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Abstract. In this paper we improve the histogram of oriented gradients (HOG),
a core descriptor of state-of-the-art object detection, by the use of higher-level
information coming from image segmentation. The idea is to re-weight the de-
scriptor while computing it without increasing its size. The benefits of the pro-
posal are two-fold: (i) to improve the performance of the detector by enriching
the descriptor information and (ii) take advantage of the information of image
segmentation, which in fact is likely to be used in other stages of the detection
system such as candidate generation or refinement.
We test our technique in the INRIA person dataset, which was originally devel-
oped to test HOG, embedding it in a human detection system. The well-known
segmentation method, mean-shift (from smaller to larger super-pixels), and dif-
ferent methods to re-weight the original descriptor (constant, region-luminance,
color or texture-dependent) has been evaluated. We achieve performance im-
provements of 4.47% in detection rate through the use of differences of color
between contour pixel neighborhoods as re-weighting function.

1 Introduction

Vision-based human detection is a key component in fields such as advanced driving as-
sistance [14, 8, 12] and video surveillance [21, 17, 27]. Detecting people in images rep-
resents a challenging task given their intra-class variability, the diversity of backgrounds
and the different image acquisition conditions. Nowadays, even detecting non-occluded
standing persons is still a hot topic of research. As can be seen in [14], building a vision-
based human detector requires to develop different modules. In this work we want to
improve human detection by focusing on classification, i.e., on building a classifier that
given an image window decides if it contains a person or not.

Nowadays, most successful classification processes for human detection follow the
learning-from-examples paradigm [14, 8], where core ingredients are the set of descrip-
tors used to represent the humans as well as the learning algorithm itself. Indeed, find-
ing good sets of descriptors for developing a human classifier is a major key for its
success. Different sets try to exploit (combinations of) cues as shape and texture [28,
7], even adding motion and depth [9, 27]. Among all possible sets of descriptors, one



that is being specially useful for building human detectors (and object detectors in gen-
eral) is the so-called HOG, i.e., the histograms of oriented gradients. This descriptor
was proposed in [6] for building a holistic classifier, using linear support vector ma-
chines (linear SVM) as learning algorithm. HOG still remains as a competitive baseline
method for comparison with new human classifiers [8, 7]. Although HOG descriptors
capture the shape of the humans in a dense way, i.e., the positive weights learnt when
using a linear classifier resemble the human silhouette, they are also affected by local
noise and texture given that gradient is a local measure. On the other hand, there are
works that explicitly exploit the human’s shape either holistically [13] or in part-based
approaches [22]. In this cases, however, the image pixels out of the silhouette are not
taken into account, i.e., there is not such a non-human class.

In this work, we aim to enhance human silhouette orientations, without explicitly
computing such silhouettes, but using information not as local as the own gradient mag-
nitude. Thus, we propose to use image segmentation to obtain image segments (or re-
gions) with their corresponding frontiers, in order to later re-weight the HOG descrip-
tor according to this frontier information as well as appearance differences between the
segments.

The inspiration for this proposal comes from two sources. The first is the idea of
using appearance information, whose importance in object detection has been widely
demonstrated [26, 28], and specially the idea of combining cues with the HOG descrip-
tor, e.g., co-occurrence HOG [29], color HOG [24], etc. It has been largely demon-
strated by the proposal of different descriptors that appearance is an important cue for
object detection. The second source is the increasing trend of using segmentation for
both detection and segmentation, which in our case has the potential of highlighting the
shape of the human. Segmentation has been used for pixel-based object detection [2,
19], for providing shape-based outputs [15] and even also to generate candidate win-
dows [25], so exploiting global image segmentation is likely to be useful also in other
stages of the detection system. In fact, there exists a very related work by Ott et al. [23]
which also combines the concepts of HOG descriptor and image segmentation. In such
a work, given a window to be classified as human or not, a soft segmentation is carried
out aimed at separating between foreground (human) and background pixels in order to
compute an additional color-based HOG (CHOG) descriptor to be combined with the
usual HOG in an augmented descriptor space. In our proposal we do not require to dis-
tinguish between foreground and background but rely on a global image segmentation.
Besides, in our case we do not augment the original descriptor, thus not increasing the
complexity of the classifier.

