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Abstract

Vision-based object detectors are crucial for differ-
ent applications. They rely on learnt object models. Ide-
ally, we would like to deploy our vision system in the
scenario where it must operate. Then, the system should
self-learn how to distinguish the objects of interest, i.e.,
without human intervention. However, the learning of
each object model requires labelled samples collected
through a tiresome manual process. For instance, we
are interested in exploring the self-training of a pedes-
trian detector for driver assistance systems. Our first
approach to avoid manual labelling consisted in the use
of samples coming from realistic computer graphics, so
that their labels are automatically available [12]. This
would make possible the desired self-training of our
pedestrian detector. However, as we showed in [14], be-
tween virtual and real worlds it may be a dataset shift.
In order to overcome it, we propose the use of unsuper-
vised domain adaptation techniques that avoid human
intervention during the adaptation process. In particu-
lar, this paper explores the use of the transductive SVM
(T-SVM) learning algorithm in order to adapt virtual
and real worlds for pedestrian detection (Fig. 1).

1 Introduction

Pedestrian detection is a relevant driver assistance
functionality. Vision-based pedestrian detection is a
current challenge given their variability (pose, clothe,
occlusions) and background diversity (scene content
and illumination). At the core of any pedestrian de-
tector there is a pedestrian classifier, which decides if a
given image window contains a pedestrian. Key compo-
nents of the classifier are the pedestrian descriptors and
the employed machine learning algorithm. Thus, most
works on pedestrian detection have focused on these
aspects [4, 6, 9]. The initial task of the learning pro-
cess consists in collecting samples of pedestrians and

Figure 1. We learn a pedestrian model
using automatically labelled virtual-world
pedestrians and background. With this
model we detect pedestrians in real-world
images. Some detections will be true pos-
itives and others false ones. Since we do
not know which ones are of each type and
we do not want human intervention, we
treat all them as unlabelled data. Next,
such unlabelled samples and the virtual-
world labelled ones are joined to train a
new pedestrian model using the T-SVM.

background, which is important since with poor sam-
ples even the best descriptors and learning machines can
not provide a good classifier [2]. These labelled samples
are collected through a tiresome manual task, where hu-
man annotators provide bounding boxes (BBs) framing
pedestrians present in a set of training images.

We face the challenge of developing object detectors
whose underlying classifier is totally self-trained,i.e.,
without the intervention of human annotators. In partic-



ular, our current interest is to do so for detecting pedes-
trians. In [12] we did a first step consisting in training
a pedestrian classifier using virtual scenarios,i.e., the
pedestrian and background samples came from realistic
videogame images, with the advantage of obtaining the
pedestrian BBs automatically. The method exhibits the
desired performance for the Daimler testing set [6].

Therefore, we concluded that training based on vir-
tual worlds can be a manner of avoiding human annota-
tors (note that videogame industry will keep generating
realistic scenarios regardless we use them or not). How-
ever, in [14, 15] we showed that between virtual and
real world it may be adataset shift[13]. However, in
[14, 15] we already saw that dataset shift does not come
because of virtual-world training data, it can appear due
to the use of different cameras and/or operating in dif-
ferent scenarios for training and testing.

Thus, in [14, 15] we applieddomain adaptation
(DA) [1] to virtual and real worlds, where the former
is considered as the so-calledsource domainand the
latter is thetarget domain. In the DA paradigm it is
assumed that we have many labelled samples from the
source domain, which in our case are pedestrian and
background samples automatically collected (with la-
bel) from the virtual world. Regarding the target do-
main, two main situations are considered: (1) insuper-
vised DA(SDA) we collect a small amount of labelled
target-domain data; (2) inunsupervised DA(UDA) we
collect a large amount of target-domain data but without
labels. In [14, 15] we proposed a SDA approach based
on active learning. Obtained results, were totally satis-
factory in terms of the performance of the SDA-based
pedestrian detectors. However, the use of active learn-
ing implies that a human oracle assists the training.

