toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cristhian Aguilera; Fernando Barrera; Felipe Lumbreras; Angel Sappa; Ricardo Toledo edit   pdf
doi  openurl
  Title Multispectral Image Feature Points Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 9 Pages 12661-12672  
  Keywords (up) multispectral image descriptor; color and infrared images; feature point descriptor  
  Abstract Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ABL2012 Serial 2154  
Permanent link to this record
 

 
Author Alicia Fornes; Anjan Dutta; Albert Gordo; Josep Llados edit   pdf
doi  openurl
  Title CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue 3 Pages 243-251  
  Keywords (up) Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths  
  Abstract 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FDG2012 Serial 2129  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
  Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7324 Issue I Pages 184-191  
  Keywords (up) Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance  
  Abstract Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.  
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor  
  Language english Summary Language Original Title  
  Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MGH2012a Serial 1899  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords (up) Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
  Title Color Attributes for Object Detection Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3306-3313  
  Keywords (up) pedestrian detection  
  Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
  Address Providence; Rhode Island; USA;  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; CIC; Approved no  
  Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author Diego Cheda; Daniel Ponsa; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Pedestrian Candidates Generation using Monocular Cues Type Conference Article
  Year 2012 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal  
  Volume Issue Pages 7-12  
  Keywords (up) pedestrian detection  
  Abstract Common techniques for pedestrian candidates generation (e.g., sliding window approaches) are based on an exhaustive search over the image. This implies that the number of windows produced is huge, which translates into a significant time consumption in the classification stage. In this paper, we propose a method that significantly reduces the number of windows to be considered by a classifier. Our method is a monocular one that exploits geometric and depth information available on single images. Both representations of the world are fused together to generate pedestrian candidates based on an underlying model which is focused only on objects standing vertically on the ground plane and having certain height, according with their depths on the scene. We evaluate our algorithm on a challenging dataset and demonstrate its application for pedestrian detection, where a considerable reduction in the number of candidate windows is reached.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2119-8 Medium  
  Area Expedition Conference IV  
  Notes ADAS Approved no  
  Call Number Admin @ si @ CPL2012c; ADAS @ adas @ cpl2012d Serial 2013  
Permanent link to this record
 

 
Author Angel Sappa; David Geronimo; Fadi Dornaika; Mohammad Rouhani; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Moving object detection from mobile platforms using stereo data registration Type Book Chapter
  Year 2012 Publication Computational Intelligence paradigms in advanced pattern classification Abbreviated Journal  
  Volume 386 Issue Pages 25-37  
  Keywords (up) pedestrian detection  
  Abstract This chapter describes a robust approach for detecting moving objects from on-board stereo vision systems. It relies on a feature point quaternion-based registration, which avoids common problems that appear when computationally expensive iterative-based algorithms are used on dynamic environments. The proposed approach consists of three main stages. Initially, feature points are extracted and tracked through consecutive 2D frames. Then, a RANSAC based approach is used for registering two point sets, with known correspondences in the 3D space. The computed 3D rigid displacement is used to map two consecutive 3D point clouds into the same coordinate system by means of the quaternion method. Finally, moving objects correspond to those areas with large 3D registration errors. Experimental results show the viability of the proposed approach to detect moving objects like vehicles or pedestrians in different urban scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Marek R. Ogiela; Lakhmi C. Jain  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1860-949X ISBN 978-3-642-24048-5 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ SGD2012 Serial 2061  
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa edit   pdf
isbn  openurl
  Title Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3492 - 3495  
  Keywords (up) Pedestrian Detection; Domain Adaptation; Virtual worlds  
  Abstract Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Tsukuba Science City, JAPAN Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ VLP2012 Serial 1981  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester edit   pdf
url  openurl
  Title Multilocal Creaseness Measure Type Journal
  Year 2012 Publication The Insight Journal Abbreviated Journal IJ  
  Volume Issue Pages  
  Keywords (up) Ridges, Valley, Creaseness, Structure Tensor, Skeleton,  
  Abstract This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission.  
  Address  
  Corporate Author Alma IT Systems Thesis  
  Publisher Place of Publication Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ VGL2012 Serial 1840  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Y. LeCun; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Road Scene Segmentation from a Single Image Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision Abbreviated Journal  
  Volume 7578 Issue VII Pages 376-389  
  Keywords (up) road detection  
  Abstract Road scene segmentation is important in computer vision for different applications such as autonomous driving and pedestrian detection. Recovering the 3D structure of road scenes provides relevant contextual information to improve their understanding.
In this paper, we use a convolutional neural network based algorithm to learn features from noisy labels to recover the 3D scene layout of a road image. The novelty of the algorithm relies on generating training labels by applying an algorithm trained on a general image dataset to classify on–board images. Further, we propose a novel texture descriptor based on a learned color plane fusion to obtain maximal uniformity in road areas. Finally, acquired (off–line) and current (on–line) information are combined to detect road areas in single images.
From quantitative and qualitative experiments, conducted on publicly available datasets, it is concluded that convolutional neural networks are suitable for learning 3D scene layout from noisy labels and provides a relative improvement of 7% compared to the baseline. Furthermore, combining color planes provides a statistical description of road areas that exhibits maximal uniformity and provides a relative improvement of 8% compared to the baseline. Finally, the improvement is even bigger when acquired and current information from a single image are combined
 