The outline of the paper is as follows. Sect. 2 describes the proposed algorithm
and its parameters (segmentation method, and descriptor re-weighting approaches). The
experimental results, including the details of the dataset and detection system, together
with discussion, is presented in Sect. 3. Finally, the main conclusions and future work
are summarized in Sect. 4.



2 HOG Re-weighting using Global Image Segmentation

The proposed approach consists in re-weighting the HOG descriptor for each one of the
cells while it is computed. Basically, HOG consists in an intelligent grouping of gra-
dient information (cells and blocks), as well as well-engineered histograms of gradient
orientations (weighting by gradient magnitude, bin interpolation, histogram normaliza-
tion and outliers clipping are the major steps1). The window of interest is covered by
overlapping blocks, therefore, the HOG descriptor of the whole window usually ends
up being thousand-dimensional. A linear SVM is used for learning the human classi-
fier works in such high dimensional space. Accordingly, the obtained classifier is just a
weighted summation running on such number of dimensions.

When computing HOG, the gradient orientation θP at a given pixel P is weighted
by the corresponding magnitude µP , i.e., µP is accumulated in the histogram bin cor-
responding to θP (of course, taking into account the discretization, Gaussian weighting
and interpolation proposed in [6]). Notice that the gradient at P , only encodes local
differences in intensity or color, i.e., differences between adjacent pixels. In this paper,
we want to incorporate differences based on a wider spatial support into the process in
order to assess if they allow to obtain a human detector with higher performance. In
particular, we want to weight µP by a given ωP coming up from an image segmenta-
tion process, i.e., the vote of θP in the histogram will be the re-weighted magnitude λP

instead of µP . Fig. 1 illustrates the idea.

Original HOG descriptor 

Re-weighted HOG Original image Segmentation 

Contour pixel 
Non-contour 

Re-weighting 

Fig. 1: Re-weighting of the HOG descriptor according to the image segmentation cues.

1 The computation of the HOG has many details and we refer the reader to [6] for a comprehen-
sive explanation.



2.1 Proposed Algorithm

Given an input image I and HOG parameters ϕ, our proposal can be summarized as
follows:

1. Compute the image gradient of I , i.e., δI , using the corresponding parameters in ϕ.
2. Compute a global image segmentation of I using method S, i.e., S(I) = SI . Let

SI be the segmented image in which it is easy to distinguish the resulting segments
and segment frontiers/contours.

3. Use δI , SI and ϕ to compute the modified HOG of all desired windows of I . This
means to proceed like for standard HOG but rather than weighting each orientation
θP by its corresponding magnitude µP (in the histogram voting), we weight it by
λP , where λP = ωP ∗ µP and ωP = W(SI(P )).

W is the weighting function of each pixel, which will be detailed in the next subsec-
tions. As an example, setting W = 1 means that each pixel is not altered, thus getting
the original HOG descriptor. Note that δI and SI are computed at once over the whole
I , i.e., they are not computed in a per window basis (except if I is a window).

2.2 Image Segmentation

Providing a spatial partition of an image, i.e., a segmentation, remains as an active topic
in Computer Vision. Some of the open issues are the type of descriptors to use, the
similarity criteria to merge and split regions or joint pixels, the combination of top-
down and bottom-up approaches, etc. Indeed, there is a plethora of proposals in the
literature for image segmentation task. Not surprisingly, it is one of the most difficult
tasks of the popular PASCAL challenge [10].

In the context of human detection a relevant issue is real-time. Thus, after some
initial tests, we discarded some possibilities as using [1] method for gradient compu-
tation, as well as other more sophisticated image segmentation techniques (graph-cuts,
top-down/bottom-up fusion, etc.) [3, 18, 2, 1]. We did not consider basic methods as K-
Means and watershed because parametrization can become a hard task, e.g., provide a
good K for K-Means or appropriate markers for watershed was difficult. Instead, we
relied on mean-shift algorithm applied to the CIE Luv color space because its computa-
tion is fairly fast and the parametrization is done in a relatively simple way. Moreover,
we have chosen CIE Luv because the Euclidean distance between two colors in this
space is strongly correlated with the human visual perception [30]. For instance, Fig. 2
shows the result of segmenting an image using mean-shift algorithm [4] with different
parameters (Γ ), computed in CIE Luv color space. Here we do not claim CIE Luv to
be the most suited colorspace, therefore, in the future we want to consider other color
spaces as well.

We compute the segmentation of image I with mean-shift algorithm S according
to a set of different parameters that can be defined as Γ , so that SΓ (I) = SI . Such Γ
represents the bandwidth parameter of the mean-shift algorithm, such parameter takes
into account the segmentation spatial radius, segmentation feature space radius and
minimum segment area [4]. We tuned Γ values according to the proposed in [4] in



Fig. 2: Mean-shift image segmentation with different parameters (Γ ).

order to obtain different number of segments and, therefore, homogeneous regions of
dissimilar sizes, i.e., segmentation results that varies from smaller super-pixels to larger
super-pixels. In Fig. 2 is illustrated the idea, different segmentations of an image where
the number and size of segments varies according to the Γ used, the case of Γd shows
the resulting image segmented with the default mean-shift parameters.

2.3 Pixel Weighting Functions

As previously mentioned, the simplest case of W can be defined as W(P ) = 1 without
considering the pixel position (contour or non-contour), which would make the image
segmentation useless since we would be computing the standard HOG. In fact, we are
interested in rules of the form W(P ) = ωc if P is a contour pixel in SI and W(P ) = 1
otherwise.

In our case, ωc of a pixel P depends of the location of P , i.e., is pixel-dependent.
Such ωc is defined as a dissimilarity measure between the neighbour segments of the
contour to which P belongs. In particular, we have selected some basic features to
establish our dissimilarity measures: color, luminance and texture, we also considered a
combination between color and texture. Because of the simple nature of such measures,
its computation is done in a simple way.

For each region, the color measure was computed in the CIE Luv colorspace by
computing the average of the u and v components, then we determined the difference
between the means by the Euclidean distance. In the case of luminance, the means were
calculated in the L component of such CIE Luv colorspace, so the dissimilarity mea-
sure was done by the difference between the means. The texture was computed by the
Battacharyya distance between the histograms of the adjacent regions, such histograms



were calculated using local binary patterns, i.e., LBP values [16]. In the case of the com-
bination between color and texture, each measure is computed separately, as explained
above, and the average is calculated.

3 Experimental Results

In this section we evaluate the proposed algorithm in a publicly available dataset.

3.1 Dataset

In order to conduct the mentioned experiments, we make use of the INRIA person
dataset [6], which contains color images. This dataset shows a wide range of human
variations in pose, clothing, occlusions as well as complex backgrounds. Moreover, the
dataset is divided in separated sets of null intersection for training and testing.

The training set contains 2,416 positive samples consisting in image windows (origi-
nal and vertical mirror), each one containing a person framed by certain amount of back-
ground. All the positives are of the same size (canonical detection window, 64x128),
although many of them come from an isotropic down scaling. We term this set of win-
dows as V train

+ . For collecting negative samples, i.e., image windows that do not contain
persons, there are 1,218 person-free images available. We term this set of images as
I train
− . The testing set consists of: (1) I test

− : 453 person-free images; (2) I test
+ : 288 images

containing labeled persons (ground truth); (3) V test
+ : 1,126 positives analogous to the

ones in V train
+ after cropping and mirroring the ground truth of I test

+ .

3.2 Training

We use the standard training procedure for the INRIA dataset [6, 5]. First, we collect
random negative windows from the images in I train

− (10 windows per image to have
12,180 negatives) and down scale them to the size of the canonical detection window;
let us call this set of windows V train

− . Then, given the sets V train
+ and V train

− , we compute the
HOG of such labeled windows on top of the desired color space, and train a human
classifier using the linear SVM. Finally, we run the corresponding human detector on
I train
− in order to follow the recommended bootstrapping technique, i.e., to append the

set V train
− with hard negative windows and re-train the human classifier. We apply two

bootstrapping iterations.

3.3 Testing

In order to perform multi-scale human detection we use the pyramidal sliding window
strategy as proposed in Dalal’s PhD [5]. The original image is resized by a scaling factor
si to obtain the image corresponding to the pyramid level i. Then, given a pyramid level,
we shift the search window along the horizontal and vertical directions with a given
stride. The smaller the scalling factor and window stride, the finer the sliding window
search, so a better detection performance is expected. However, this is to the expense of
a higher processing time. While Dalal [5] sets scaling to 1.2 and window stride to (8,8)



pixels, in our experiments we found that a 1.05 scaling factor and (4,4) pixels stride
provides a better tradeoff between processing time and performance. Additionally we
perform anti-aliasing operations [11] which improve performance around a 9% in the
INRIA dataset with respect to the original proposal in [5], which, in fact, makes more
challenging to improve the standard HOG results.

Here, in order to compute the weighted HOG, we apply the selected image seg-
mentation algorithm (i.e., S) to each level of the pyramid. Thus, we obtain a sort of
multi-scale segmentation of the original image (Fig. 3).

Fig. 3: Pyramid-segmentation. The scale of the slice in the pyramid affects the segmen-
tation, similarly as it affects the HOG descriptor.

Since in multi-scale human detection a single person can be detected several times at
slightly different positions and scales but a unique detection per human is desired, multi-
ple overlapped detections shall be grouped by a clustering (non-maximum-suppression)
procedure. In this case, we rely on the iterative confidence clustering approach of Laptev
[20], which is a simpler and faster technique than Dalal’s proposal and yields similar
results.



3.4 Evaluation

In our experiments we use the widely extended per image evaluation procedure2, which
consists in running the detection system in a set of images containing persons and then
comparing with the groundtruth for counting how many of such detections are true
positives (TTP) and how many are false positives (TFP). If I# is the cardinality of I test and
H# the number of labeled persons in I test

+ , then we can define the per image detection
rate as DR = TTP/H# (DR ∈ [0, 1]; per image miss rate MR = 1 − DR) and the false
positives per image as FPPI = TFP/I#. In order to determine if a detection overlaps
sufficiently with a labeled human of I test

+ we follow the so-called PASCAL criterion [7]
(also for bootstrapping during training). Now, we can define a curve to compare the
algorithms. Note that FPPI can be greater than one, which would mean to have more
than one false positive per image).

Taking into account S and W , we have performed experiments in which the weight
in the contour pixels is given by different criteria, ωc = ∆. Such difference (∆) is
computed considering the variation in color, luminance (gray), texture (LBP) and com-
bination of color and texture means between adjacent regions.

Fig. 4 illustrates the performance of the different algorithms. In all cases the result
of the standard HOG is included for comparison. Within the legend parentheses, for the
different plotted curves, we will indicate missrate at FPPI=100 and average area under
the curve (A-AUC) between FPPI=10−1 and FPPI=100. Such FPPI points are relevant
to detectors for driver assistance, the application field in which we will focus, taking
into account that temporal coherence can help in reducing false positives if they are few
per image.

3.5 Discussion

According to the experiments, it is clear that our proposal outperforms the standard
HOG, i.e., the contribution of the segmentation cues in the computation of the HOG
features seems to be significant for detecting pedestrians in the INRIA dataset. How-
ever, we can see how our proposal is sensitive to the segmentation output. A plausible
explanation is the following, mean-shift with Γ1 (Fig. 4a) outputs many small regions,
also called super-pixels. Thus, such super-pixels are still too local, i.e., too close to pix-
els size. In the case of mean-shift with Γ2(Fig. 4b), the performance of the algorithm
is slightly better due to the increased sizes of the segmented regions. On the contrary,
Γ4(Fig. 4d) and Γ5(Fig. 4e) provides larger super-pixels so the information provided
to the classifier is too general, i.e., such contribution is not enough detailed. In the
case of mean-shift with Γ3(Fig. 4c) the resulting super-pixels are larger than mean-shift
obtained with Γ1(Fig. 4a) and Γ2(Fig. 4b) but smaller than the obtained with Γ4(Fig.
4d) and Γ5(Fig. 4e) providing detailed information to the classifier but not too local.
In the case of Γd(Fig. 4f) our proposal is computed with the default parameters pro-
vided by mean-shift method. The obtained results are quite good but not as good as