Currently we face the last step towards our self-
trained pedestrian detector,i.e., we propose not to in-
volve humans annotators/oracles during the training
process. In particular, as we explain in Sect. 2, in this
paper we follow an UDA based on transductive SVM
(T-SVM) [11]. As we will see in Sect. 3, for our current
image acquisition system, the obtained performance is
comparable to the one given by a pedestrian detector
based on human assisted training. The conclusions of
the presented work are summarized in Sect. 4

2 Proposed UDA pedestrian detector

Nowadays, the most relevant baseline pedestrian de-
tector relies on a holistic pedestrian classifier that uses
the histograms of oriented gradients (HOG) as visual
descriptor, and the linear support vector machines (Lin-
SVM) as learning method [3]. New state-of-the-art
methods are based on this baseline [5, 8, 16, 17]. Thus,

we have started our study using HOG but replacing the
Lin-SVM by Lin-T-SVM (SVM light implementation
[10]). If all the provided samples are labelled Lin-T-
SVM is equivalent to Lin-SVM. Moreover, as we did
in [12, 14, 15], the full pedestrian detector is completed
with pyramidal sliding window to provide multi-scale
candidate windows to the pedestrian classifier, and with
non-maximum suppression to resume the multiple de-
tections coming from the same pedestrian in just one.

Now, let us assume the following inputs. First, our
source domain: =tr+

V
denotes a set of virtual-world im-

ages with automatically labelled pedestrians, and=tr−
V

refers to a set of pedestrian-free virtual-world images
automatically generated as well. Second, ourtarget do-
main: =tr

R
is a set of real-world images without labels.

Third, a threshold,Thr, such that an image window is
said to contain a pedestrian if its classification score is
larger thanThr. Then, the steps of our UDA are:

(S1) Learning in virtual world with samples from
{=tr+

V
,=tr−

V
}, HOG and Lin-SVM. We term asCV the

learnt classifier and asDV its associated detector. Let
T tr+
V

be the set of pedestrians used for obtainingCV
(i.e., coming from=tr+

V
), andT tr−

V
the set of back-

ground samples (from=tr−
V

). Samples inT tr+
V

and
T tr−
V

are assumed to follow standard training steps
of pedestrian classifiers, namely, they are in canonical
window (CW) size,T tr+

V
includes mirroring, andT tr−

V

includes bootstrapped hard negatives (previous to boot-
strapping, we train the initial classifier with the same
number of positive and negative samples). LetC denote
the current classifier during our learning procedure, and
D its associate detector. Now we provide the initializa-
tion C ← CV (thus,D isDV at the beginning).

(S2) Pedestrian detection in real world. Run D on
=tr

R
: only those candidate windowsWc (provided by the

pyramidal sliding window) withC(Wc) > Thr are con-
sidered for the final non-maximum suppression stage of
the detection process. Some of these detections are true
positives, while some others are false ones. We do not
know, and treat all them as unlabelled samples. Let us
term asT tr?

R
the set of such detections and their verti-

cally mirrored counterparts down scaled to CW size.

(S3) T-SVM learning in cool world1 with the virtual-
world samples (i.e., T tr+

V
andT tr−

V
) and the real-world

unlabelled ones (i.e., T tr?
R

). Figure 2 illustrates the un-
derlying idea of the T-SVM training. After this new
training we obtain the newC andD.

1We used the termcool worldin [15] as a tribute to the 1992 movie
with that title. In this movie, there is a real world and a cool world,
the latter shared by real humans and cartoons.



Figure 2. T-SVM training.

3 Experiments

For our experiments we are using a camera based on
a CCD color sensor of VGA resolution, with a lens of 6
mm of focal. The camera is installed in the windshield
of a car, forward facing the road. Moreover, to apply our
UDA training proposal, we are using 1208 virtual-world
pedestrians, and 1219 pedestrian-free virtual-world im-
ages to collect background samples. In order to assess
the performance of our method we have started with a
sequence of 350 real-world images for training (let us
denote it by=tr

cvc) and 250 for testing, they do not over-
lap. In the training sequence there are 581 pedestrians.
In the testing sequence there are 290 pedestrians with
height equal or larger than 72 pixels, which were man-
ually annotated for validation purposes. We focus on
such pedestrians because they are at a distance to the
car below 25 m,i.e., the mandatory area of detection
[9]. Figure 3 shows some pedestrian and background
samples coming from virtual scenarios and our image
acquisition system.

In all cases we have setThr = −1 (lower limit of
SVM uncertainty area), and the strides for the pyrami-
dal sliding window are4x = 4y = 8 pix with scale
step of1.2. The HOG parameters are those of the orig-
inal proposal [3]. The performance metric for evaluat-
ing the pedestrian detector is the average area under the
curve (A-AUC), where the curves are plotting the num-
ber of false positives per image (FPPI)vs the miss rate.
We focus in the range from FPPI=1 to FPPI=0.1, which
corresponds to a number of false positives that could be
filtered out by a posterior temporal coherence analysis
based on tracking [9]. To determine if a detection is
right or not during the validation, we use the PASCAL
VOC criterion [7]. In summary, we follow the standard
evaluation method for object detection.

Figure 4 shows the results of the different experi-
ments we have conducted. CurveCVC-Train-1refers
to the use of a pedestrian classifier trained only with
pedestrian and background samples from=tr

cvc. Of
course, for this experiment the pedestrians in=tr

cvc

Figure 3. Virtual- and real-world samples
from our camera (top & bottom, resp.).

where manually labelled. CurveVirtual refers to the
use of only the virtual-world data for training. Curves
UDA correspond to the results according to the pro-
posed method,i.e., using virtual-world samples and
=tr

cvc (without labels) for building the pedestrian clas-
sifier. We iterated the learning process three times, the
third was not giving any improvement, so we show just
two iterations. From one iteration to the next, we pre-
served all the detections as unlabelled samples. Curves
SDA correspond to our approach in [14, 15], iterated
also until no improvement was achieved, which hap-
pens at third iteration too. Note that SDA involves a
human oracle during training.

From results in Fig. 4 we see thatVirtual performs
worse thanCVC-Train-1(4 A-AUC points) which we
hypothesize is due to dataset shift. When virtual and
real world samples are combined, A-AUC is around
5 points better thanCVC-Train-1and 9 points regard-
ing Virtual, which are large improvements (see typi-
cal performance differences among pedestrian detectors
in [4]). Iterations pay back in terms of performance
improvement (similar to what happens with bootstrap-
ping). Both approaches, SDA and UDA, perform sim-
ilarly. Thus, we could say that virtual data is com-
plementing well real one. This viewpoint, which ap-
plies to both SDA and UDA, corresponds to label real-
world samples and use virtual-world ones to comple-
ment them. However, here we are interested in the
pure UDA viewpoint,i.e., starting with a classifier only
based on virtual-world samples, the proposed T-SVM-
based algorithm has been able to adapt it for operating
in real-world images without human intervention.

Additionally, to complement the study, we trained a
pedestrian classifier fully based on manual annotations.
More specifically, we labelled 1016 pedestrians in other
images taken with our camera and used 150 pedestrian-
free images to collect background samples. Then, we
trained the classifier following the same procedure that
we used for training the classifier only based on virtual-
world samples. The curve is shown asCVC-Train-2
in Fig. 4. Note, that it gives better results than our
DA approaches (around 2 A-AUC points), of course,
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Virtual (42.42%)
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Figure 4. Detection results: in parenthesis
the A-AUC of the conducted experiments.

by manually annotating the double of pedestrians than
for SDA. However, in the working range from FPPI=1
to FPPI=0.5, UDA (it2) andCVC-Train-2shows analo-
gous performance. Now, we can keep improving UDA
by showing more sequences to the learning system,
while for improvingCVC-Train-2more manual anno-
tations would be required and it is necessary to fol-
low some sort of active learning procedure (as we do
in SDA) to avoid introducing redundant pedestrians.

4 Conclusions

In this paper we have addressed the challenge of
developing a method for obtaining self-trained pedes-
trian detectors,i.e., without human intervention for la-
belling samples. For that we have proposed an unsuper-
vised domain adaptation procedure based on T-SVM.
In the source domain we have automatically labelled
samples coming from a virtual-world, while the target
domain correspond to real-world images from which
the proposed algorithm selects (by detection) unlabelled
samples that correspond to pedestrians and background.
Obtained results are comparable to traditional learning
procedures where the pedestrians samples are collected
by tiresome manual annotation. Our proposal can be
extrapolated to other objects.
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