  Address Florence, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33785-7 Medium  
  Area Expedition Conference ECCV  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ AGL2012; ADAS @ adas @ agl2012a Serial 2022  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez edit  doi
isbn  openurl
  Title Photometric Invariance by Machine Learning Type Book Chapter
  Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
  Volume 7 Issue Pages 113-134  
  Keywords (up) road detection  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher iConcept Press Ltd Place of Publication Editor Theo Gevers, Arjan Gijsenij, Joost van de Weijer, Jan-Mark Geusebroek  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-470-89084-4 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ AlL2012 Serial 2186  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Y. LeCun; Theo Gevers; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Semantic Road Segmentation via Multi-Scale Ensembles of Learned Features Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue Pages 586-595  
  Keywords (up) road detection  
  Abstract Semantic segmentation refers to the process of assigning an object label (e.g., building, road, sidewalk, car, pedestrian) to every pixel in an image. Common approaches formulate the task as a random field labeling problem modeling the interactions between labels by combining local and contextual features such as color, depth, edges, SIFT or HoG. These models are trained to maximize the likelihood of the correct classification given a training set. However, these approaches rely on hand–designed features (e.g., texture, SIFT or HoG) and a higher computational time required in the inference process.
Therefore, in this paper, we focus on estimating the unary potentials of a conditional random field via ensembles of learned features. We propose an algorithm based on convolutional neural networks to learn local features from training data at different scales and resolutions. Then, diversification between these features is exploited using a weighted linear combination. Experiments on a publicly available database show the effectiveness of the proposed method to perform semantic road scene segmentation in still images. The algorithm outperforms appearance based methods and its performance is similar compared to state–of–the–art methods using other sources of information such as depth, motion or stereo.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ ALG2012; ADAS @ adas Serial 2187  
Permanent link to this record
 

 
Author Antonio Hernandez; Miguel Reyes; Victor Ponce; Sergio Escalera edit   pdf
doi  openurl
  Title GrabCut-Based Human Segmentation in Video Sequences Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 11 Pages 15376-15393  
  Keywords (up) segmentation; human pose recovery; GrabCut; GraphCut; Active Appearance Models; Conditional Random Field  
  Abstract In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ HRP2012 Serial 2147  
Permanent link to this record
 

 
Author Yainuvis Socarras; David Vazquez; Antonio Lopez; David Geronimo; Theo Gevers edit   pdf
doi  isbn
openurl 
  Title Improving HOG with Image Segmentation: Application to Human Detection Type Conference Article
  Year 2012 Publication 11th International Conference on Advanced Concepts for Intelligent Vision Systems Abbreviated Journal  
  Volume 7517 Issue Pages 178-189  
  Keywords (up) Segmentation; Pedestrian Detection  
  Abstract In this paper we improve the histogram of oriented gradients (HOG), a core descriptor of state-of-the-art object detection, by the use of higher-level information coming from image segmentation. The idea is to re-weight the descriptor while computing it without increasing its size. The benefits of the proposal are two-fold: (i) to improve the performance of the detector by enriching the descriptor information and (ii) take advantage of the information of image segmentation, which in fact is likely to be used in other stages of the detection system such as candidate generation or refinement.
We test our technique in the INRIA person dataset, which was originally developed to test HOG, embedding it in a human detection system. The well-known segmentation method, mean-shift (from smaller to larger super-pixels), and different methods to re-weight the original descriptor (constant, region-luminance, color or texture-dependent) has been evaluated. We achieve performance improvements of 4:47% in detection rate through the use of differences of color between contour pixel neighborhoods as re-weighting function.
 
  Address Brno, Czech Republic  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor J. Blanc-Talon et al.  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33139-8 Medium  
  Area Expedition Conference ACIVS  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ SLV2012 Serial 1980  
Permanent link to this record
 

 
Author R. de Nijs; Sebastian Ramos; Gemma Roig; Xavier Boix; Luc Van Gool; K. Kühnlenz. edit   pdf
openurl 
  Title On-line Semantic Perception Using Uncertainty Type Conference Article
  Year 2012 Publication International Conference on Intelligent Robots and Systems Abbreviated Journal IROS  
  Volume Issue Pages 4185-4191  
  Keywords (up) Semantic Segmentation  
  Abstract Visual perception capabilities are still highly unreliable in unconstrained settings, and solutions might not beaccurate in all regions of an image. Awareness of the uncertainty of perception is a fundamental requirement for proper high level decision making in a robotic system. Yet, the uncertainty measure is often sacrificed to account for dependencies between object/region classifiers. This is the case of Conditional Random Fields (CRFs), the success of which stems from their ability to infer the most likely world configuration, but they do not directly allow to estimate the uncertainty of the solution. In this paper, we consider the setting of assigning semantic labels to the pixels of an image sequence. Instead of using a CRF, we employ a Perturb-and-MAP Random Field, a recently introduced probabilistic model that allows performing fast approximate sampling from its probability density function. This allows to effectively compute the uncertainty of the solution, indicating the reliability of the most likely labeling in each region of the image. We report results on the CamVid dataset, a standard benchmark for semantic labeling of urban image sequences. In our experiments, we show the benefits of exploiting the uncertainty by putting more computational effort on the regions of the image that are less reliable, and use more efficient techniques for other regions, showing little decrease of performance  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IROS  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ NRR2012 Serial 2378  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: