toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  openurl
  Title Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary Type Book Chapter
  Year 2016 Publication Recent Trends in Image Processing and Pattern Recognition Abbreviated Journal  
  Volume 709 Issue Pages  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RTIP2R  
  Notes DAG Approved no  
  Call Number Admin @ si @ HTR2016 Serial 2956  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Francisco Blanco; Manuel Valiente; Montserrat Lopez-Mesas edit   pdf
url  openurl
  Title myStone: A system for automatic kidney stone classification Type Journal Article
  Year 2017 Publication Expert Systems with Applications Abbreviated Journal ESA  
  Volume 89 Issue Pages 41-51  
  Keywords Kidney stone; Optical device; Computer vision; Image classification  
  Abstract Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; MSIAU; 603.046; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SLB2017 Serial 3026  
Permanent link to this record
 

 
Author Pau Rodriguez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit   pdf
url  openurl
  Title Age and gender recognition in the wild with deep attention Type Journal Article
  Year 2017 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 72 Issue Pages 563-571  
  Keywords Age recognition; Gender recognition; Deep neural networks; Attention mechanisms  
  Abstract Face analysis in images in the wild still pose a challenge for automatic age and gender recognition tasks, mainly due to their high variability in resolution, deformation, and occlusion. Although the performance has highly increased thanks to Convolutional Neural Networks (CNNs), it is still far from optimal when compared to other image recognition tasks, mainly because of the high sensitiveness of CNNs to facial variations. In this paper, inspired by biology and the recent success of attention mechanisms on visual question answering and fine-grained recognition, we propose a novel feedforward attention mechanism that is able to discover the most informative and reliable parts of a given face for improving age and gender classification. In particular, given a downsampled facial image, the proposed model is trained based on a novel end-to-end learning framework to extract the most discriminative patches from the original high-resolution image. Experimental validation on the standard Adience, Images of Groups, and MORPH II benchmarks show that including attention mechanisms enhances the performance of CNNs in terms of robustness and accuracy.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.098; 602.133; 600.119 Approved no  
  Call Number Admin @ si @ RCG2017b Serial 2962  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Hugo Jair Escalante; Xavier Baro; Isabelle Guyon edit  url
openurl 
  Title Looking at People Special Issue Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 2-4 Pages 141-143  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; ISE; 600.119 Approved no  
  Call Number Admin @ si @ EGJ2018 Serial 3093  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Francesca Vidal; Zaida Sarrate edit   pdf
isbn  openurl
  Title Noves perspectives en l estudi de la territorialitat cromosomica de cel·lules germinals masculines: estudis tridimensionals Type Journal
  Year 2017 Publication Biologia de la Reproduccio Abbreviated Journal JBR  
  Volume 15 Issue Pages 73-78  
  Keywords  
  Abstract In somatic cells, chromosomes occupy specific nuclear regions called chromosome territories which are involved in the
maintenance and regulation of the genome. Preliminary data in male germ cells also suggest the importance of chromosome
territoriality in cell functionality. Nevertheless, the specific characteristics of testicular tissue (presence of different
cell types with different morphological characteristics, in different stages of development and with different ploidy)
makes difficult to achieve conclusive results. In this study we have developed a methodology to approach the threedimensional
study of all chromosome territories in male germ cells from C57BL/6J mice (Mus musculus). The method
includes the following steps: i) Optimized cell fixation to obtain an optimal preservation of the three-dimensionality cell
morphology, ii) Chromosome identification by FISH (Chromoprobe Multiprobe® OctoChrome™ Murine System; Cytocell)
and confocal microscopy (TCS-SP5, Leica Microsystems), iii) Cell type identification by immunofluorescence
iv) Image analysis using Matlab scripts, v) Numerical data extraction related to chromosome features, chromosome
radial position and chromosome relative position. This methodology allows the unequivocally identification and the
analysis of the chromosome territories of all spermatogenic stages. Results will provide information about the features
that determine chromosomal position, preferred associations between chromosomes, and the relationship between chromosome
positioning and genome regulation.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-697-3767-5 Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.145 Approved no  
  Call Number Admin @ si @ SBG2017c Serial 2961  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz edit  doi
openurl 
  Title Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold Type Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 26 Issue 6 Pages 2721-2735  
  Keywords  
  Abstract Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ SJH2017a Serial 2963  
Permanent link to this record
 

