
and have been broadly considered in the task-IL literature.
Regularization-based methods either focus on preventing the
drift of important weights [5], [7]], [64], [65] or the drift of
activations [66]], [67].

The last two points are specific to class-incremental learners
since they have no access to a task-ID at inference time. Much
of the research in class-IL has focused on reducing task imbal-
ance [68], [69], [70], which addresses the task-recency bias. To
prevent inter-task confusion and learn representations which
are optimal to discriminate between all classes, rehearsal [1],
[71] or pseudo-rehearsal [44], [45], [49] is commonly used.

IV. APPROACHES

In this section, we describe several approaches to address
the above mentioned challenges of class-incremental learning.
We divide them into three main categories: regularization-
based methods, rehearsal-based methods, and bias-correction
methods. First, we discuss the scope of this survey by ar-
ticulating and motivating the properties that class-incremental
learning methods should have for consideration in our exper-
imental evaluation.

A. Scope of our experimental evaluation

The literature on IL is vast and growing, and several
definitions and interpretations of class-IL have been proposed
in recent years [1]], [8]], [16], [25]. In order to narrow the
scope of this survey to a broad group of usefully comparable
methods, we consider class-IL methods that are:

1) Incremental: methods that are trainable from a stream
of data drawn from a non-stationary distribution.

2) Task transferable: class-incremental learners capable of
exploiting knowledge from previous classes to improve
learning of new ones (forward transfer), as well as
exploiting new data to improve performance on previous
tasks (backward transfer).

3) Task-agnostic: incremental learners able to predict
classes from all previously learned tasks in a task-
agnostic way (i.e. without recourse to an task oracle
providing a subset possible classes).

4) Offline: methods in which data is presented in training
sessions whose data is i.i.d and can be processed multiple
times before moving on to the next task.

5) Fixed network architecture: methods using a fixed ar-
chitecture for all tasks, without adding significant amount
of parameters to the architecture for new tasks.

6) Tabula rasa: incremental learners trained from scratch
which do not require pretraining on large labeled datasets.
This property eliminates potential biases introduced by
the class distributions seen during pretraining and any
exploits derivable from that knowledge.

7) Mature: methods applicable to complex image classifi-
cation problems.

Properties 1 and 2 are intrinsic characteristics of IL methods,
and property 3 distinguishes class-incremental from task-
incremental learning. While properties 4-7 are characteristics
that we use to select methods for our evaluation.

Finally, we consider one additional property:

8) Exemplar-free: methods not requiring storage of image
data from previous tasks. This is an important charac-
teristic of methods which should be privacy-preserving
(optional).

Our evaluation considers methods requiring image exemplars
as well as those which do not and can therefore be applied
in systems having stricter privacy considerations. Methods not
requiring any data storage are seeing increased attention in
a world where data privacy and security are fundamental for
many users and are under increased legislative control.

B. Regularization approaches

Several approaches use regularization terms together with
the classification loss in order to mitigate catastrophic for-
getting. Some regularize on the weights and estimate an
importance metric for each parameter in the network [5], [7],
[64], 165], [72]l, [73], while others focus on the importance
of remembering feature representations [66], [67], [74], [[75],
[[76]]. Most of these approaches have been developed within the
context of task-IL and have been reviewed by other works [[16].
Because of their importance also for class-IL, we discuss them
briefly. Regularization of feature representations in particular
is widely used in class-IL. Finally, we will describe several
regularization techniques developed recently specifically for
class-IL.

Weight regularization. The first class of approaches focuses
on preventing weight drift determined to be relevant for
previous tasks. They do so by estimating a prior importance
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of each parameter in the network (which are assumed to be
independent) after learning each task. When training on new
tasks, the importance of each parameter is used to penalize
changes to them. That is, in addition to the cross-entropy
classification loss, an additional loss is introduced:

|0”|

ZQ (91‘1_61‘ (4)
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where 6! is weight i of the network currently being trained,
9! is the value of this parameter at the end of training on
task £ -1, |#*1| is the number of weights in the network, and
); contains importance values for each network weight.

Kirkpatrick et al. [5]] proposed Elastic Weight Consolidation
(EWC) in which €; is calculated as diagonal approximation
of the empirical Fisher Information Matrix. However, this
captures the importance of the model at the minimum after
each task is learned, while ignoring the influence of those
parameters along the learning trajectory in weight space.
In [73], they improve EWC by rotating the parameter space
to one that provides a better approximation of the Fisher
Information Matrix. However, the model has to be extended
with fixed parameters during training, which does not increase
the capacity of the network but incurs in a computational and
memory cost.

In contrast, [65] proposed the Path Integral approach
(PathInt), that accumulates the changes in each parameter
online along the entire learning trajectory. As noted by the
authors, batch updates to the weights might lead to overesti-
mating the importance, while starting from pretrained models
might lead to underestimating it. To address this, Memory
Aware Synapses (MAS) [64] also proposes to calculate €2;
online by accumulating the sensitivity of the learned func-
tion (the magnitude of the gradient). In [7]], the Riemanian
Walk (RWalk) algorithm is proposed: both Fisher Information
Matrix approximation and online path integral are fused to
calculate the importance for each parameter. In addition,
RWalk uses exemplars to further improve results.

Data regularization. The second class of regularization-
based approaches aims to prevent activation drift and is based
on knowledge distillation [[77]], [78|] which was originally de-
signed to learn a more compact student network from a larger
teacher network. Li et al. [67] proposed to use the technique
to keep the representations of previous data from drifting too
much while learning new tasks. Their method, called Learning
without Forgetting (LWF) applies the following loss:

Ntl

Zw

where 7 (x) are temperature-scaled logits of the network:

L'dm x 0 x) log 7k (x), (5)

eok(x)/T

Nt—l
PINENC
and o(x) is the output of the network before the softmax is
applied, and T is the temperature scaling parameter. We use

71 to refer to the predictions of the network after training
task ¢-1. The temperature scaling was introduced in 78] to

(6)

Tk (X) B oz(X)/T7

help with the problem of having the probability of the correct
class too high. Many methods use T'=2 [67], [69], [[70], [[71]]
and we also apply that in this survey. It is important to note
that when using exemplars the distillation loss is typically also
applied to the exemplars of previous classes [1]], [69]], [70],
[71].

A very similar approach, called less-forgetting learning
(LFL), was proposed by Jung et al. [66]. LFL preserves
previous knowledge by freezing the last layer and penalizing
differences between the activations before the classifier layer.
However, since this can introduce larger issues when the
domain shift is too large, other approaches introduced modi-
fications to deal with it. Encoder-based lifelong learning [74]]
extends LwF by optimizing an undercomplete autoencoder
which projects features to a manifold with fewer dimensions.
One autoencoder is learned per task, which makes the growth
linear, although the autoencoders are small compared to the
total model size.

The learning without forgetting loss in Eq. [5| was originally
proposed for a task-IL setting. However, it has since been a
key ingredient of many class-IL methods []1]], [|69], [70l, [71],
[76], [79]. Some works have observed that the loss works
especially well when the domain shift between tasks is small
(as is typically the case for class-IL), however, when domain
shifts are large its efficacy drops significantly [23]].

Recent developments in regularization. Several new
regularization techniques have been proposed in recent work
on class-IL. Zagoruyko and Komodakis [80] proposed to use
the attention of the teacher network to guide the student
network. Learning without Memorizing (LwM) [81] applies
this technique to class-IL. The main idea is that the attention
used by the network trained on previous tasks should not
change while training the new task. Features contributing to
the decision of a certain class label are expected to remain the
same. This is enforced by the attention distillation loss:

=1 t
a0 (59 = |t oon ~ Tereonaly

where the attention map () is given by:
Q' (x) = Grad-CAM (x, 6", ¢) (8)
Q" (x) = Grad-CAM (x, o+t c) 9

and is generated with the Grad-CAM algorithm [82]]. Grad-
CAM computes the gradient with respect to a target class
c to produce a coarse localization map indicating the image
regions which contributed to the prediction. Here we cannot
use the target class label, because this label did not exist when
training the previous model #*~1. Instead, the authors propose
to use the previous class predicted with highest probability to
compute the attention maps: ¢ = argmax h (x; 9“1).
Another recent method building upon LwF is Domain
Model Consolidation (DMC) [76]]. It is based on the observa-
tion that there exists an asymmetry between previous and new
classes when training: new classes have explicit and strong
supervision, whereas supervision for old classes is weaker and
communicated by means of knowledge distillation. To remove
this asymmetry, they propose to apply a double distillation
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loss on the model #*! trained on previous classes and a newly
trained model #* for the new classes (allowing this model to
forget previous tasks):

L’DD(u;H) = — (10)

where Oy, are normalized logits:

Nt-l
1
oll(u) - Nt Z ot(n) ifl1<k< N
if N*' <k < N%.

Y
Here o' (u) refers to the logits from the network trained on
previous tasks, and of(u) the ones trained on the the new
classes. Because the algorithm does not have access to data
of previous tasks, they propose to use auxiliary data u, which
can be any unlabeled data from a similar domain.

Finally, the less-forget constraint proposed by Hou et
al. [[69] in their method is a variant of LwF. Instead of
regularizing network predictions, they propose to regularize
on the cosine similarity between the L2-normalized logits of
the previous and current network:

(0" (x), 0'(x))

ot ()J2]lo (x)I[2”

where (-,-) is the inner product between vectors. This reg-
ularization is less sensitive to task imbalance because the
comparison is between normalized vectors. The authors show
that this loss reduces bias towards new classes.

of(w) ~ 57 ) ol (w)
=1

Elf(X; 9) =1

12)

C. Rehearsal approaches

Rehearsal methods keep a small number of exemplars [1]],
[70], [71] (exemplar rehearsal), or generate synthetic im-
ages [44], [46] or features [48], [49] (pseudo-rehearsal). By
replaying the stored or generated data from previous tasks
rehearsal methods aim to prevent the forgetting of previous
tasks. Most rehearsal methods combine the usage of exemplars
to tackle the inter-task confusion with approaches that deal
with other causes of catastrophic forgetting. The usage of
exemplar rehearsal for class-IL was first proposed in Incremen-
tal Classifier and Representation Learning (iCaRL) [1]]. This
technique has since been applied in the majority of class-IL
methods. In this section, we focus on the choices which need
to be taken when applying exemplars.

Memory types. Exemplar memory must be extended at the
end of a training session after the model has already been
adapted to the new task. If the memory has a fixed maximum
size across all tasks (fixed memory), some exemplars must first
be removed to make space for new ones. This ensures that the
memory capacity stays the same and the capacity is fixed. The
more tasks and classes that are learned, the less representation
each class has for rehearsal. After learning a certain amount of
tasks, the memory could be expanded to better accommodate
the new distributions. However, previously removed samples

will be lost, thus the decision of when to expand is an impor-
tant one. If the memory is allowed to grow (growing memory),
then only new samples from the current task need to be added.
This enforces the classes to have a stable representation during
rehearsal across all tasks, at the cost of having a linear increase
of memory, which might not be suitable in some applications.
In both cases, the number of exemplars per class is enforced
to be the same to ensure an equal representation of all classes.

Sampling strategies. The simplest way to select exemplars to
add to the memory is by randomly sampling from the available
data (random), which has been shown to be very effective
without much computational cost [1]], [7].

Inspired by [83]], iCaRL proposes to select exemplars based
on their corresponding feature space representations (herding).
Representations are extracted for all samples and the mean
for each class is calculated. The method iteratively selects
exemplars for each of the classes. At each step, an exemplar is
selected so that, when added to the exemplars of its class, the
resulting exemplar mean is closest to the real class mean. The
order in which exemplars are added is important, and taken
into account when some need to be removed. Although this
iterative selection procedure usually outperforms random, it
increases computational cost.

In RWalk [7]], two other sampling strategies are proposed.
The first one calculates the entropy of the softmax outputs and
selects exemplars with higher entropy (entropy). This enforces
selection of samples that have more distributed scores across
all classes. Similarly, the second one selects exemplars based
on how close they are to the decision boundary (distance),
assuming that the feature space and the decision boundaries
do not change too much. For a given sample (x;,y;), the
pseudo-distance to the decision boundary is calculated by
f(x; qb)TVyi, meaning that the smaller the distance, the closer
to the decision boundary.

For these sampling strategies (except for random), the order
which exemplars are chosen is recorded following a decreasing
order of importance. If a fixed memory is used and some
memory must be freed to make space for new exemplars, the
exemplars with the lower importance are the ones removed
first.

Task balancing. When applying rehearsal during the training
of a new task, the weight of the new classes compared to
the previous ones is defined by the trade-off between the two
parts of the loss, as well as the number of samples from
each class at each training step. Most approaches sample
the training batches from the joint pool between new data
and rehearsal exemplars [1], [7], [69], [70]. This means that
batches are clearly over-represented by new samples and rely
on the trade-off between the cross-entropy loss and the other
losses that prevent forgetting. In contrast [71]] proposes having
a more balanced training where batches are equally distributed
between new and previous classes. This seems to have quite
beneficial effects in compensating for the task imbalance
during training.

Combining rehearsal and data regularization.  Several
methods [1], [69], [70], [[71] use the distillation loss from
Learning without Forgetting [67]] to deal with the activation
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Fig. 3: Bias and weight analysis for iCaRL with 2,000 exem-
plars on CIFAR-100. We show the ordered biases and norm of
the last classification layer of the network for different tasks.
Note how the bias and the norm of the weights are higher for
the last tasks. This results in a task-recency bias.

drift in combination with exemplars. However, Beloudah and
Popescu [68] do the important observation that this distillation
term actually hurts performance when using exemplars. We
will confirm this in our results, however, we will show that
in some scenarios a combination of weight regularization and
exemplar rehearsal can be beneficial.

D. Bias-correction approaches

Bias-correction methods aim to address the problem of task-
recency bias, which refers to the tendency of incrementally
learned network to be biased towards classes in the most
recently learned task. This is mainly caused by the fact that,
at the end of training, the network has seen many examples
of the classes in the last task but none (or very few in case of
rehearsal) from earlier tasks. One direct consequence of this,
as observed by Hou et al. [69], is that the classifier norm is
larger for new classes than for the previous ones and that the
classifier bias favors the more recent classes. This effect is
shown in Fig. 3] where the lower biases and reduced norm
of the classifier make less likely for the network to select
any of the previous classes. In this section, we discuss several
approaches to address this problem.

The earlier mentioned iCaRL method [1] combines exem-
plars and Learning without Forgetting, using a classifier layer
and cross-entropy loss during training. To prevent the task-
recency bias, they do not use the classifier at inference. Instead
they compute the class mean of the exemplars in the feature
representation, and then apply a nearest exemplar-mean for
classification. Since this process is independent of the weights
and biases of the final layer, the method was shown to be
much less prone to the task-recency bias.

One simple yet effective approach to prevent task-recency
bias has been proposed by Castro et al. [71] in their method
End-to-End Incremental Learning (EEIL). They suggest in-
troducing an additional stage, called balanced training, at the
end of each training session. In this phase an equal number
of exemplars from all classes is used for a limited number of
iterations. To avoid forgetting the new classes, they introduce
a distillation loss on the classification layer only for the classes
from the current task. Balanced training could come at the cost
of overfitting to the exemplars that have been stored, when
these do not completely represent the distribution.

Another simple and effective approach to preventing task-
recency bias was proposed by Wu et al. [70], who call their
method Bias Correction (BiC). They add an additional layer
dedicated to correcting task bias to the network. A training
session is divided into two stages. During the first stage
they train the new task with the cross-entropy loss and the
distillation loss (see Eq. [5). Then they use a split of a very
small part of the training data to serve as a validation set during
the second phase. They propose to learn a linear transformation
on top of the logits, o, to compensate for the task-recency
bias. The transformed logits are given by:

qr = @0 + [, cx€C”® (13)
where a and [, are the parameters which compensate for
the bias in task s. For each task there are only two parameters
which are shared for all classes in that task (initialized to
a1 = 1 and 81 = 0). In the second phase, all the parameters in
the network are frozen, except for the parameters of the current
task «; and f3;. These are optimized with a standard softmax
on the transformed logits qj, using the set-aside validation set.
Finally, they only apply a weight decay on /3 parameters and
not on the « parameters.

As mentioned earlier, task-recency bias was also observed
by Hou et al. [69]. In their method Learning a Unified
Classifier Incrementally via Rebalancing (LUCIR), they pro-
pose to replace the standard softmax layer o with a cosine
normalization layer according to:

N eXp(W< Hf(x >)
£cos x;0") = lo T 14
( ) kz=11 . szil exp(n<\|f HV \|>) o

where f(x) are the feature extractor outputs, {-,-) is the
inner product, V}, are the classifier weights (also called class
embedding) related to class k, and 7 is a learnable parameter
which controls the peakiness of the probability distribution.

Hou et al. [69] also address the problem of inter-task
confusion. To prevent new classes from occupying a similar
location as classes from previous tasks, they apply the margin
ranking loss. This loss pushes the current embedding away
from the embeddings of the K most similar classes according
to:

Zmax (m Srcl asSrie I\“;:H>’O> (15)

where Vy refers to the ground truth class embedding of x, Vie
refer to the embedding of the closest classes, and m is the
margin.

Finally, another approach that addresses task-recency bias
was proposed by Belouadah and Popescu [68] with their
method called Class-IL with dual memory (IL2M). Their
method is similar to BiC [70] in the sense that they propose
to rectify the network predictions. However, where BiC learns
to rectify the predictions by adding an additional layer, IL2M
rectifies based on the saved certainty statistics of predictions
of classes from previous tasks. Defining m = arg max y(x),
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Fig. 4: Relation between class-incremental methods.

they compute the rectified predictions of the previous classes
k as:

if meC*

otherwise.

() = {yk(x) T (16)

r (%)

Here 3} (superscript p refers to past) is the mean of the
predictions ¢y, for all images of class ¢y after training the
task in which class ¢y, is first learned (¢ € CP), and F? is the
mean of the predictions for all classes in that task. Both
and yP are stored directly after their corresponding training
session. 7!, is the mean of the predictions ¢ for all images of
class ¢y, after training the new task (this is computed based on
the exemplars). Similarly, 7* is the mean of the predictions for
all classes in the new task. As can be seen the rectification is
only applied when the predicted class is a new class (m € C?).
If the predicted class is an old class, the authors argue that no
rectification is required since the prediction does not suffer
from task-imbalance.

E. Relation between class-incremental methods

In previous sections we discussed the main approaches
to mitigating catastrophic forgetting by incremental learning
methods. We summarize the relations between the discussed
methods in Fig. [ starting from the naive finetuning approach.
In the diagram we show all methods which we compare in
Sec. The diagram distinguishes between methods using
exemplars to retain knowledge (blue, orange) and exemplar-
free methods (green).

Most notably, the huge impact of Learning without For-
getting (LwF) [67] upon the whole field of class-incremental
learning is clear. However, we expect that with the recent find-
ings of [68]], which show that when combined with exemplars
finetuning can outperform LwF, could somewhat lessen its
continuing influence. Weight regularization methods [5]], [64],
[65]], applied frequently in the task-IL setting, are significantly
less used for class-IL. They can also be trivially extended

with exemplars and we include results of this in our exper-
imental evaluation. Finally, Fig. [ also shows the influence of
iCaRL [1]] in the development of more recent methods [69],
[70].

V. EXPERIMENTAL SETUP

In this section, we explain the experimental setup and how
we evaluate the approaches. We also introduce the baselines
and the experimental scenarios used to gather the results
presented in Sec. More details on the implementation of
the methods are described in Appendix A.

A. Code framework

In order to make a fair comparison between the different
approaches, we implemented a versatile and extensible frame-
work. Datasets are split into the same partitions and data is
queued in the same order at the start of each task. All library
calls related to randomness are synchronized and set to the
same seed so that the initial conditions for all methods are the
same. Data from previous tasks (excluding exemplar memory)
is not available during training, thus requiring selection of
any stability-plasticity-based trade-off before a training session
of a task is completed (see also Sec. [V-F)). All methods
were implemented using the original author implementations
(when available) which we adapted to work under the different
experimental setups proposed below (i.e. different datasets and
networks).

The current version of the code includes implementations
of several baselines and the following methods: EWC, MAS,
PathInt, RWalk, LwM, DMC, LwF, iCaRL, EEIL, BiC, LU-
CIR, and IL2M. The framework includes extending most
exemplar-free methods with the functionality of exemplars.
The framework facilitates using these methods with a wide
variety of network architectures, and allows to run the various
experimental scenarios we perform in this paper. As such, our
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TABLE I: Summary of datasets used.

Dataset #Train #Eval  #Classes
CIFAR-100 [84] 50,000 10,000 100
Oxford Flowers [85] 2,040 6,149 102
MIT Indoor Scenes [86] 5,360 1,340 67
CUB-200-2011 Birds [87] 5,994 5,794 200
Stanford Cars [88] 8,144 8,041 196
FGVC Aircraft [89] 6,667 3,333 100
Stanford Actions [90] 4,000 5,532 40
VGGFace2 [91] 491,746 50,000 1,000
ImageNet ILSVRC2012 [92] 1,280,861 50,000 1,000

framework contributes to the wider availability and compara-
bility of existing methods, which will facilitate future research
and comparisons of class-IL method{’}

B. Datasets

We study the effects of CL methods for image classification
on nine different datasets whose statistics are summarized in
Table [Il First, we compare the three main categories of ap-
proaches described in Sec. on the CIFAR-100 dataset [|84].
It contains 32 x 32 colour images for 100 classes, with 600
samples for each class divided into 500 for training and 100
for testing. For data augmentation, a padding of 4 is added
to each side, and crops of 32 x 32 are randomly selected
during training and the center cropped is used during testing.
Input normalization and random horizontal flipping are also
performed.

Next, we use a variety of fine-grained classification datasets:
Oxford Flowers [85]], MIT Indoor Scenes [86], CUB-200-
2011 Birds [87]], Stanford Cars [88|], FGVC Aircraft [89],
and Stanford Actions [90]. These provide higher resolution
and allow studying the effects on larger domain shifts when
used as different tasks. To study the effects of the different
approaches on smaller domain shifts we use the VGGFace2
dataset [91]. Since the original dataset has no standard splits
for our setting, we keep the 1,000 classes that have the most
samples and split the data following the setup from [68]]. This
means that this dataset is not totally balanced, but at least all
used classes have a large enough pool of samples.

Finally, the ImageNet dataset [92] is used as a more realistic
and large-scale scenario. It consists of 1,000 diverse object
classes with different numbers of samples per class. Since this
dataset takes time and needs a lot of resources, we also use the
reduced ImageNet-Subset, which contains the first 100 classes
from ImageNet as in [1].

In order to apply a patience learning rate schedule and an
hyperparameter selection framework, an additional separate
split of 10% from training is assigned to validation to those
datasets that do not provide one. For all datasets except
CIFAR-100, images are resized to 256 x 256 with random
crops of 224 x 224 for training and center crops for testing.
Input normalization and random horizontal flipping are also
performed.

2Code will be made available upon acceptance of this manuscript.

C. Network architectures

As suggested in [93]], ResNet-32 and ResNet-18 are com-
monly used in the literature for CIFAR-100 and datasets with
larger resolution (input sizes of around 224 x 224 x 3), respec-
tively. However, it is not so common to see other networks be-
ing used in class-IL. In this work, we also perform experiments
with different networks and evaluate the effects they have
on performance. Specifically, we use AlexNet [10], ResNet-
18 [93]], VGG-11 [94]], GoogleNet [95] and MobileNets [96],
[97]. We use different networks on different scenarios and
make a wider comparison on ImageNet subset in Sec. [VI-E).
All experiments done on CIFAR-100 are trained on ResNet-32
from scratch.

We have selected the networks to represent a wide variety
of network architectures commonly used in deep learning,
allowing us to compare them within a continual learning
setting. We have chosen AlexNet and VGG-11 as architectures
which start with a number of initial convolutional layers
followed by several fully connected layers. ResNets have
achieved superior performance in many different computer
vision tasks, and we therefore consider ResNet-18. We have
also included GoogleNet which uses skip-connection and
1 x 1 convolutions are used as a dimension reduction module
to reduce computation. We are also interested to evaluate
incremental learning on compact networks. We have therefore
selected MobileNet, which, to better trade off latency and
accuracy, propose to replace standard convolution layers by
depthwise separable convolutions. This makes them suitable
to run on mobile devices.

D. Metrics

In incremental learning, a; ; € [0, 1] denotes the accuracy
of task k after learning task ¢t (k < t), which provides
fine-grained information about the incremental process. In
order to compare the overall incremental learning process,
the average accuracy is defined as A; = %22;1 ag,; at task
t. This measure is commonly used to compare performances
of different methods with a single value. It has to be noted
that when tasks have different number of classes, a weighted
version needs to be used. Moreover, though average accuracy
can be easily compared since it is a single value, it can
also hide many insights. The more tasks that are learned,
the more information that can be hidden. To address this,
additional metrics focusing on selected key aspects of IL such
as forgetting and intransigence [7)] are needed.

Forgetting estimates how much the model forgot about
previous task k at current task ¢ and is defined as
ft,k=maxie{l,___yt_l}ai,k — agk. As with accuracy, this
measure can be averaged over all tasks learned so far:
Ft:ﬁZ:: fi. The lower the F; is, the less forgetting
is happening during incremental learning. In a similar way,
intransigence quantifies a model’s inability to learn a new task.
Both can be considered complementary measures that help
understand the stability-plasticity dilemma. The borderline
case of a model that is never trained after first task will have
no forgetting at all, but will be unable to learn new tasks.
Intransigence for the t-th task is calculated as Iy =af — a4,
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where af is the accuracy of a reference model for task ¢ trained
jointly on all data. The lower the I;€[—1,1], the better the
model for that task.

To gain more insight about the classifier performance, a
confusion matrix can be used, which gives information of
miss-classification between each pair of classes. Despite the
fact that it is not a single-value metric, it is often used to
summarize the behavior of a classifier across many incremental
tasks.

E. Baselines

Training with only a cross-entropy loss (see Eq. [2) is the
default Finetuning (FT) baseline common in most IL works.
This learns each task incrementally while not using any data or
knowledge from previous tasks and is often used to illustrate
the severity of catastrophic forgetting. However, when moving
to a class-IL scenario where all previous and new classes are
evaluated, other finetuning variants can be considered. We
might not update the weights corresponding to the outputs
of previous classes (FT+), which avoids the slow forgetting
due to not having samples for those classes (see Eq. [3).
As seen in Table [IIl this simple modification has an impact
on the baseline performance. Since previous classes will not
be seen, freezing the weights associated with them avoids
biased modifications based only on new data. Furthermore,
in the proposed scenarios approaches usually make use of an
exemplar memory, which helps improve overall performance
and avoid catastrophic forgetting by replaying previously seen
classes. Therefore, as an additional baseline we also consider
extending FT with the same exemplar memory as exemplar-
based approaches (FT-E). The result of this is quite clearly
more beneficial than the other FT baselines, and makes the
baseline more comparable with approaches using the same
memory.

In the case of Freezing (FZ), the baseline is also simple:
we freeze all layers except the last one (corresponding to
the classification layer or head of the network) after the first
task is learned. Similarly to FT, we can also make the simple
modification of not updating the weights directly responsible
for the previous classes outputs (FZ+). This extends freezing
to that specific group of weights which we know will not
receive a gradient from previous class samples. As seen in
Table [T} this leads to a more robust baseline. However, if we
add exemplars (FZ-E) the performance decreases. We have
also observed that, when starting from a larger or more diverse
first task, freezing can achieve much better performance since
the learned representations before freezing are more robust.

Finally, we also use as an upper bound the joint training over
all seen data (Joint). In order to have this baseline comparable
over all learned tasks, we perform incremental joint training
which uses all seen data at each task, starting from the model
learned for the previous one. This baseline gives us an upper
bound reference for all learned tasks.

E. Hyperparameter selection

For a fair comparison of IL methods, two main issues
with non-IL evaluation need to be addressed. The first is

TABLE II: Average accuracy for different baseline variants on
CIFAR-100 (10/10). E denotes using 2,000 exemplars (fixed
memory) or 20 exemplars per class (grow) selected with
herding. All baselines start with 75.3 accuracy after task 1.

T2 T3 T4 T5 Té6 T7 T8 T9 TIO
FT 339 279 191 17.7 122 11.6 102 9.0 79
FT+ 39.7 324 255 20.7 164 143 127 11.0 9.7
FT-E (fixed) 594 552 46.6 49.1 459 423 382 395 365
FT-E (grow) 48.0 425 33.1 365 358 31.8 335 31.6 320
FZ 24.1 184 128 127 92 82 78 63 53
FZ+ 40.5 31.1 244 240 21.1 189 172 16.1 148
FZ-E (fixed) 449 363 229 21.7 18.0 174 136 132 93
FZ-E (grow) 37.1 29.7 195 19.1 147 155 123 125 94

that choosing the best hyperparameters for the sequence of
tasks after those are learned is not a realistic scenario in that
information from future tasks is used. A better comparison
under an IL setting is to search for the best hyperparameters
as the tasks are learned with the information at hand for each
of them. Second, it makes the comparison very specific to the
scenario, and in particular to the end of the specific sequence
of tasks. It provides a less robust evaluation of the results over
the rest of tasks, which means that other task sequence lengths
are not taken into account. We feel that a broader evaluation of
CL methods should include results over all tasks as if each of
them were the last one for hyperparameter selection purposes.

In order to provide this more robust evaluation, we use
the Continual Hyperparameter Framework proposed in [16].
This framework assumes that at each task, only the data for
that task is available, as in a real scenario. For each task,
a Maximal Plasticity Search phase is used with Finetuning,
and a Stability Decay phase is used with the corresponding
method. This allows to establish a reference performance first
and find the best stability-plasticity trade-off second [16] (see
also Appendix A).

The hyperparameters that have no direct correspondence
with the intransigence-forgetting duality are set to the rec-
ommended values for each of the methods. A list of those,
together with the values can be found in Appendix A.

G. Experimental scenarios

To make the following results section easier to read, we
define a few experimental scenarios here. We denote a dataset
with B tasks and A classes on the first task as (A/B). For
example, a CIFAR-100 (10/10) experiment refers to splitting
the dataset into 10 tasks with the first task having 10 classes.
This corresponds to an equal split among tasks and classes,
making for the total amount of 100 total classes. Another
setting that we use is CIFAR-100 (50/11), which means that
the first task has 50 classes, and the remaining 50 classes are
divided into 10 tasks of 5 classes each. Among others, these
are the two main proposed settings for evaluating the different
approaches and their characteristics on simpler scenarios,
before moving into larger and more realistic ones.
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TABLE III: Average accuracy for regularization-based methods on CIFAR-100 (10/10) on ResNet-32 trained from scratch.

avg. acc. after FT LwF EWC Pathlnt MAS RWalk DMC LwM
No exemplars task 2 559 732 61.6 62.0 64.8 63.2 71.5 73.6
(task-IL) task 5 47.3 73.8 59.8 60.4 62.8 57.4 72.7 75.2
s task 10 37.3 65.8 56.4 56.6 53.9 46.6 67.0 69.1
No exemplars task 2 30.8 56.1 39.5 36.2 42.3 45.4 57.9 53.9
« IL) ) task 5 13.1 40.9 24.0 21.8 24.4 23.9 422 37.3
ass- task 10 78 297 123 122 115 129 267 204
2,000 1 task 2 594 599 56.8 56.0 56.2 56.5 - 64.7
fred exen(lglm ” task 5 49.1 448 393 307 312 464 . 52,9
xed memory (L1ass- task 10 365 318 258 105 191 314 - 38.1
20 1 1 task 2 48.0 51.4 43.2 42.0 414 41.3 - 52.1
cxemprars p'(s(rjlc aSSIL) task 5 365 331 306 252 229 272 ; 39.7
growing memory (£1ass- task 10 320 274 239 15.8 168 189 - 335
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Fig. 5: Task (top) and class (bottom) confusion matrices. CIFAR-100 (20/5) with 2,000 exemplars selected with herding.

VI. EXPERIMENTAL RESULTS

In this section, we discuss different aspects of continual
learning approaches on CIFAR-100 being the default dataset
for comparisons and we extend the experiments to larger
datasets, such as VGGFace2, different fine-grained datasets
and ImageNet. It includes analysis on different regularization
methods with and without exemplars. Then we demonstrate
how bias-correction methods perform through both task and
class confusion matrices. We analyze how different aspects of
exemplar usage affect performance, such as memory properties
and sampling strategies. Additionally, we evaluate different
methods on two popular scenarios whether the first task starts
with half of classes. We also demonstrate how domain shift can
result in different performance for continual learning. Next,
we compare the most prominent methods on a wide range of
network architectures. Then we experiment different methods
on the large scale dataset ImageNet.

A. On regularization methods

Most of the regularization approaches have been proposed
for a task-IL setting where the task-ID is known at inference

time [5], [66]], [67], [72]], [74]. Since regularization is applied
to weights or representations, they can be easily extended to a
class-IL setting without much or any modification. This makes
for a more challenging problem, and several more recent
regularization methods already show results for class-IL [[7],
[76], [81]l. Similarly to the baselines in Sec. [V-E| when not
using exemplars, methods can freeze the weights of the final
layer associated with previous classes to improve performance
based on the assumption that only data from new classes is
used during a training session. This helps the problem of
vanishing weights from learned classes and the task-recency
bias, especially when using weight decay.

In Table [[T]] we compare regularization-based methods for
both task-IL and class-IL. Three methods that apply data regu-
larization (LwF, DMC, LwM) and three weight regularization
methods (EWC, PathInt, MAS) are compared on CIFAR-100
(10/10). The ten tasks are learned sequentially, and each
method and setting shows average accuracy at the second, fifth
and final tasks to illustrate different sequence lengths. We start
by comparing the regularization methods without using exem-
plars. Results clearly show a significant drop in performance
due to the lack of the task-ID, especially after 5 and 10 tasks.
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LwF obtains better results than weight-based regularization
methods, which might explain why distillation has been the
dominant approach for most rehearsal methods [1]], [69], [[70],
[71].

We also expand the regularization methods with exemplars
to see how it affects their performance. Note that these
methods are originally proposed without exemplars, except
for RWalk. In Table we include results with a fixed
memory of 2,000 exemplars, and with a growing memory
of 20 exemplars per class. When using a fixed memory of
exemplars, all methods improve after each task. However, that
is not true in all cases for the growing memory. The reduced
number of exemplars available when learning the first tasks in
comparison to a fixed memory has some impact on the results.
In this case, LWF outperforms EWC, PathInt and MAS, while
having a similar performance than RWalk for fixed memory.
Note how RWalk without exemplars does not show much
improvement over other weight-based regularization methods,
but that changes when a fixed memory is used. One of the
most interesting results of this experiment is that LwM obtains
the best results in all cases when combined with exemplars,
even though the method was originally not proposed with
exemplars. Furthermore, FT-E performs the second best in this
scenarios, in front of LwF, as also noticed in [[68]. It should be
noted that in some of the next experiments we find that weight
regularization and exemplars can actually achieve good results.

Finally, DMC uses a large memory based on an auxiliary
dataset (300 classes from ImageNet-32, as described in [76]),
we provide task-IL and class-IL results while using said
extra memory, and no exemplars from the learned classes are
stored. The method provides privacy-preserving properties at
the cost of some performance. However, we found that in
these experiments the gain obtained by distillation from an
additional dataset is rather small.

Given these results, in the following experiments we will
mainly compare to the best performing regularization methods,
namely LwF, LwWM and EWC.

B. On bias-correction

As seen in Fig. 2] there exists a clear bias towards recent
tasks. Here we evaluate the success of class-IL methods to ad-
dress the task-recency bias. To allow for a better visualization,
we use a CIFAR-100 (20/5) split with ResNet-32 trained from
scratch and a fixed memory of 2,000 exemplars. In the text,
we will also give in brackets the average accuracy after the
last task for all methods we considered.

We show the task and class confusion matrices for different
bias-correction approaches in Fig. [2] and Fig. 5| The FT-
E baseline, despite having improved performance due to
the use of rehearsal strategies (40.9), still has a clear task-
recency bias. iCaRL clearly benefits from using the NME
classifier, removing most task-recency bias, although at the
cost of having slightly worse performance (43.5) than the other
approaches. EEIL ignores the task-recency bias during training
of new tasks, however at the end of each training session it
performs balanced training based only on the exemplars. This
method obtains good performance (47.6), as balanced training

--- FT+
FZ+

EEIL
—e— BiC

LUCIR
—e— IL2M

--~- Joint
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100

80
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Fig. 6: Results for CIFAR-100 (10/10) on ResNet-32 trained
from scratch with different exemplar memory sizes.

calibrates all outputs from previous classes and thus removes a
large part of the task-recency bias. BiC does a very good job
at avoiding the bias while maintaining a good performance
(45.7). Tt is clear that the newer tasks have less inter-task
classification errors. However, it seems like the small pool
of samples used for learning the o and [ parameters (see
Eq. leads to having the opposite effect, and BiC appears to
over-compensate toward previous tasks. LUCIR shows a more
gradual task-recency bias while maintaining good performance
(47.3). This could be related to the change in experimental
scenario. LUCIR was shown to work better when having a
larger first task followed by some smaller ones. In the more
challenging setup used here their bias-correction struggles to
obtain good results. Finally, IL2M clearly overcomes task-
recency bias while improving on iCaRL (45.6). The class
confusion matrix looks similar or better than iCaRL, but the
task confusion matrix seems to point towards more inter-task
miss-classifications.

These results show that the two methods that have better
performance (EEIL, LUCIR) still suffer from task-recency
bias, while approaches that have a better solution for it (iCaRL,
BiC, IL2M) still have a margin for performance improvement.
This leaves room for future work to better combine or create
new approaches that can both have better overall performance
while simultaneously addressing the bias-correction issue.

C. On exemplar usage

After establishing that most methods can benefit from
exemplars or use them as their main tool to avoid catastrophic
forgetting, we study the effects of different characteristics
related to them. The number of exemplars to store is limited
by the type and amount of memory available, and exemplars
are selected at the end of each training session following a
sampling strategy.

On memory size:  We first analyze how the number of
exemplars per class affects performance as we expand the
exemplar memory. In Figure [6] we compare several rehearsal
methods with different numbers of exemplars per class in a
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TABLE IV: CIFAR-100 (10/10) for different sampling strate-
gies with fixed memory of 2,000 exemplars on ResNet-32.

avg. acc. - sampling FT-E LwF-E EWC-E EEIL BiC
after strategy
random 67.3 608 55.2 629 622
herding 594 619 56.8 67.2 624
task 2 entropy 579 57.8 56.4 577 64.2
distance 555 565 51.0 56.0 61.9
inv-entropy 57.6  57.6 56.4 62.6 61.7
inv-distance 55.8  54.6 57.4 61.7 59.9
random 51.3 48.6 39.6 547 534
herding 49.1 478 41.7 53.4 549
task 5 entropy 387 363 333 453 43.6
distance 41.1  38.1 27.7 455 427
inv-entropy 40.6  41.0 36.6 474 458
inv-distance 389 395 36.6 455 444
random 371 305 26.1 40.8 399
herding 36.5 309 26.8 42.1 429
task 10 entropy 21.8 188 14.4 287 293
) distance 204 169 10.6 274 253
inv-entropy 29.0 25.1 22.9 31.3 347
inv-distance 27.1 242 23.1 313 358

growing memory. As expected, in almost all cases performance
increases as more exemplars are added. LUCIR and iCaRL
always perform equal to or better than FT+ and FZ+. When
using few exemplars per class, the weights of the last layer can
be modified by large gradients coming from new classes while
very little to no variability of gradients comes from previous
ones. We found that the freezing of the last layer weights
as used in FT+ provides a larger advantage than is obtained
with only a few exemplars (see results with fewer than five
exemplars for EEIL, BiC, and IL2M).

Adding more samples becomes more costly after 20 ex-
emplars per class in comparison to the gain in performance
obtained. As an example, expanding the memory from 10
to 20 samples per class on BiC yields a 6.2 point gain in
average accuracy. Expanding from 20 to 40 yields a 4.8 point
gain at the cost of doubling the memory size. For the other
methods, these gains are similar or worse. Although starting
with better performance spot with fewer exemplars per class,
iCaRL has a slight slope which makes the cost of expanding
the memory less beneficial. LUCIR follows with a similar
curve, and both seem to be further away from Joint training
(upper bound), probably due to the differences in how the
classification layer is defined (NME and cosine normalization,
respectively). Finally, BiC, IL2M and EEIL are quite close to
Joint training when using a third of the data as memory (160
out of 500 maximum samples per class). To maintain a realistic
memory budget, and given the lower performance gains from
increasing said memory, we fix growing memories to use 20
exemplars per class.

On sampling strategies: As introduced in Sec. for re-
hearsal approaches there are different strategies to select which
exemplars to keep. In Table [V] we compare the FT-E baseline,
the two most common regularization-based methods (LwF-E,
EWC-E), and two of the latest bias-correction methods (EEIL,
BiC). We use the four different sampling strategies introduced

in Sec. random, herding (mean of features), entropy-
based, and plane distance-based. We also add a variation of
the last two which chooses the samples furthest away from
the task boundaries to observe the effect of choosing the least
confusing samples instead. We denote these as inv-entropy
and inv-distance. These methods and strategies are evaluated
under our two main proposed scenarios: CIFAR-100 (10/10)
and (50/11)—the second one available in Appendix B.1.

Results show a clear preference across all approaches for
the herding sampling strategy, except for FT-E which prefers
random. The second best strategy in some cases, and generally
close to herding, is random. Both these strategies clearly
outperform the others when evaluating after 5 and 10 tasks
in both scenarios. When only evaluating after two tasks for
the (10/10) scenario, the gap between them is much smaller,
probably due to the large number of exemplars available at
that point (2,000). It is notable that for shorter task sequences,
entropy- and distance-based perform similar to the proposed
inverse versions. However, for larger sequences of tasks,
the inverse versions perform better. This could be due to
samples further away from the boundaries (and closer to the
class centers) becoming more relevant when the number of
exemplars per class becomes smaller.

On different starting scenarios: We explore two scenarios
with different numbers of classes in the starting task. The
first one compares a large number methods on CIFAR-100
(10/10), with classes equally split across all tasks. For the
second scenario, we compare the same methods on CIFAR-100
(50/11) which is similar to having the first task being a
pretrained starting point with more classes and a richer fea-
ture representation before the subsequent 10 smaller tasks
are learned. Both those scenarios are further extended and
presented under the two described types of memory: fixed
(2,000 total exemplars) and growing (20 exemplars per class),
with herding as the sampling strategy. DMC uses an external
dataset (reduced ImageNet-32 [[76])) that is already larger than
the memories, so no exemplars are stored. All other methods
which were not originally proposed with exemplars have been
adapted to use them and show better performance overall than
their original versions.

In Figure [/} BiC, EEIL and IL2M achieve the best results
after learning 10 tasks with both fixed and growing memories.
They are followed by iCaRL, LwM-E, and then LUCIR.
LUCIR and BiC have different starting points on task 1 since
they do not have the same initial conditions as the other
approaches (LUCIR uses cosine linear layers, while BiC uses
fewer data during training because it stores some for the
later training of the bias-correction parameters). It is quite
clear that the approaches that tackle task-recency bias have
an overall better performance than the others. Furthermore, as
already noted by [68]], FT-E achieves competitive performance
similar to the lowest performance of that family. In general,
most methods seem to suffer less catastrophic forgetting when
using a fixed memory that allows storing more exemplars
during early tasks. For some approaches, the difference is quite
considerable after learning 5 tasks and slightly better after the
full 10-task sequence.
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Fig. 7: CIFAR-100 (10/10) with 2,000 exemplar fixed memory (left), and 20 exemplars per class growing memory (right).
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Fig. 8: CIFAR-100 (50/11) with 2,000 exemplar fixed memory (left), and 20 exemplars per class growing memory (right).

In Figure [8] the results are quite different. In general,
starting from a larger number of classes makes all methods
perform better, probably due to anchoring to the first task
making the features already more diverse. This is specially
noticeable in the case of FZ-E, which benefits significantly
from freezing after a much more representative first task. This
shows the importance of comparing to this baseline when
doing experiments with pretrained models or a very strong
first task. In this scenario, LUCIR and iCaRL have a much
better performance with a fixed memory, followed by MAS-
E, RWalk and BiC.

D. On domain shift effects

Up to this point all experiments were performed on a dataset
with a small input size and a wide variety of classes from a
similar distribution. In this experiment, we study the effects
of using tasks which have different degrees of domain shifts
between them and whose images also have higher resolution.

Smaller domain shift: We first conduct experiments on
very small domain shifts between different classes and tasks,
as is the case for VGGFace?2 [91]. We divide the 1,000 classes

equally into 25 tasks of 40 classes, store 5,000 exemplars in
a fixed memory and train ResNet-18 from scratch. In Fig.
we see that LUCIR, BiC and IL2M perform the best among
all methods. In particular, LUCIR achieves 73.0 average
accuracy after 25 tasks, which is relatively high compared to
previous experiments on CIFAR-100, which indicates that this
approach might be more indicated for smaller domain shifts.
Surprisingly, FT-E performs only 4.2 points lower than LUCIR
and above all the other remaining approaches except for EWC-
E, which also performs well with small domain shifts between
tasks. EEIL shows competitive performance on the first 13
tasks, but starts to decline for the remaining ones. On the
other hand, iCaRL has a larger drop in performance during
early tasks, maintains the performance quite well afterwards,
and ends up with similar results as EEIL and LwM-E. Of
the regularization-based methods, EWC-E is superior to both
LwF-E and LwM-E. FZ+ has better performance when starting
from a larger first task (due to more robust feature repre-
sentations), which we assumed would translate into a good
performance when having small domain shifts between tasks
and classes. However, the initial frozen representations are not



PREPRINT UNDER REVIEW

-¢- FT-E (68.8) EWC-E (70.0) iCaRL (55.4) LUCIR (73.0)
FZ+ (34.3) —e— LwM-E (55.0) EEIL (58.0) —e— IL2M (70.9)
-~ Joint (98.7) LwF-E (43.5) —e— BiC (72.2)

100 S S-S 00000000000

80

60

40

Accuracy (%)

20

0

40 160 280 400 520 640 760 880
Number of classes

1000

Fig. 9: Small domain shifts on VGGFace2 (40/25) on
ResNet-18 trained from scratch and 5,000 exemplar fixed
memory.
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Fig. 10: Large domain shifts with multiple fine-grained
datasets (Flowers, Scenes, Birds, Cars, Aircraft, Actions).

discriminative enough to generalize to new classes.

Larger domain shift: We are the first to compare class-IL
methods to incrementally learn classes from various datasets.
As a consequence tasks have large domain shifts and different
number of classes. We use six fine-grained datasets (Flowers,
Scenes, Birds, Cars, Aircraft and Actions) learned sequentially
on ResNet-18 from scratch with a growing memory of 5
exemplars per class. The number of classes varies among the
tasks (see Table m), but the classes inside each of them are
closely related. In Fig. [I0] we see that most approaches have
a similar performance, much unlike previous experiments. It
is noticeable that bias-correction methods do not have a clear
advantage compared to other approaches. It seems that when
the domain shift between tasks is large, inter-task confusion
becomes the major cause for catastrophic forgetting. Solving
the task-recency bias provides a lower performance advantage
than in other scenarios and only improves the outputs of the
corresponding task. The forgetting which is caused by the
large weight and activation drift originated from the large

domain shifts seems to dominate in this scenario. The fact
that no method clearly outperforms the FT-E baseline shows
that scenarios with large domain shifts, where catastrophic
forgetting is caused by inter-task confusion, are still an impor-
tant direction of study since most proposed methods focus on
weight drift (EWC-E, MAS-E), activation drift (LwF-E, LwM-
E, iCaRL, EEIL, BiC, LUCIR) or task-recency bias (iCaRL,
BiC, LUCIR, IL2M).

Another interesting effect we visualize in Fig. [I0] is the
behaviour when learning Actions. The other datasets have a
very clear focus on color and shape features to discriminate
between their classes. However, for Actions, context is very
relevant to identify which action the human is portraying in the
image. Some features from the Scenes dataset can be helpful
to identify an indoor or outdoor action, but in general this
dataset is less related to the others. And we see that already
Joint training lowers a bit the average accuracy when learning
this task, as do most of the methods. Only EWC-E and MAS-
E maintain or improve when learning that task, raising the
question whether weight regularization-based methods have
an advantage in these scenarios.

On “interspersed” domains: We propose another scenario
that is not explored in class-IL: revisiting learned distributions
to learn new classes. We propose to learn four fine-grained
datasets split into four tasks of ten classes each for a total of
16 tasks. A group consists of four tasks, one from each dataset
in this order: Flowers, Birds, Actions, Aircraft. The experiment
consists of four group repetitions, where each group contains
different classes (for a total of 160). This allows us to analyze
how class-IL methods perform when similar tasks re-appear
after learning different tasks. We refer to this scenario as
“interspersed” domains since classes from each domain are
distributed across tasks.

Results of forgetting on the first group during the whole
sequence are presented in Fig. [[T] We clearly see a difference
between LUCIR and other methods. LUCIR suffers quite a
large loss on the first task at the beginning of the sequence
and after the second group is learned, never recovering any
performance for that task. However, LUCIR shows very little
forgetting for the remaining tasks in the sequence. This seems
to be related to the preference of LUCIR to have a larger
first task with more diverse feature representations, as also
observed in earlier experiments. For the remaining methods,
the first task has a lot of variation with a general decaying
trend. BiC has an initial drop right after learning each of the
other tasks, but manages to prevent further forgetting, though
with some variability on the first Aircraft task. LwF-E and
EEIL have a more cyclic pattern of forgetting and recovering.
Forgetting is more pronounced when the task being learned is
of the same dataset as the current one, and seems to slightly
recover when learning less similar tasks. Finally, the forgetting
of IL2M shows a lot of variation, which might be related to the
lack of a distillation loss keeping new representations closer
to previous ones.
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Fig. 11: Forgetting when revisiting old domains with new classes from different fine-grained datasets on AlexNet.

E. On network architectures

We compare the four most competitive methods over a range
of different network architectures in Table |V| An interesting
observation is that for different networks, the performance
rankings of the methods can change completely. For instance,
in architectures which do not use skip connections, iCaRL
performs the best when using AlexNet and VGG-11. On the
other hand, BiC performs worse without skip connections, but
performs the best with architectures that have them (ResNet-
18, MobileNet and GoogleNet). BiC exhibits the least for-
getting among all methods, even having positive forgetting
which indicates that performance improves on some tasks after
learning them. However, this result comes at the expense of
having slightly lower performance for each task just after
learning them. IL2M is more consistent compared to other
methods using different networks, never having the best nor
the worst performance. Networks without skip connections
seem to reduce forgetting for iCaRL and IL2M. EEIL suffers
more forgetting compared to others across different networks.

ResNet-18 obtains the best result among all networks with
BiC. Note that in most of the literature, ResNet-18 is used
as the default network for this scenario and similar ones.
However, as shown above, it seems that methods benefit from
architectures differently. Another interesting observation is that
MobileNet, which has the lowest number of operations and
can run on devices with limited capacity, has very competitive
results compared to the other networks. These results show that
existing IL approaches can be applied to different architectures
with comparable results to the scenarios presented in the
literature.

F. On large-scale scenarios

Finally, we compare different methods using ResNet-18 on
ImageNet (40/25) with a growing memory of 20 exemplars per
class. Figure [I2] shows that BiC and iCaRL achieve the best
performance with 32.4% and 30.2% average accuracy after 25
tasks, respectively. Surprisingly, EWC-E and FT-E outperform
some methods, such as IL2M and LUCIR, in this setting.
Note that in other settings, IL2M and LUCIR often perform

TABLE V: ImageNet-Subset-100 (10/10) with different net-
works trained from scratch. Task accuracy when the task
was learned and forgetting after learning all classes (between
brackets). Final column reports the average accuracy after 10
tasks.

task 2 task 5 task 9 Ao
AlexNet  ICaRL  39.6 (232)  30.0 (84)  330(-52) 388
6om params  EEIL 274 (55.0)  252/(-49.0) 226 (49.4) 356
e BiC 306 (-31.8) 264 (+14.0) 212 (+16.8) 34.4
IOM 274 (-524) 216 (412) 440 (252) 352
VGG.11  ICaRL 324 (300) 340 (248) 426 (82) 432
133m params EEIL 296 (:56.0) 290 (-504) 328 (45.6)  40.9
o BiC 324 (:338) 196 (+34)  31.0(-32) 321
IOM 278 (-582) 310 (-19.6) 540 (-17.4) 422
GoogleNet  ICaRL  350(300) 292 (240) 436 (-122) 437
680 oaams EEIL  182(684) 260 (492) 318 (450) 361
: 25’1 ) BiC  272(512) 398 (-142) 490 (-44) 445
IL2M  23.6 (-59.0) 23.0 (-36.6) 400 (-36.0) 382
] iCaRL 384 (31.8) 296 (-21.8) 438 (:9.8) 43.6
gﬁfﬁiaﬁs EEIL 260 (-59.4) 268 (-52.8) 282 (-48.8) 36.6
LS BiC 312 (486) 41.0 (+04) 494 (+44) 456
IL2M 262 (-60.8) 24.0 (-47.8) 350 (-44.4) 372
. iCaRL 384 (-33.4) 33.6 (121.6) 402 (-23.8) 435
MobileNet "
i ;:mfns EEIL 212 (-68.4) 29.0 (-52.4) 254 (-548) 37.4
o BiC 394 (442) 412 (-114) 452 (-140) 447
IL2M 350 (-46.6) 242 (242) 426 (-30.0) 42.1

better than EWC-E and FT-E. LwF-E and LwM-E obtain worst
results compared to how they previously performed. We note
that BiC, iCaRL, IL2M and LUCIR avoid a larger initial
drop in performance during the first four tasks compared to
other methods and continue learning without major drops in
performance except for LUCIR. Of the rest of the methods,
EWC-E, FT-E and EEIL seem to stabilize after the initial drop
and show less forgetting as new tasks are added. RWalk, LwF-
E and LwM-E continue having a larger drop in performance
after task four, which only RWalk slightly recovers from.
In this scenarios with a larger number of classes and more
variability, methods which can easily handle early tasks will
perform better afterwards. On the second half of the sequence,
most approaches have the same stable behaviour since the
network has learned a robust representation from the initial
tasks.
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Fig. 12: ImageNet (40/25) on ResNet-18 with growing mem-
ory of 20 exemplars per class and herding sampling.

VII. EMERGING TRENDS IN CLASS-IL LEARNING

Here we briefly discuss some recent developments in class-
IL we think will play an important role in the coming years.

Exemplar learning. Recently, an exciting new direction has
emerged that parametrizes exemplars and optimizes them to
prevent forgetting [[79]], [98]]. This enables much more efficient
use of available storage. Liu et al. [79]] propose Mnemonics
Training, a method that trains the parametrized exemplars in
a two-phase procedure. During the first phase, the model is
optimized on the new data and exemplars of previous tasks
while preventing forgetting with a distillation loss. In the
second phase, the exemplars are optimized to prevent the
forgetting when evaluated on the current task data (i.e. when
finetuning on these exemplars the increase of the cross-entropy
loss on the current data is minimal). The proposed method is
combined with weight transfer [99]] to reduce the number of
parameters that are learned for each task. Chaudry et al. [98]
generalize the theory to a streaming setting, where the learning
of the exemplars does not require multiple loops over the data
for every task. They propose learning a single anchor exemplar
that prevents forgetting on future tasks. Because there is no
access to future data, preventing forgetting on future tasks is
approximated by preventing it on previous tasks (represented
by exemplars).

Both methods [79]], [98] show that they can outperform ran-
dom and herding strategies. Optimizing the available storage
by computing more efficient exemplars is expected to be one of
the main future research directions, and more efficient use of
limited storage in IL systems in general is expected to attract
more research in the coming years.

Feature rehearsal. Pseudo-rehearsal is a good alternative
to storing exemplars [44], [45], [46[. It learns a separate
network that generates images of previous tasks. However,
current state-of-the-art image generation methods still struggle
to realistically generate complex image data, and therefore this
approach has been mainly applied to relatively simple datasets
and is known to obtain unsatisfying results on complex ones.
To address this problem, some recent works have proposed

to perform feature replay instead of image replay [49], [[100],
[101], where instead a generator is trained to generate features
at some hidden layer of the network. In this way rehearsal can
also be applied to complex datasets. Another closely related
line of research is based on the observation that storing feature
exemplars is much more compact than storing images [102].
Moving away from image replay towards different variants of
feature replay is expected to gain traction.

Explicit task classification. The majority of class-IL meth-
ods incrementally learn a classifier over all classes up until
those in the current task. Another approach is to learn one
classifier head per task that only distinguishes between the
classes within the task, and another classifier that predicts the
task label. This would allow to extend any task-IL. method
to a class-IL method. An early version of this idea was
proposed by Aljundi et al. [23] where gating autoencoders
are used to predict the task label. A recent work extends
a mask-based method (similar to [20]) with an explicit task
classifier [[103]]. It is yet unclear why and when explicit task
classification is expected to outperform learning one joined
classifier. Further study and comparison between these two
fundamentally different strategies to the problem of class-IL is
needed. A recent work of Rajasegaran et al. [|[104] convincingly
shows that for the plausible scenario where images at inference
time are processed in batches with the same task-ID, this
knowledge can significantly improve the quality of the explicit
task classifier.

Self- and unsupervised incremental learning. Being able
to incrementally learn representations from an unsupervised
data stream is a desirable feature in any learning system.
This direction applied to class-IL has received relatively little
attention to date. Rao et al. [I05] propose a method that
performs explicit task classification and fits a mixture of
Gaussians on the learned representations. They also explore
scenarios with smooth transitions from one task to another.
Still in its infancy, more research on unsupervised incremental
learning is expected in coming years. In addition, leveraging
the power of self-supervised representation learning [106] is
only little explored within the context of IL, and is expected
to gain interest.

Meta-learning. Meta-learning aims to learn new tasks lever-
aging information accrued while solving related tasks [107].
Riemer et al. [[36]] show that such a method can learn parame-
ters that reduce interference of future gradients and improves
transfer based on future gradients. Javed and White [10§]]
explicitly learn a representation for continual learning that
avoids interference and promotes future learning. These initial
works have shown the potential of meta-learning on small
datasets. However, we expect these techniques to be further
developed in the coming years, and will start to obtain results
on more complex datasets like the ones considered in our
evaluation.

VIII. CONCLUSIONS

We performed an extensive survey of class-incremental
learning. We organized the proposed approaches along three
main lines: regularization, rehearsal, and bias-correction. In
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addition, we provided extensive experiments in which we com-
pare twelve methods on a wide range of incremental learning
scenarios. Here we briefly enumerate the main conclusions
from these experiments:

« When comparing exemplar-free methods, LwF obtains
the best results (see Table [[I). Among the other reg-
ularization methods, data regularization (LwM) obtains
superior results compared to weight regularization (EWC
and MAS). Exemplar-free methods can currently not
compete with exemplar rehearsal methods, and given
the more restrictive setting in which they operate, we
advocate comparing them separately.

o When combining LwF with exemplars, we confirm the
results in [68] showing that the added regularization does
not improve results and the baseline method of finetuning
with exemplars performs better (see Table [IIl). However,
using LwM for data regularization does perform better
than the baseline.

« We found that in several scenarios weight regularization
outperforms the baseline FT-E significantly (see Figs.
and [9), showing that the IL community choice of data
regularization with LwF (see Fig. [) instead of weight
regularization should be reconsidered.

« Herding is a more robust exemplar sampling method than
random for larger sequences of tasks, but is not better than
others for short sequences (see Table [[V).

o Methods that explicitly address the task-recency
bias obtain better performance for class-IL (see
Figs. [l Bl Pl [T0 [I2): we found that BiC obtains
state-of-the-art on several experiments (notably on
ImageNet). IL2M obtains consistent good performance
on most datasets. Also, iCaRL and EEIL obtain good
performance on several datasets, but fail to outperform
the baseline FT-E on others. Methods like LUCIR
require a good starting representation — for example in
the scenario with the larger first task or smaller domain
shifts, LUCIR can be state-of-the-art.

e Current methods have mainly presented results on
datasets with small domain shifts (typically random class
orderings from a single dataset). When considering large
domain shifts none of the methods significantly outper-
form the baseline FT-E (see Fig. [I0). Large domain
shift scenarios have been considered for task-IL, but our
results show that they require new techniques to obtain
satisfactory results in class-IL settings.

o We are the first to compare class-IL methods on a
wide range of network architectures, showing that current
class-IL works on variety of networks. Results show that
most are sensitive to architecture and rankings change
depending on the network used. It is quite clear that using
a network with skip connections favors some methods,
while their absence favors others.
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APPENDIX A
IMPLEMENTATION AND HYPERPARAMETERS

As described in Section 5.6, the Continual Hyperparameter
Framework (CHF) [16] is used for the stability-plasticity trade-
off hyperparameters that are associated to intransigence and
forgetting when learning a new task. The CHF first performs
a learning rate (LR) search with Finetuning on the new task.
This corresponds to the Maximal Plasticity Search phase.

The LR search is limited to {5e-1, le-1, 5e-2} on the first
task since all experiments are trained from scratch. For the
remaining tasks, the LR search is limited to the three values
immediately lower than the one chosen for the first task from
this set: {le-1, 5e-2, le-2, 5e-3, le-3}. We use a patience
scheme as a LR scheduler where the patience is fixed to 10,
the LR factor to 3 (LR is divided by it each time the patience
is exhausted), and the stopping criteria is either having a LR
below le-4 or if 200 epochs have passed (100 for VGGFace2
and ImageNet). We also do gradient clipping at 10,000, which
is mostly negligible for most training sessions except the first
one. We use SGD with momentum set to 0.9 and weight
decay fixed to 0.0002. Batch size is 128 for most experiments
except 32 for fine-grained datasets and 256 for ImageNet and
VGGFace2. All code is implemented using Pytorch.

Once the shared hyperparameters are searched, the best ones
are fixed and the accuracy for the first phase is stored as a
reference. The hyperparameter directly related to the stability-
plasticity trade-off is set to a high value which represents a
heavy intransigence to learn the new task, close to freezing the
network so that knowledge is preserved. At each search step,
the performance is evaluated on the current task and compared
to the reference accuracy from the Maximal Plasticity Search
phase. If the method accuracy is above the 80% of the
reference accuracy, we keep the model and trade-off as the
ones for that task. If the accuracy is below the threshold,
the trade-off is reduced in half and the search continues. As
the trade-off advances through the search, it becomes less
intransigence and slowly converges towards higher forgetting,
which ultimately would correspond to the Finetuning of the
previous phase. This corresponds to the Stability Decay phase.

The methods have the following implementations:

o LwF: we implement the Lg;s distillation loss following
Egs. 5-6, and fix the temperature scaling parameter to
T = 2 as proposed in the original work (and used in
most of the literature). This loss is combined with the
L. cross-entropy loss from Eqgs. 2-3 with a trade-off that
is chosen using the CHF and starts with a value of 10.
In our implementation we choose to duplicate the older
model for training to evaluate the representations (instead
of saving them at the end of the previous session) to
benefit from the data augmentation. That older model can
be removed after the training session to avoid overhead

storage.
« EWC: the fusion of the old and new importance weights
is done with a« = 0.5 to avoid the storage of the

importance weights for each task. The Fisher Information
Matrix is calculated by using all samples from the current
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task based on the predicted class. The loss introduced in
Eq. 4 is combined with the £, cross-entropy loss with a
trade-off chosen using the CHF and with a starting value
of 10,000.

PathInt: we fix the damping parameter to 0.1 as proposed
in the original work. As in LwF and EWC, the trade-
off between the quadratic surrogate loss and the cross-
entropy loss is chosen using the CHF with a starting value
of 1.

MAS: we implement MAS in the same way as EWC,
with @ = 0.5 and the same Fisher Information Matrix
setting. The trade-off between the importance weights
penalty and the cross-entropy loss is chosen using the
CHF and a starting value of 400.

RWalk: since it is a fusion of EWC and Pathlnt, the same
parameters o = 0.5, Fisher Information Matrix setting
and damping = 0.1 are fixed.The starting value for the
CHF on the trade-off between their proposed objective
loss and the cross-entropy loss is 10.

DMC: we implement the Lpp double distillation loss
from Egs. 10-11. We set the auxiliary dataset batch
size to 128, and the student is neither initialized from
the previous tasks or new task models but random, as
proposed in the original work.

LwM: We combine the cross-entropy loss with the distil-
lation loss and £ 4p attention distillation using the 5 and
~ trade-offs respectively. The § trade-off is the one that
balances the stability-plasticity dilemma and we chose it
using the CHF with a starting value of 2. The ~ trade-
off is fixed to 1 since it does not directly affect the
stability-plasticity dilemma. Since there is no mention
in the original work on which are the better values to
balance the three losses, that last value was chosen after
a separate test with values v € (0,2] and fixed for all
scenarios in Section 6.

iCaRL: we implement the five algorithms that comprise
iCaRL. The distillation loss is combined with the cross-
entropy loss during the training sessions and chosen using
the CHF with a starting value of 4. However, during
evaluation, the NME is used instead of the softmax
outputs.

EEIL: we implement EEIl with the balanced and un-
balanced training phases. The unbalanced phase uses the
hyperparameters shared across all methods. However, for
the balanced phase the LR is reduced by 10 and the
number of training epochs to 40. As with LwF, T' = 2
and the trade-off is chosen using the CHF starting at 10.
However, we apply a slight modification to the original
work by not using the addition of noise to the gradients.
Our preliminary results with this method showed that
it was consistently detrimental to performance, which
provided a worse representation of the capabilities of the
method.

BiC: the distillation stage is implemented the same as
LwF, as in the original paper, with 7' = 2. However, the
trade-off between distillation and cross-entropy losses is
not chosen using the CHF. The authors already propose to

set it to nfm , where n is the number of previous classes,
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and m is the number of new classes, and we keep that
decision. On the bias correction stage, also following the
original work, we fix the percentage of validation split
used from the total amount of exemplar memory to be
10%.

« LUCIR: for this method we make two changes on the
architecture of the model. First, we replace the classifier
layer by a cosine normalization layer following Eq. 14;
and second we remove the ReLU from the penultimate
layer to allow features to take both positive and negative
values. However, since this procedure is only presented in
the original work for ResNet models, we do not extend it
to other architectures. The original code used a technique
called imprint weights during the initialization of the
classifier. However, since it was not mentioned in the
original paper, and preliminary experiments showed no
significant difference, we decided to not include it in our
implementation.

The cross-entropy loss is combined with the L;f less-
forget constraint from Eq. 12 and the £,,,,, margin ranking
loss from Eq. 15. The number of new class embeddings
chosen as hard negatives and the margin threshold are
fixed to K = 2 and m = 0.5 as in the original work. The
margin ranking loss is combined with the cross-entropy
loss in a one-to-one ratio, while the less-forget constraint
is chosen using the CHF with a starting value of 10, as
is the trade-off related to the stability-plasticity dilemma.

« IL2M: since it only stores some statistics on the classes
and applies them after the training is done in the same
way as Finetuning, there is no hyperparameter to tune for
this method.

Finally, the Finetuning, Freezing and Joint training baselines
have no hyperparameters associated to them, reducing the
Continual Hyperparameter Framework to only performing the
learning rate search for each task before doing the final
training.

APPENDIX B
SUPPLEMENTAL RESULTS

A. On sampling strategies

The better performance achieved by using herding in com-
parison to other sampling strategies is also very clear in the
CIFAR-100 (50/11) scenario. As seen in Table [ST] for longer
task sequences herding has a clear benefit over the other
sampling strategies when using class-incremental learning
methods. In the case of shorter sequences, similar to transfer
learning, performance does not seem to specifically favour any
sampling strategy.

B. On semantic tasks

The popularity of iCaRL and the interest in comparing with
it makes it quite common to utilize the random class ordering
for experiments based on CIFAR-100 [84]. The authors of
iCaRL use a random order of classes which is fixed in the
iCaRL code by setting the random seed to 1993 just before
shuffling the classes. However, this gives very little insight
on class orderings which make use of the coarse labels from
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TABLE S1: CIFAR-100 (50/11) with different sampling strate-
gies and fixed memory of 20 exemplars per class on ResNet-32
trained from scratch.

ace. sampling FT.E LwF-E EWCE EEIL BiC
after strategy
random 424 490 47.2 445 555
herding 48.0 517 45.1 479 535
task 2 entropy 39.6  43.6 38.6 384 46.1
distance 36.0 440 333 374 43.6
inv-entropy 41.4 445 45.5 433 55.6
inv-distance 443 482 439 40.3 479
random 385 342 30.4 41.3 432
herding 36.5  36.6 34.1 40.8 44.6
task 5 entropy 273 244 20.2 282 314
distance 25.1 252 20.0 27.6 312
inv-entropy 345 324 30.0 359 416
inv-distance 331 325 30.0 37.0 383
random 325 260 22.7 373 36.1
herding 320 263 23.6 38.8 39.1
entroj 16.1 14.8 10.7 23.0 259
sk 10 Gilnce 171 135 85 230 227
inv-entropy 287 222 21.8 30.1  32.8
inv-distance 292 233 20.6 27.1 354

that dataset to group classes into sharing similar semantic
concepts. This was explored for the tinylmageNet (Stanford,
CS231N [109]) dataset in [[16], [[17]], where the authors show
that some methods report different results based on different
semantics-based class orderings. In [[16], the iNaturalist [[110]
dataset is split into tasks according to supercategories and
are ordered using a relatedness measure. Having tasks with
different semantic distributions and learning tasks in differ-
ent orders is interesting for real-world applications where
subsequent tasks are based on correlated data instead of
fully random. Recently, [111] also brings attention to the
learning variability between using different class orderings
when learning a sequence of tasks incrementally.

In joint training, specific features in the network can be
learned that focus on differentiating two classes that are
otherwise easily confused. However, in an IL setting those
discriminative features become more difficult to learn or can
be modified afterwards, especially when the classes belong to
different tasks. Thus, the difficulty of the task can be perceived
differently in each scenario. Depending on the method, this
issue may be handled differently and therefore lead to more
catastrophic forgetting. This setting is different from the one
proposed in Curriculum Learning [112], since the objective
here is not to find the best order to learn tasks efficiently, but
rather to analyze incremental learning settings (in which the
order is not known in advance) and analyze the robustness of
methods under different task orderings.

In order to investigate robustness to class orderings, we
use the 20 coarse-grained labels provided in the CIFAR-100
dataset to arrive at semantically similar groups of classes.
Then, we order these groups based on their classification
difficulty. To assess performance we trained a dedicated model
with all CIFAR-100 data in a single training session and
use this model accuracy as a proxy value for classification
difficulty. Finally, we order them from easier to harder (Dec.
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Fig. S1: Class ordering results for CIFAR-100 on ResNet-32 trained from scratch. For FT-E and BiC, 20 exemplars per class
are sampled using herding. Error bars indicate standard deviation over six runs.

Acc.) and the other way around (Inc. Acc.). Results are
presented in Fig. [ST|for two methods without exemplars (FT+,
LwF), and two methods with exemplars (FT-E, BiC). Perfor-
mance can be significantly lower when using a semantics-
based ordering compared to random one. In the examplar-
free cases, special care of the used task ordering should be
taken as the final performance after learning all classes can
have quite some variability as seen in the LwWF case. However,
the variation with respect to the orderings is mitigated by the
use of exemplars. Therefore, evaluating methods which use
exemplars with randomized task orderings often suffices.
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