2 Through the literature it has been demonstrated [7] that per image evaluation is more real-
istic than per window evaluation for assessing object detectors, which consists in classifying
cropped examples and counterexamples, so in this paper we only use the former.
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Fig. 4: Performance curves of the different parameters (Γ ) for the segmentation algo-
rithm mean-shift. The curves (a)-(e) shows the results of our proposal with different
segmentation parameters, obtaining from smaller to larger super-pixels. The diagrams
(a)-(e) shows the results of the contribution coming from the segmentation with pa-
rameters Γ1-Γ5, in the case of (f) corresponds to the default parameters (Γd) of the
mean-shift algorithm.



those obtained with Γ3, therefore, it is necessary a validation set to adjust the segmen-
tation parameters. However, in all the cases our proposal outperforms standard HOG
descriptor, although mean-shift with Γ3(Fig. 4c) achieves the best results.

Regarding the tested W , the best option consists in weighting HOG at contour pixels
(ωc) according to the difference in color between the segments separated by the contour.
Overall, using mean-shift (Γ3), differences of color between segments for setting ωc, we
have down shifted missrate an average of 4.47% in our area of interest (from FPPI=10−1

to FPPI=100) compared to our HOG implementation explained in section 3.3.

An interesting further question is whether this improvement is maintained when
combining HOG with other descriptors as it is normally done. In order to test this we
have reproduced the recent HOG-LBP approach (combining HOG with local binary
patterns), presented in [28, 31] with satisfactory results. In addition to the original LBP
implementation, we have introduced three improvements with respect to [28] which
increase its performance: (i) we use a threshold in the pixel comparisons, which in-
creases the descriptor tolerance to noise; (ii) we do not interpolate the pixels around the
compared central one; and (iii) we perform the computation directly in the luminance
channel instead of separately computing the histograms in the three color channels.
Fig. 5 illustrates the comparison among [28] (Wang’s approach), our implementation of
HOG-LBP and our proposal. As can be seen, our implementation already outperforms
Wang’s in 6.02% MR, and including the proposed segmentation-based weighting we
further decrease MR to 7.31%, which demonstrates that our proposal is complementary
to combining HOG with other cues.
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Fig. 5: Comparison between HOG-LBP with and without our proposed algorithm.



4 Conclusions

In this work we have investigated the possibility of improving HOG descriptors in the
context of human detection. In particular by weighting HOG with information coming
from image segmentation. We have conducted different experiments to clarify what type
of segmentation is preferred (from smaller to larger super-pixels) and how such HOG re-
weighting must be performed. Overall, we have seen that using mean-shift with Γ3 and
differences of color between segments for setting HOG weights at contours, we have
down shifted missrate an average of 4.47% in our area of interest (from FPPI=10−1 to
FPPI=100). Furthermore, our proposal is complementary to combining HOG with other
descriptors such as LBP, achieving a decrease of 1.29% in MR.

As future work we plan both to analyze the cases in which segmentation-based
HOG weight is helping most in order to exploit this a prior information in the design
of further detectors. Furthermore, we want to take advantage of the image segmenta-
tion for other tasks different than classification, e.g., candidate generation or refinement.
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potentials for joint classification and segmentation. In: IEEE Conf. on Computer Vision and
Pattern Recognition. San Francisco, CA, USA (2010)

3. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object seg-
mentation (2010)

4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. on Pattern Analysis and Machine Intelligence24(5), 603–619 (2002)

5. Dalal, N.: Finding people in images and videos. PhD Thesis, Institut National Polytechnique
de Grenoble / INRIA Rhône-Alpes (2006)
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