 
Author Weiqing Min; Shuqiang Jiang; Jitao Sang; Huayang Wang; Xinda Liu; Luis Herranz edit  doi
openurl 
  Title Being a Supercook: Joint Food Attributes and Multimodal Content Modeling for Recipe Retrieval and Exploration Type Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 19 Issue 5 Pages 1100 - 1113  
  Keywords  
  Abstract This paper considers the problem of recipe-oriented image-ingredient correlation learning with multi-attributes for recipe retrieval and exploration. Existing methods mainly focus on food visual information for recognition while we model visual information, textual content (e.g., ingredients), and attributes (e.g., cuisine and course) together to solve extended recipe-oriented problems, such as multimodal cuisine classification and attribute-enhanced food image retrieval. As a solution, we propose a multimodal multitask deep belief network (M3TDBN) to learn joint image-ingredient representation regularized by different attributes. By grouping ingredients into visible ingredients (which are visible in the food image, e.g., “chicken” and “mushroom”) and nonvisible ingredients (e.g., “salt” and “oil”), M3TDBN is capable of learning both midlevel visual representation between images and visible ingredients and nonvisual representation. Furthermore, in order to utilize different attributes to improve the intermodality correlation, M3TDBN incorporates multitask learning to make different attributes collaborate each other. Based on the proposed M3TDBN, we exploit the derived deep features and the discovered correlations for three extended novel applications: 1) multimodal cuisine classification; 2) attribute-augmented cross-modal recipe image retrieval; and 3) ingredient and attribute inference from food images. The proposed approach is evaluated on the constructed Yummly dataset and the evaluation results have validated the effectiveness of the proposed approach.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MJS2017 Serial 2964  
Permanent link to this record
 

 
Author Luis Herranz; Shuqiang Jiang; Ruihan Xu edit   pdf
doi  openurl
  Title Modeling Restaurant Context for Food Recognition Type Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 19 Issue 2 Pages 430 - 440  
  Keywords  
  Abstract Food photos are widely used in food logs for diet monitoring and in social networks to share social and gastronomic experiences. A large number of these images are taken in restaurants. Dish recognition in general is very challenging, due to different cuisines, cooking styles, and the intrinsic difficulty of modeling food from its visual appearance. However, contextual knowledge can be crucial to improve recognition in such scenario. In particular, geocontext has been widely exploited for outdoor landmark recognition. Similarly, we exploit knowledge about menus and location of restaurants and test images. We first adapt a framework based on discarding unlikely categories located far from the test image. Then, we reformulate the problem using a probabilistic model connecting dishes, restaurants, and locations. We apply that model in three different tasks: dish recognition, restaurant recognition, and location refinement. Experiments on six datasets show that by integrating multiple evidences (visual, location, and external knowledge) our system can boost the performance in all tasks.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ HJX2017 Serial 2965  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Alex Carruesco; Carlos Andujar; Xavier Baro; Jordi Gonzalez edit   pdf
doi  openurl
  Title Occlusion Aware Hand Pose Recovery from Sequences of Depth Images Type Conference Article
  Year 2017 Publication 12th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract State-of-the-art approaches on hand pose estimation from depth images have reported promising results under quite controlled considerations. In this paper we propose a two-step pipeline for recovering the hand pose from a sequence of depth images. The pipeline has been designed to deal with images taken from any viewpoint and exhibiting a high degree of finger occlusion. In a first step we initialize the hand pose using a part-based model, fitting a set of hand components in the depth images. In a second step we consider temporal data and estimate the parameters of a trained bilinear model consisting of shape and trajectory bases. Results on a synthetic, highly-occluded dataset demonstrate that the proposed method outperforms most recent pose recovering approaches, including those based on CNNs.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA; ISE; 602.143; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ MEC2017 Serial 2970  
Permanent link to this record
 

 
Author F. Javier Sanchez; Jorge Bernal; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; Gloria Fernandez Esparrach edit   pdf
url  openurl
  Title Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos Type Journal Article
  Year 2017 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume Issue Pages 1-20  
  Keywords Specular highlights; bright spot regions segmentation; region classification; colonoscopy  
  Abstract A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance dening specular
highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages; segmentation, and then classication
of bright spot regions. The former denes a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; nal regions provided depend on restrictions over contrast value. Non-specular regions are ltered through a classication stage performed by a linear SVM classier using model-based features from each region. We introduce a new validation database with more than 25; 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being
closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; 600.096; 600.175 Approved no  
  Call Number Admin @ si @ SBS2017 Serial 2975  
Permanent link to this record
 

 
Author Patrick Brandao; O. Zisimopoulos; E. Mazomenos; G. Ciutib; Jorge Bernal; M. Visentini-Scarzanell; A. Menciassi; P. Dario; A. Koulaouzidis; A. Arezzo; D.J. Hawkes; D. Stoyanov edit   pdf
url  doi
openurl 
  Title Towards a computed-aided diagnosis system in colonoscopy: Automatic polyp segmentation using convolution neural networks Type Journal
  Year 2018 Publication Journal of Medical Robotics Research Abbreviated Journal JMRR  
  Volume 3 Issue 2 Pages  
  Keywords convolutional neural networks; colonoscopy; computer aided diagnosis  
  Abstract Early diagnosis is essential for the successful treatment of bowel cancers including colorectal cancer (CRC) and capsule endoscopic imaging with robotic actuation can be a valuable diagnostic tool when combined with automated image analysis. We present a deep learning rooted detection and segmentation framework for recognizing lesions in colonoscopy and capsule endoscopy images. We restructure established convolution architectures, such as VGG and ResNets, by converting them into fully-connected convolution networks (FCNs), ne-tune them and study their capabilities for polyp segmentation and detection. We additionally use Shape-from-Shading (SfS) to recover depth and provide a richer representation of the tissue's structure in colonoscopy images. Depth is
incorporated into our network models as an additional input channel to the RGB information and we demonstrate that the resulting network yields improved performance. Our networks are tested on publicly available datasets and the most accurate segmentation model achieved a mean segmentation IU of 47.78% and 56.95% on the ETIS-Larib and CVC-Colon datasets, respectively. For polyp
detection, the top performing models we propose surpass the current state of the art with detection recalls superior to 90% for all datasets tested. To our knowledge, we present the rst work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; no menciona Approved no  
  Call Number BZM2018 Serial 2976  
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera edit  openurl
  Title Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey Type Book Chapter
  Year 2017 Publication Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 539-578  
  Keywords Action recognition; Gesture recognition; Deep learning architectures; Fusion strategies  
  Abstract Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ ACB2017a Serial 2981  
Permanent link to this record
 

 
Author Zhijie Fang; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title On-Board Detection of Pedestrian Intentions Type Journal Article
  Year 2017 Publication Sensors Abbreviated Journal SENS  
  Volume 17 Issue 10 Pages 2193  
  Keywords pedestrian intention; ADAS; self-driving  
  Abstract Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role.
During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors.
However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is
essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the
pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076; 601.223; 600.116; 600.118 Approved no  
  Call Number Admin @ si @ FVL2017 Serial 2983  
Permanent link to this record
 

 
Author Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari edit   pdf
url  openurl
  Title Training my car to see using virtual worlds Type Journal Article
  Year 2017 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 38 Issue Pages 102-118  
  Keywords  
  Abstract Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ LVS2017 Serial 2985  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
doi  openurl
  Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue 9 Pages 2081 - 2094  
  Keywords  
  Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2018a Serial 2990  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: