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Abstract

Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key
role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving
environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle
route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such
a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board
images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative
data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional
neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades
most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later
doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations.
While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural
networks it became a serious issue due to their data hungry nature. In this context, the problem is that manual data
annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting in
training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving.
In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance.

Keywords: ADAS, Autonomous Driving, Computer Vision, Object Detection, Semantic Segmentation, Machine
Learning, Data Annotation, Virtual Worlds, Domain Adaptation

1. Introduction is constantly increasing [1]. The World Health Organi-
zation (WHO) predicts 70% by 2050, which strains city
traffic more and more. Therefore, during daily life, mobil-
ity based on personal vehicles may not provide a sense of
freedom and comfort as used to do.

The aforementioned considerations lead us to think
that personal automobiles, as they are operating now, do

not fit well in the future cities that industrialized countries

1.1. Mobility, ADAS & Self-Driving Vehicles

The 20th century brought affordable automobiles for
the middle classes. This caused a major benefit in terms
of personal mobility and sense of freedom. Overall, auto-
motive industry has been a major economic driving force
since then. However, the introduced benefits were at the

expense of other significant drawbacks which have become
worldwide concerns that cannot be ignored. We refer to
traffic accidents and environmental contamination; both
factors end up in healthy issues in a way or another, as
well as in a huge economic cost. Moreover, nowadays half
the world’s population lives in cities, and this proportion
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are designing, i.e. the so-called smart cities. Indeed, for
becoming a smart city, among other issues, municipalities
must rethink road usage. Accordingly, in addition to the
improvement of massive public transport, we envision a
centralized system in the city receiving mobility requests
from citizens, both for persons and goods. The city would
control a fleet of automated vehicles (i.e., self-driven) that
would cooperate between each other and with other ele-
ments of the city like infrastructure surveillance cameras,
traffic lights, etc., to move safely and comfortably, saving
energy, minimizing traffic congestion and pollution, bring-
ing back mobility freedom for the elderly, the temporally
or permanent handicapped, the kids, and all citizens in
general.
The foreseen intelligent transportation network described
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Figure 1: Manual annotation. Top: based on the bounding boxes
(BBs) of the object of interest (e.g. pedestrians). Bottom: by delin-
eating the silhouettes of the classes of interest (sky, road, car, etc.),
which is more precise than BBs, but much more time consuming.

above, cannot be developed in a short time. Research,
development, regulations, etc. are required in the step-
by-step route towards the final objective. Accordingly, a
particularly important question is that, along the way, our
current transportation systems need to cohabit with the
new introduced paradigms, until the latter ones totally
replace the former. Overall, we think that we have to
work now towards the described future, but taking into
account its gradual implantation cohabiting with the sys-
tems of the present. Therefore, the starting point consists
of progressively incorporating ADAS to human-driven or
driver-in-the-loop vehicles, while working to reliable fully
self-driving vehicles which, in turn, would lead to efficient
intelligent transportation networks.

1.2. On-board Vision-based Perception

In this context, developing a reliable artificial intelli-
gence able to analyze sensor raw data to achieve scene
understanding is an essential question for on-board ADAS
and self-driving vehicles, since it is the base to perform
both assisted and automated safe maneuvers.

Vision-based perception is a core ingredient of on-board
scene understanding. Many ADAS can rely only on vision,
e.g. lane marking detection [2, 3, 4], traffic sign recog-
nition [5, 6, 7], intelligent headlights control [8, 9, 10].
Environment perception for self-driving vehicles will rely
on sensor fusion, eventually including active sensors such
as LIDAR, RADAR, and GPS/IMU systems [11, 12], un-

doubtedly incorporating vision too; especially since its per-
formance boost due to deep convolutional neural networks
(deep CNNs) [13, 14, 15, 16, 17] and the introduction of
powerful embedded super-computers for them [18]. Af-
ter all, vision is the main sense used by human drivers.
In addition, computer vision not only applies to the visual
spectrum but also to the far-infrared (FIR) one [19, 20, 21].

Nowadays it is clear that machine learning techniques
are essential for developing such a visual perception for
driving. In particular, the standard working pipeline con-
sists of: (1) collecting data, i.e. on-board images; (2) man-
ually annotating the data, e.g. drawing bounding boxes
(BBs) of the classes of interest or delineating their silhou-
ette (Fig. 1); (3) learn a discriminative data representation
taking advantage of such annotations, e.g. a holistic model
[22], a deformable part-based model (DPM) [23], a patch-
based model [24], an end-to-end hierarchical model [17],
even spatio-temporal models [25]; and (4) quantitatively
and qualitatively assessing the reliability of the learned
representation by using the acquired data.

1.8. Data Annotation, Variability

In the last two decades most of the research effort fo-
cused on representation learning. Hence, collecting data
and, especially, annotating it, is crucial for learning good
representations. While this has been the case from the
very beginning, only after the disruptive appearance of
deep CNNs it became a serious issue due to their data
hungry nature. In this context, the problem is that man-
ual data annotation is a tiresome work prone to errors. For
instance, annotating a BB (Fig. 1-Top) requires around 6
seconds in average per human annotator [26], while anno-
tating all the image pixels by silhouette delineation (Fig. 1-
Bottom) may require from 30 to 60 minutes per human
annotator, depending on the image content and the num-
ber of classes of interest [27]. Of course, the annotation
time and the inaccuracy of the annotations increase with
the time the same person has been working on it. More-
over, just annotating data in a blindly repetitive manner
does not guarantees diversity, a key point to learn really
representative models that can generalize well to operate
with previously unseen data.

Accordingly, to face the challenge of collecting visual
data annotations, different web-based tools have been pro-
posed under the crowdsourcing paradigm. One popular
example is LabelMe [28] which permits human annotators
to localize image objects of an established class category by
framing them with polygons. Another powerful example
is Amazon’s Mechanical Turk (MTurk) [29], which allows
researchers to define human intelligence tasks of different
difficulty (e.g. from marking points of interest to drawing
polygons) to be taken by human online workers. In ad-
dition, some approaches [30] even try to transform data
annotation into a web-based interactive game. Unfortu-
nately, as it is argued in [31], where these web-based tools
and others are analyzed, it is a fallacy to believe that, be-
cause good datasets are big, then big datasets are good.



In fact, in order to favor variability and reduce the
annotation effort, this task has been put in the loop of
representation learning, we refer to the active learning
paradigm [32]. For instance, in [33] and [34] the idea is
applied for developing pedestrian and vehicle detectors,
respectively. In these cases active learning consists of a
stage to obtain an initial object classifier, followed by a
loop in which the current classifier is plugged in a de-
tector that is applied to unseen videos, a human oracle
performs selective sampling (i.e. annotation of image win-
dows falling into the classifier ambiguity region) and then
previous and new annotations are used for re-training the
classifier. The process is iterated with new videos until a
desired performance is achieved. On the other hand, the
variability on the annotated data is limited by the actual
collected videos and, thus, by the real-world conditions at
the moment of acquiring them.

Overall, with a great effort of several research com-
munities different annotated datasets have been collected
mainly following the web-based crowdsourcing paradigm.
Remarkable examples are the PASCAL VOC Challenge
[35] and MS-COCO [36] for object detection and segmen-
tation, and ImageNet [37] for image classification.

It is also worth to mention that for augmenting the
variability of the already annotated data, different trans-
formations can be applied. For instance, in [38] a set
of training pedestrians is enlarged by transforming their
shape (a manually delineated silhouette) and texture, as
well as the texture of the background, which is combined
with standard jittering and mirroring. In [39], to address
automatic license plate recognition, a two-step framework
is proposed for specifically generating training plates. First,
license plate images are synthesized and, second, image
transformations and distortions typically encountered in
real images are applied. Nowadays using generic image-
transformation-based data augmentation is also a common
practice for training deep CNNs [13, 40].

Focusing on the application area in which we are mainly
interested, i.e. ADAS and self-driving vehicles, we can
see that there are not publicly available datasets with an-
notations in the order of magnitude of PASCAL VOC,
MS-COCO or ImageNet. Usually, we can find publicly
available dataset for a particular task, i.e. where data is
annotated only with the information required for the task.
One of the most popular cases has been pedestrian de-
tection with datasets* such as INRIA [22], Daimler [41],
ETH [42], Caltech [43], and CVC [44, 45, 46], which con-
tain images of the visual spectrum, or others like [47, 21]
with images of the FIR one. We can find also analogous
datasets for vehicles [34] and Traffic Signs [48, 6]. In all
of these datasets the objects of interest (i.e. pedestrians,
vehicles, traffic signs) are annotated with BBs.

A remarkable effort for providing publicly available data
and standard evaluation protocols is the KITTI bench-

4The page www.vision.caltech.edu/Image Datasets/CaltechPedestrians/

keeps track of different pedestrian detection datasets.

mark suite [12, 49, 50, 51]. It includes annotations for
driving tasks such as object detection (pedestrians, vehi-
cles, cyclists) and road surface segmentation among others.
Interestingly, for the task of semantic segmentation differ-
ent members of the research community were annotating
KITTI images. Of course, this was done by manually de-
lineating the silhouette of classes of interest such as pedes-
trians, vehicles, cyclists, traffic signs, sidewalks, buildings,
vegetation, etc. Despite of this effort, at the moment of
writing this paper there are only around 550 of such pixel-
wise annotated images. Another popular example of such
kind of annotations is CamVid [52] with 701 images.

Since these are really few annotated images given the
complexity of the task, i.e. semantic segmentation, new
efforts have been done for providing more pixelwise anno-
tated data. For instance, annotating 3D data and back-
projecting the annotations to corresponding 2D images has
been explored to increase annotation productivity as well
as the quality of the annotations [27]. However, no dy-
namic objects are included in the annotation process (e.g.
moving pedestrians). Using the traditional manual effort,
the Cityscapes Dataset [53] has been recently created by
acquiring images in 50 cities, including around 5,000 im-
ages with fine silhouette-based annotations, and 20,000
images with coarsely annotated silhouettes. The dataset
also contains instance-level annotation, as well as vehicle
odometry, stereo and GPS information.

1.4. Learning to See using Virtual Worlds

Given the enormous difficulty of manually annotating
visual information, we have to really thank the effort done
in the above mentioned works. On the other hand, fore-
seeing such difficulties, in late 00’s we decided to explore
a different alternative. Looking at Fig. 2 we can see that
manual paintings can evoke real counterpart images even
not being exactly equal, and the same happens with dig-
itally generated images and their real counterparts. In
the latter case, the advantage is that computers can also
automatically generate the desired annotations (e.g. the
silhouette of the head). Therefore, we decided to explore
the synergies between modern Computer Animation and
Computer Vision in order to close the circle: the Com-
puter Animation community is modeling the real world by
building increasingly realistic virtual worlds, thus, can we
now learn our models of interest in such controllable virtual
worlds and use them back successfully in the real world?.
Note that modern videogames, simulators and animation
films, are gaining photo-realism. In fact, all the ingredients
for creating soft artificial life are being improved: visual
appearance both global (3D shape, pose) and local (tex-
ture, where involved Computer Graphics aim at reaching
the power spectrum of real images [54]), kinematics, per-
ception, behavior and cognition. For instance, see [55] for
the case of animating autonomous pedestrians in crowded
scenarios. This means that, eventually, from such virtual
worlds we could collect an enormous amount of automati-
cally annotated information in a controlled manner.
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Figure 2: Left: a painting that evokes a real-world TV snapshot, even
not really being equal. Right: a videogame character that visually
resembles its real counterpart model.

In order to face such a question, and given the fact that
our focus is on ADAS and self-driving vehicles, we decided
to start by assessing the usefulness of virtual worlds for
the challenging task of appearance-based pedestrian de-
tection. We explain this work in Sect. 2. We think that
lessons learned in pedestrian detection can be extrapolated
to object detection in general (e.g. see [56], for the case
of vehicle detection). In the same application context, as
we have mentioned before, another challenging task is se-
mantic segmentation. Therefore, applying again our work
strategy of facing first the most challenging problems, after
pedestrian detection we focused on semantic segmentation.
We draw this work in Sect. 3. During our transition from
pedestrian detection to semantic segmentation, the break-
through in computer vision due to deep CNNs happened;
thus, while our work of pedestrian detection was based
on traditional object representations, i.e. human designed
image descriptors with principled classifiers and /or ensem-
bles, our work on semantic segmentation already starts us-
ing deep CNNs. As we will see, an especial contribution
of our work is to cast as a domain adaptation problem the
fact of learning visual representations that must operate
in real scenarios using virtual worlds.

It is worth mentioning that, during the last years, an
increasing interest appeared in the research community for
using synthesized data to train discriminative represen-
tations, useful for visual perception and artificial intelli-
gence in general. We mention illustrative related works in
Sect. 4. Finally we conclude this paper with Sect. 5, where
we draw our main conclusions and future work.

2. Pedestrian Detection

Due to its high relevance for ADAS and self-driving
vehicles, pedestrian detection has been one of the research
topics receiving most attention since the beginning of the
century [41, 57, 43, 58]. It is a difficult task difficult due to
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Figure 3: Common pedestrian detection pipeline.

a combination of factors: pedestrians are moving objects
with varying morphology, pose and clothes; there is a large
variety of (urban) outdoor scenarios; on-board images are
acquired from a moving vehicle so that pedestrians can
be seen from different viewpoints at a range of distances,
under uncontrolled weather and illumination.

In this context, the most common processing pipeline
was the one conceptualized in Fig. 3, which in fact is also
valid for other objects such as cyclists and vehicles. Briefly,
the generation of candidates mostly consists in using a slid-
ing window for the different layers of an image pyramid
that accounts for the desired range of detection distances.
The classification of candidates must determine if each
candidate corresponds to a pedestrian or not (i.e. classify
each candidate window as pedestrian or background). The
refinement of detections can discard some false positives
by incorporating complementary criteria such as temporal
coherence (based on the tracking of the detections). In
addition, this module applies non-maximum suppression
to resume the multiple detections coming from the same
pedestrian into just one. Finally, the tracking of detections
allows to predict the location of pedestrians in next frame
and, thus, their moving direction in the scene.

The most critical module is the classification of candi-
dates. For performing such a task, an object-discriminative
representation must be learned from a set of annotated
samples. In this case, collections of images containing
pedestrians annotated with BBs are typically used for learn-
ing the desired representation. Therefore, as Fig. 4 illus-
trates, our aim was to learn such a representation using
virtual worlds, and then just plugging it in the pedestrian
detection pipeline to operate in real scenarios.
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Figure 4: Development and testing of an object (pedestrian) detec-
tor. Top: training object representations in virtual worlds to obtain
automatic annotations (ground truth). Bottom: using the represen-
tation to operate in real scenarios.

2.1. Straightforward proof-of-concept

The classification of candidates consists on three main
ingredients: (1) a set of designed visual appearance (shape
and texture) descriptors (e.g. Haar, HOG, LBP, Chanel
features)—of course, motion descriptors are also used but
we skip them here for the sake of simplicity—; (2) an overall
object model (e.g. holistic, patch-based, deformable part-
based); (3) an object classifier learned in the space of the
selected visual descriptors (e.g. SVM-based, AdaBoost,
Random Forest). For a comprehensive review please refer
to [59]. In modern end-to-end learning all these ingredients
are integrated in the form of deep CNN.

Since visual appearance of virtual and real worlds is
correlated but different, thus being the most probable cause
for a potential failure of our idea, we started by focusing on
appearance descriptors and a simple, but effective, com-
bination of model and classifier. In particular, assuming
a holistic model and linear SVM, we used the widespread
HOG descriptor, i.e. basically the algorithm proposed in
[22]. In [60] we elaborated this idea and presented the ob-
tained results according to the so-called Daimler real-world
dataset [41]. In Fig. 5 we reproduce the quantitative ac-
curacy curves from which we drew our conclusions®. We
can see that, following the same training protocol for fair
comparison, the obtained average miss rate when testing
in the Daimler testing set, is even slightly better if we train
the pedestrian classifier using a virtual world than if we
train it with the training set of Daimler.

For these experiments we used the Half-Life 2 video
game [61], which allowed us to import pedestrians and city
maps created with third-party graphic editors, as well as

5These plots are from a posterior improved version of our detector.
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Figure 5: Detection curves plotted according to the false positives
per image (FPPI) vs miss rate (percentage of non-detected objects).
The average miss rate is shown in parenthesis. 'Dataset-1 vs Dataset-
2’ means that we trained the pedestrian classifier with the training
set of 'Dataset-1’, and tested it with the testing set of 'Dataset-2’.
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Figure 6: When training with virtual-world pedestrians and testing
in INRIA testing set, there is a meaningful loss of detection accuracy
with respect to the training based on the INRIA training set.

to add modifications. One of those modifications, done by
the company ObjectVideo [62], allowed us to obtain pix-
elwise annotations for the virtual-world pedestrians (see
Fig. 4-(Top,Right)), from which we obtain pedestrian and
background BBs automatically.

Overall, for the question ’can we learn pedestrian ap-
pearance in virtual worlds and use it successfully in real
scenarios for pedestrian detection?’, the answer was 'yes’.

2.2. The domain adaptation problem

After this initial proof-of-concept we evaluated the same
training-testing paradigm with more datasets. In partic-
ular, we used another popular dataset for pedestrian de-
tection at that moment, INRTA [22]. As can be seen in
Fig. 6, in this case there was a relatively large drop on the
detector accuracy when training with virtual-world data.
The first question then was if the gap was due to the fact
of using virtual vs real data for training and testing, re-
spectively; or if the underlying reason was more generic,
i.e. if the problem is due to the fact of training and test-
ing with images acquired with really different sensors and
scenarios.
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Figure 7: Pedestrian and background windows from Daimler, virtual, and INRIA datasets.

In Fig. 7, we see different pedestrian and background
samples from virtual, Daimler and INRIA datasets. The
main differences are the following:

e FEnwvironment. Daimler and virtual-world images are
acquired in urban environments, while INRIA con-
sists of photographs done not only in urban environ-
ments but also in countryside and beach scenarios.

e Sensor. The INRIA dataset consists of color pho-
tographs based on a single-sensor Bayer pattern, the
Daimler dataset is based on a monochrome camera,
and for the virtual-world dataset we have three spa-
tially aligned virtual sensors (R,G,B).

e Focus. Since INRIA dataset is based on photographs,
each image was focused independently of the others,
so there is variability on the focus distance, many
times focusing on the persons within the photos;
while Daimler dataset is based on a fixed focus dis-
tance and virtual-world dataset did not considered
distance-dependent blurring at that time.

e Pedestrians. The typical pose and viewpoint of the
pedestrians is more similar for Daimler and virtual-
world datasets than for INRIA; in the latter case
pedestrians are sometimes even posing for the photo.

Hence, we hypothesized that the underlying problem is
due to the fact of training and testing with images acquired
with different sensors and in different scenarios. For vali-
dating this hypothesis we investigated the case of training
with Daimler training set and testing in INRIA testing set
[63]. The results are shown in Fig. 8. Indeed, the drop in
accuracy is similar to the case of using virtual-world data
for training. Thus, we cast the accuracy drop as a domain
adaptation problem [64]; i.e. we assume that, in general,
training and testing with datasets of different origin pro-
vokes a drop on detection accuracy. Consequently, training
with virtual-world data and testing in real scenarios is just
a particular case of such a more general problem.
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Figure 8: Domain adaptation problem: training and testing with
datasets of different origin provokes a drop on detection accuracy.

2.8. Formulation of the domain adaptation problem

Let Dy and Dy be two different domains from which we
take samples. Dy is the source domain and D; is the tar-
get domain. Given a sample x; € Dy, we want to know if
xp € wy, using wy to denote the samples in D; with a par-
ticular property in which we are interested in. We want to
face this problem by learning a classifier C able to answer
if z; € w;. To learn C we want to follow a discrimina-
tive paradigm, i.e., learning from annotated samples. If
x¢ € Dy, its corresponding label /., equals +1 if z; € w,
and —1 otherwise. It turns out that we have very few
annotated samples drawn from D; as to learn a reliable
classifier. However, cither we have sufficient annotated
samples drawn from D, or we already learned a classifier
Cs (of the same type than C) using such data. If the distri-
butions of the samples in D, and D; are uncorrelated, then
domain adaptation is not possible. However, if they have
a sufficient correlation, then we are facing a problem of su-
pervised domain adaptation [65]. Basically, we can apply
a feature-transform-based method or a model-transform-
based one to address it. In the former case, we can use the
large amount of annotated data from D, and a low amount
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Figure 9: V-AYLA: Virtual-world Annotations, Yet Learning Adap-
tively. In this case, active learning is applied to collect target-domain
informative samples (here from real scenarios) to be used together
with the source-domain one (here from virtual world) to train the de-
sired domain-adapted classifier. The cool world is the feature space
where virtual- and real-world samples are together for the training
of the domain-adapted classifier.

of annotated data from D, to learn a C with chances of suc-
ceeding in the task of classifying unseen samples from D;.
In the latter case, we use such annotated data from D; to
adapt Cs for obtaining the desired C.

Roughly speaking, D; is the set of image windows cropped

from virtual-world images, and our D; the set of image
windows cropped from the real-world images in which we
want to detect pedestrians. A sample x; is just the descrip-
tor of an image window (i.e., the features in the machine
learning language), w; is the property of imaging a pedes-
trian (pedestrian class), and C a pedestrian classifier.

2.4. Domain adaptation solutions
2.4.1. Holistic models

We started by using feature-transform-based methods
for holistic pedestrian representations. In [63, 66, 67] we

defined the V-AYLAS ( Virtual-world Annotations Yet Learn-

ing Adaptively) framework. It consists of:

6AYLA wants to evoke the main character (a Cro-Magnon
women) of the popular saga Farth’s Children by Jean M. Auel. Ayla
is an icon of robustness and adaptability. During her childhood she
is educated by Neanderthals (the clan), the physical appearance of
them corresponds to normal humans for her. However, somehow,
she recognizes Cro-Magnons as humans too first time she met them
during her youth. Ayla adapts from Neanderthals customs to Cro-
Magnons ones, keeping the best of both worlds, which is the spirit
with our V-AYLA paradigm. Anecdotally, it turns out that there is
a popular videogame that incorporates Ayla as character.

e A criterion for manually annotating objects (pedes-
trian BBs and pedestrian-free-image flags) in the tar-
get domain (i.e. the real-world scenarios). The aim
is that, thanks to the source-domain annotated data
(i.e. the virtual-world data), we can significantly re-
duce the quantity of manual annotations required to
have a competitive classifier.

e The space of image descriptors (feature space) where
the target-adapted classifier is learned, i.e. where
the virtual- and real-world descriptors are combined.
We termed this space as cool world” .

In [66] we presented experiments for HOG, LBP and
HOG+LBP image descriptors, using linear SVM.

We tested two different cool worlds. One corresponds
to the original (ORG) feature space where samples from
both words are just combined; in other words, the SVM
learning procedure does not distinguish between real and
virtual-world samples. The other cool world is the aug-
mented (AUG) feature space proposed in [68] for natural
language processing. Assume that x/ € R" denotes the
image descriptor of a j-th sample (e.g. a HOG vector); if
the sample comes from the virtual world (source), let us
term it as x/, while if it comes from real world (target) we
call it xJ. Then, in the AUG space x/ is represented by the
vector < xJ,xJ.0 >€ 3" being 0 € R™ a vector of zeros.
Analogously, xJ is represented by < 0,x%,xI >€ R3" in
AUG space. The idea of AUG space is to exploit com-
monalities of source and target domains (note how the
sub-space < _,x, - > is common for real and virtual data)
at the same time than their differences (< x,, -, - > sepa-
rated from < _, _,x,. >), when learning the SVM classifier.

We tested two criteria for annotating real-world data.
One corresponds to doing a prefixed quantity (N) of ran-
dom annotations in the real-world training images, and
marking pedestrian-free images. The other criterion con-
sists in applying active learning [32], i.e. the human or-
acle annotates only pedestrians which have not been de-
tected by a previous version of the detector (initially based
only on the virtual-world data) and eventually pointing
out false positives too (Fig. 9).

Active learning together with the AUG cool world was
the best option when N ~ 10% of the available real-world
training pedestrians; 7.e. domain adaptation is achieved.
However, as can be seen in Fig. 10, the combination of ran-
dom annotations with the ORG cool world also achieves
domain adaptation with a relatively low number of an-
notated pedestrians (N < 25%). In fact, for higher per-
centages of target-domain pedestrians, ORG performs bet-
ter than AUG. We remark here that in these experiments
the 100% of real-world training pedestrians approximately
matches the number of virtual-world training pedestrians.

7 Cool world term is a tribute to the movie with that title. In it,
there is a real world and a cool world, in the latter, real humans and
cartoons live together but it is mainly populated by cartoons, i.e. as
in our experiments.
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Figure 10: V-AYLA results testing on different datasets (INRIA, Daimler, Caltech) for the case of random annotation of N target-domain
pedestrians, focusing on the pedestrian detector based on the HOG+LBP image descriptors (ORG and AUG cool worlds) and linear SVM.
We test N ~ 10%, N ~ 25%, N ~ 50%, N ~ 75% and N ~ 100%, where these percentages are with respect to the total number of available
training pedestrians of each target-domain dataset (INRIA, Daimler, Caltech). The vertical line with the average miss rate in parentheses
corresponds to using the 100% of the target-domain training pedestrians without taking into account any information from the virtual world.
In the case of Caltech we also show with vertical lines the result of training using only the INRIA and only virtual-world datasets.

2.4.2. Part-based models

After obtaining these evidences about the reliability of
domain adapting virtual and real worlds for pedestrian de-
tection, the natural following step was two-fold. On the
one hand, assessing the use of virtual worlds and domain
adaptation for richer object representations. On the other
hand assuming more challenging conditions. In particu-
lar, we considered the widespread deformable part-based
model (DPM) [23], and we restricted ourselves to model-
transform-based methods, i.e. adapting the DPM without
visiting again the source-domain data. The latter restric-
tion leads to adaptation methods which are faster because
we do not need to revisit the source-domain data (here the
virtual one), and more general since some times we may
not have access to the original (source-domain) data (e.g.
due to confidentiality reasons) but we may have access to
the model resulting from training with such data.

DPM describes appearance and per component infor-
mation of deformation (Fig. 11). Components account for
different BB aspect ratios of the annotated objects (e.g.
frontal /rear-viewed pedestrians vs left/right-side views)
as a proxy for the viewpoint under which such objects
were imaged. Thus, each object (e.g. pedestrian) sam-
ple contributes to the training of one component. Such
component-based data clustering allows to learn more ac-
curate models than by just mixing all training samples.

Then, given a component, the DPM training focuses
on appearance and deformation parameters. It is assumed
that annotations are only available as full object BBs, i.e.
there are not annotations for the parts (latent informa-
tion). Thus, the training must apply a coordinate-descent
method, i.e. first it is assumed that the location of each
part is known and only the appearance of the parts must
be learned, then the appearance of each part is supposed to
be known and the best location matching the appearance
is learned per part. Locations are initialized for uniformly
covering the full object BB.

Since initialization is key for convergence and such rule
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Figure 11: DPM structure. Left: pedestrian BBs with different as-
pect ratios, so eventually these samples would be used to train differ-
ent components of the DPM. Right: given a component, example of
a DPM based on six parts (i.e. sub-windows of equal size) plus the
root (the whole pedestrian window). The root and each part con-
vey appearance information (HOG-inspired) which is learned. DPM
is based on a star model, so the location of each part is referenced
with respect to the root. The plausible locations of the parts are also
learned and encoded as deformation parameters.

Figure 12: Virtual-world pedestrians can be clustered according to
their imaged silhouette and we can have annotated semantic parts.



of thumb can be sub-optimal, in [69] we used virtual-world
privileged information to improve this stage. In particu-
lar, we relied on the silhouette of the pedestrians (available
thanks to the pixelwise nature of the virtual-world annota-
tions) for defining components (measuring silhouette sim-
ilarity with the Chamfer distance [70]) and providing BBs
for semantic parts (Fig. 12). Thus, in terms of the DPM
training, there was not latent information. We termed this
DPM variant as virtual-world DPM (V-DPM). In [69] we
showed that starting with V-DPM and refining it with all
the available real-world training data provided a more ac-
curate DPM than just using the real-world training data
with the standard initialization. Thus, our learning proce-
dure consisted of a pre-training on virtual-world data with
privileged information, followed by a fine tuning with real-
world data (i.e. without revisiting the virtual-world data).
However, we aim at using as few annotated real-world
objects (pedestrians) as possible. In particular, when ex-
perimenting with different datasets, we set the constrain
of using only the ~ 10% of the available training data
(i.e. simulating the saving of 90% of training annotations)
to adapt V-DPM for operating in real world; which im-
plied to design new domain adaptation methods for DPM
beyond the mentioned fine-tuning. To address this ques-
tion we saw a DPM as a particular case of a structural
model, where the components and parts define the struc-
ture. Therefore, the learning of a DPM can be addressed
through the structural SVM (SSVM) paradigm with latent
variables (during the adaptation) [71, 72, 73].
Accordingly, in [74] we proposed the adaptation pro-
cedure drawn in Fig. 13. The figure shows the adaptation
of a DPM-based pedestrian detector from a virtual-world
(source domain) to real scenarios (target domain). As do-
main adaptation module we proposed the adaptive struc-
tural SVM (A-SSVM) and the structure-aware A-SSVM
(SA-SSVM). A-SSVM is a straightforward extension of the
Adaptive SVM (A-SVM) proposed in [75]. A-SSVM does
not take into account the inherent structure of the SSVM
(e.g. either the parts or the components in our case) during
the adaptation procedure. SA-SSVM takes this into ac-
count and shows a better adaptation than A-SSVM. Both
A-SSVM and SA-SSVM require target-domain annotated
samples (e.g., a few pedestrians and background) that can
be provided by a human oracle. As alternative and/or
complement, we proposed a self-annotation strategy in-
spired by self-paced learning. The experiment conducted
in different datasets (ETH, Caltech, CVC) showed that the
SA-SSVM with an oracle was the best performing method.
SA-SSVM improved from 7 to 15 points (percentage units)
the V-DPM accuracy; e.g., in the CVC dataset the miss-
rate of V-DPM was 45.87%, and its domain adapted ver-
sion using SA-SSVM was 30.75%. On the other hand, A-
SSVM also showed domain adaptation capabilities since it
was just around 2 points than SA-SSVM in the different
datasets. Similarly, the self-annotation procedure also al-
lowed to do domain adaptation; with it and SA-SSVM the
improvement over V-DPM ranged from 4 to 10 points.
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Figure 13: Proposed framework for domain adaptation (DA) of
DPMs. The figure shows the adaptation of a DPM-based pedes-
trian detector from a virtual-world (source domain) to real scenarios
(target domain). As DA module we proposed the adaptive structural
SVM (A-SSVM) and a the structure-aware A-SSVM (SA-SSVM). A-
SSVM and SA-SSVM require target-domain labeled samples (e.g., a
few pedestrians and background) that can be provided by a human
oracle. As alternative and/or complement, an strategy inspired by
self-paced learning can be used for the automatic labeling of samples
in unlabeled or weakly labeled target domains.

Since DPM was the best performing model for object
detection before the irruption of deep CNNs and given
these positive results, we explored more domain-adaptation
ideas for such a model. In particular, we proposed to ex-
ploit eventually existing tree-like hierarchical relationships
in the target domain [76]. At testing time, each node of
the tree contains a DPM, from node to node the weights of
the DPM change but not the structure (components and
parts). At training time, the intuitive idea consists of us-
ing V-DPM as source model for the root of the tree (target
model), while, in turn, the DPM of each father node acts
as source model for the corresponding children. All node-
to-node adaptations are performed simultaneously with A-
SSVM, but eventually using different target-domain sam-
ples at each node. The new domain adaptation proce-
dure was termed as HA-SSVM. Following HA-SSVM with
a resolution-based hierarchy, we won the 1st Pedestrian
Detection Challenge of the KITTI benchmark®. In or-
der to adapt our V-DPM, we used 200 pedestrians of the
KITTI training set, roughly the 11% of the available ones,
as well as 2,000 pedestrian-free images of the 7,518 avail-
able for training. To the best of our knowledge, this was
the first time that an object detector domain adapted from
a virtual world won such a challenge.

Encouraged by the good results of HA-SSVM and the
above mentioned self-annotation proof-of-concept used with
SA-SSVM, in [77] we researched domain adaptation for
unlabeled videos. The idea is summarized in Fig. 14 for
pedestrian detection. Given a target domain sequence, we
first apply the source domain detector (V-DPM) to collect
the detected bounding boxes (red boxes). Then, multi-
ple object tracking (MOT) is used to generate trajectories

8Results were reported during the Reconstruction Meets Recog-
nition Challenge (RMRC) held in conjunction with the ICCV2013,
see ttic.uchicago.edu/~rurtasun/rmrc/program.php
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Figure 14: HA-SSVM applied for online domain adaptation, frame by
frame, with self-annotated target-domain pedestrians. The domain-
adapted DPM at frame ¢ (the one at the root of the three-level tree)
is used as source model for the domain adaptation at frame ¢ + 1.

and also remove some false positives. After generating the
trajectories, our hierarchical model can be learned frame
by frame using online A-SSVM. At each frame, the hi-
erarchical model consists of instance models at the leaf
nodes (red balls in Fig. 14) and a category model at the
second layer (the orange ball). The adaptation is exe-
cuted in a progressive manner, i.e., the category model
(orange ball at time ¢), is adapted from the previously
adapted category model (blue ball at time ¢, adapted from
orange ball at time ¢ — 1). At ¢t = 0, the category model
is initialized by the source domain model (V-DPM). The
instance models are adapted concurrently with the cate-
gory model of the current frame. The hierarchical model
is constructed dynamically according to the trajectories at
current frame, i.e. each instance model corresponds to one
trajectory. Each instance model is essentially an exemplar
classifier which is trained using only one positive exam-
ple (red BBs) and many negative examples (green BBs).
The negative examples are collected from the same frame,
but outside the non-negative area. The non-negative re-
gion (blue dash rectangle) is defined using prior geometry
knowledge, which can avoid accidentally introducing false
negatives as background examples during training.

The final domain-adapted pedestrian detector corre-
sponds to the DPM of the root node at the last frame of
the training sequence. In fact, if the on-board sequences
are acquired with an associated world location (e.g. using
a consumer-grade GPS), then we could link intermediate
adapted models to world areas. Thus, once the car vis-
its again one of such areas we can apply its specifically
associated detector.

2.4.3. Patch-based models

In parallel to our work with DPMs, we were developing
our own object model. In particular, we proposed a ran-
dom forest of local experts (RF-LE) which demonstrates a
very competitive performance [24]. This model consists of
a set of binary decision trees that form the forest. Given
a candidate window, each tree provides a probability of
containing the modeled object or background. The final
decision is taken by thresholding the average probability
over all the trees. To obtain the probability of a particu-
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Figure 15: Random Forest (set of binary decision trees) of Local
Experts. To determine if a candidate window contains an object
(e.g. pedestrian) or background, many times is enough to check a
subset of well-selected sub-windows (patches). In a given decision
tree, the root and each intermediate node focus on a patch, routing
the search towards the left or the right child node according to the
appearance of the patch (e.g. based on HOG+LBP /Linear-SVM).
Each leaf node contains a probability distribution to classify the
candidate window as object or background. Intuitively, since each
leaf is reached trough a path from the root, the classification at
the leaf is based on all the visited patches. The location of the
patches and their appearance classifier, as well as the probability
distributions, are learned. The classification at the Random Forest
level is performed by thresholding the average of the probabilities of
being object obtained from the decision trees.

lar tree, the candidate window follows a path of decisions
from the root to a leaf node. Leaf nodes encode the object
vs background probabilities. Node decisions are taken ac-
cording to a local expert, which decides whether to route
the candidate window to the left or the right child. The
local expert used in [24] considers only a rectangular sub-
window, that we call patch, of the whole candidate window
(i.e. a sort of part), and the decision is taken according
to the HOG+LBP descriptor of such a patch and a linear
SVM classifier. Therefore, we can think that each leaf en-
codes the probability of being object or background given
a particular configuration of patches, i.e. those analyzed
in the path to the leaf. Fig. 15 shows a simple visual exam-
ple. These patches are not manually predefined, instead
they are learned at training time; which is also the case
for the node SVMs, and each leaf probability distribution.

Since in [67] we showed that the approach based on the
ORG cool world together with active learning was able to
domain adapt (from virtual to real worlds) an AdaBoost-
based classifier applied to Haar+EOH image descriptors
[78], which is similar to a patch-style classifier, we decided
to investigate domain adaptation methods for our RF-LE.
In [79], we presented three different approaches based on:
adapting the individual nodes of each tree, adapting the
different root-to-leaf paths of the trees, and adapting the
forest itself by changing full trees as as sort of reforesting
the forest mechanism. The reforesting procedure was the
simplest to program, provided the most accurate adapted
classifiers, and was the fastest in terms of domain adapta-
tion computing time. The method consists of the following
steps. We start with a RF-LE build using only virtual-



world data, let us call it V-RF-LE. Then, with the few
annotated samples (pedestrians) available from the target
domain (real-world) we build another RF-LE of C' trees,
let us call it R-RF-LE, where C' is a hyper-parameter set
by a hold-out validation dataset. The reforesting proce-
dure used in [79] consisted on randomly removing C' trees
from V-RF-LE and replace them by the trees of R-RF-LE.
The resulting RF-LE is the domain adapted one. Experi-
mental results (INRIA, KITTI, Daimler) showed that the
domain adapted classifier improves from 5 to 10 accuracy
points over V-RF-LE, and similarly over R-RF-LE.

2.5. Conclusion

The experiments summarized in this section lead us to
conclude that virtual-world data is effective for training
vision-based pedestrian detectors which can be adapted to
operate in real scenarios. The different adaptation proce-
dures have shown to provide adapted detectors that im-
prove those trained only on virtual data, as well as those
trained using only the real-world data available for the
adaptation (which we constrained to save a ~ 90% an-
notation effort along our experiments). These observa-
tions hold for holistic, part-based and patch-based models.
Moreover, although we have focused only on pedestrian de-
tection as proof-of-concept, we believe that the results may
be extrapolated to vision-based object detection in gen-
eral. For instance, recently we focused on DPM-based on-
board vehicle detection [56] as use-case to investigate the
role of photo-realism in the virtual-to-real domain gap. We
used KITTT dataset as target domain and different virtual-
world datasets as source domains, namely Virtual KITTI
[80], GTA-V videogame [81], and our SYNTHIA [82] (see
Sect. 3 for more details on SYNTHIA). Virtual KITTT and
SYNTHIA show similar degree of photo-realism, being dif-
ferent in the type of rendered environment, where SYN-
THIA presents a more urban style. GTA-V shows urban
style too, being impressively photo-realist. The conclu-
sions drawn from [56] when using SA-SSVM are the same
than the summarized here for pedestrian detection. More-
over, it is shown that the achieved domain adaptation is
equally good for SYNTHIA and GTA-V, but worse for
Virtual KITTI, suggesting that giving a reasonable degree
of photo-realism (as Virtual KITTI and SYNTHIA have)
the domain gap depends more on the content of the images
than on their photo-realism.

3. Semantic Segmentation

A visual task equally relevant for ADAS and autonomous
driving is on-board semantic segmentation; i.e. given a set
of classes of interest, being able to classify each image pixel
as belonging to one semantic class or another. Therefore,
we decided to challenge our paradigm (virtual-world data
+ domain adaptation) by addressing such a very difficult
task. Moreover, remind that from the annotation per-
spective, the benefit of using automatic annotations would
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be much higher than for BB-based object detection since,
to perform semantic segmentation, the required annota-
tions are based on the silhouette of the classes of interest
(i.e. the class frontiers in the images). Moreover, the best
performing semantic segmentation methods nowadays are
based on deep CNNs, which are representations learned
end-to-end; thus, eventually relying on millions of parame-
ters and so especially demanding in terms of training data.

In order to address this new challenge, we generated a
new virtual city from which we obtained more than 320,000
pixelwise automatically annotated images (class ID and in-
stance ID), also with depth information (distance from the
virtual camera) attached to each pixel. We have named
this city as SYNTHIA?, which stands for SYNTHetic col-
lection of Imagery and Annotations (Fig. 16). SYNTHIA
includes static infrastructure (road, sidewalks, buildings,
vegetation, poles, fences, traffic signs, lane markings, sky)
and dynamic objects (pedestrians, cyclists, vehicles, clouds).
Different outdoor illumination is generated as well as the
four year seasons. Moreover, all the elements of the scene
have a large amount of variability (e.g. pedestrian clothes,
vehicle colors, etc.). All this information is integrated
through the Unity®Pro framework!".

As first work with SYNTHIA [83] we trained the deep
CNN for semantic segmentation described in [82], referred
to as T-NET, which combines convolutional and counter-
part deconvolutional layers, and it is especially interest-
ing because its relatively low memory footprint (critical
for on-board embedded systems). We selected a sequence
of 13,400 SYNTHIA images and considered their corre-
sponding pixelwise class annotations, we call this data
SYNTHIA-Rand. During the training of T-NET, we em-
ploy the Balanced Gradient Contribution (BGC) intro-
duced in [82]. Tt consists in building batches with im-
ages from both domains (virtual and real), given a fixed
ratio. Experimentally we found that the ratio of 60% of
the images being from the real scenarios and 40% from
SYNTHIA-Rand was giving the best results. Note that
this does not mean that overall we assume more images
coming from the real scenarios than from SYNTHIA-Rand,
it is just that the same real-world images eventually will
be used in more batches than the images of SYNTHIA-
Rand. In fact, in our experiments the number of annotated
real-world data is significantly lower than SYNTHIA-Rand
(Tab. 1). Note also that here we are mixing the data, fol-
lowing the spirit of the cool world (ORG) idea (i.e. our
starting point also for object detection). In here, however,
due to the mentioned 60/40 ratio, real-world images dom-
inate the distribution, while virtual-world images are used
as a sophisticated regularization term. Thus, statistics of
both domains are considered during the whole procedure,
creating a model which pursues to be accurate for both.

We performed semantic segmentation in the outdoor
urban scenarios corresponding to the training and valida-
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Figure 16: SYNTHIA: a large synthetic collection of imagery and annotations from a virtual city. Top, left-to-right: (1) view of a scene of the
city, (2) its pixelwise annotation with the list of the considered classes, (3) general view of the city from a far viewpoint. Bottom: another
scene of the city with its pixelwise annotation of both the considered classes and the depth.

Table 1: Datasets used for evaluating semantic segmentation meth-
ods, and how we split them for training and validation (testing).

Dataset Total #Frames | Training | Validation
CamVid [52] 701 300 401
KITTI [12, 49, 50, 51] 547 200 347
Urban LabelMe [28, 82] 942 200 742
CBCL StreetScenes [84, 82] 3547 200 3347
SYNTHIA-Rand [83] 13,400 13,400 0

tion splits of the datasets in Tab. 1. The results are shown
in Fig. 17. Note that using SYNTHIA-Rand alone pro-
duces reasonable results, but when combined with a rela-
tively low number of real-world images (i.e. the training
ones in Tab. 1), there is a significant gain in performance,
not only with respect to the use of SYNTHIA-Rand alone,
but also with respect to only using the real-world train-
ing images. The gain is more clear in the per-class metric
since it is not dominated by the classes that usually have
more pixels (e.g. sky) but which not necessarily are more
relevant. In particular, we can see how there are signifi-
cant gains in classes such as pedestrians and cyclist since
they tend to be underrepresented in the annotated real-
world data. It is also worth to mention that we are not
fully exploiting all the SYNTHIA possibilities for some
classes such as traffic signs and poles. This is due to the
fact that in these experiments we performed a hard re-
duction of the input image resolutions, which is harmful
for the segmentation of thin/small objects. In particular,
the 960 x 720 pix resolution of the SYNTHIA-Rand im-
ages were down sampled to 180 x 120 pix for speeding-up
the training process and save memory. In [85], we up-
dated these experiments working with higher resolutions,
512 x 256 pix, and using 20,000 as part of SYNTHIA-
Rand. Consequently the absolute accuracy for the same
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T-NET and real-world dataset was higher, being the con-
clusions regarding the use of the virtual-world data and
domain adaptation the same than in [83]. Moreover, in
[85] we also compared the strategy of using the cool world
idea against the use of network fine-tuning, .e. training
T-NET with SYNTHIA-Rand and then fine-tuning with
real-world data. The results show that cool world clearly
outperformed fine-tuning. Thus, this indicates to focus re-
search on fine-tuning-like approaches are more convenient
because it would not be necessary to revisit the source
data for the adaptation; i.e. as we did with SA-SSVM for
the DPM case (in [56] we have also shown that SA-SSVM
is superior to cool-world style for DPM).

Overall, we think these results show that virtual-world
data is not only useful for object detection but also for
semantic segmentation.

4. Related Work

Overall we think we have been among the pioneers on
the use of photo-realistic computer graphics for training
object detectors as well as methods for semantic segmen-
tation, with special focus on ADAS and self-driving sce-
narios. Moreover, as to the best of our knowledge, we were
also among the pioneers posing the virtual-to-real gap as
a domain adaptation problem. Nowadays, the use of this
data is more and more accepted; thus, we would like to
briefly summarize here other works worth to follow.

Making use of 3D CAD models of different objects
(i.e. rendering of backgrounds is not the focus), some
computer vision problems were addressed in indoor sce-
narios (e.g. for object pose estimation and localization)
and/or in datasets where objects appear as predominant
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Figure 17: Semantic segmentation results using the usual per-class
and global accuracy. The icons refer to the considered classes. Top
table: using only SYNTHIA-Rand for training. Bottom table: doing
domain adaptation. Blue numbers for the individual classes indicate
when the use of SYNTHIA and domain adaptation outperforms the
use of only the real-world data. For per-class and global metrics, the
blue number in parenthesis indicates the improvement.

in the images (i.e. similar to a full image classification
problem). In [86], rendered 3D pedestrians are used to
generate 2D mask projections with an associated skele-
ton state; this information is used to train a pedestrian
pose estimator able to work for real-world pedestrians.
The same idea of using rendered data to train pose es-
timators was used in [87] for hand pose estimation. In
[88] a human renderer is used to randomly generate syn-
thetic human poses for training an appearance-based pose
recovery system for close human views (mainly showing
the upper body). In [89], human body pose estimation
in depth images uses training from rendered depth body
information too. In [90], web-available 3D rendered mod-
els where used to train an stereo-based object recognition
systems on-board a home robot (the proof-of-concept was
done with mugs and chairs). In [91], 3D CAD models
are used to learn part-based object representations, in [92]
for training image retrieval systems robust to the view-
point from which objects are captured, in [93] to teach
3D geometry to DPMs, in [94] to drive indoor scene un-
derstanding based on human designed scene descriptors,
in [95] to learn view-dependent mid-level visual cues for
object category detection (the chair class is used as proof-
of-concept), and in [96] as support for object labeling with
weak supervision. In [97], multicategory 2D object detec-
tors are trained with 3D CAD models and domain adapta-
tion based on decorrelated features. In [98], realistic clut-
tered room scenes are generated in parallel to the training
of a deep CNN for object pose recovery based on RGB-
D images. The synthetic data is complemented with a
small amount of publicly available annotated RGB-D data
and transfer learning is performed with them. In [99], 3D
CAD object models are used for supporting the training
of deep CNNs for the task of object recognition; in this
work, it is investigated the sensitivity of deep CNNs to
various low-level sources of variability during training (3D
pose, foreground texture and color, background image and
color). In [100], it is proposed a deep CNN to bridge the

domain gap between textureless CAD models and typical
object recognition real-world images. The proposed CNN
can generate training images of a more realistic appear-
ance by simultaneously leveraging the object shape from
3D CAD models and structured real-world images of tex-
tures. In [101], rendered views of 3D object CAD models
and images of real objects are adapted (real-to-virtual in
this case) in a deep CNN framework to perform instance
and category object detection. In [102] 3D CAD models
are used to synthesize features that correspond to novel
views of objects. In [103], supported by 3D CAD object
models, synthetic images are generated to train deep CNNs
for object viewpoint estimation. In fact, viewpoint estima-
tion is also the focus of [104], in this case for cars, using
rendered 3D models and domain adaptation. [105] also
focuses on estimating the viewpoint of cars using 3D CAD
models for training with domain adaptation.

Works using rendered images/objects for training ob-
ject detectors, image classifiers, and semantic segmenta-
tion algorithms can be found too; and even synthesized
videos for training action recognition systems. For in-
stance, in [106], where a template-matching-based on-board
pedestrian detector is built for far infrared images using
rough synthesized textureless pedestrian templates (au-
thors report poor results due to the lack of realism in
the synthetic templates). In [107], samples with silhou-
ette delineation are obtained automatically through elab-
orated 3D human synthetic models and inserted in real-
world backgrounds (camera-calibrated human-free driving
sequences are required ), with such synthetic samples fused
with real-world ones, state-of-the-are human detectors were
obtained. In [108], 3D RGB-D human models are used
to train systems for human depth estimation and human
part segmentation in real-world RGB images. Such 3D
models are built from MoCap data. In fact, in [109] we
can find already the first method for procedural genera-
tion of synthetic videos to train deep CNNs for human ac-
tion recognition in videos. The generated videos are based
on realistic physics, scene composition rules, and proce-
dural animation techniques. The human animations are
built by leveraging MoCap data, animation blending, and
programmatically defined behaviors. In [110], rendered
images are used for texture-based material categorization
supported by domain adaptation too. In [111], a driving
simulator is used to generate camera images, depth and
optical flow maps and pixelwise semantic annotations, fo-
cusing on highway style roads. This data is used for train-
ing a CRF model for semantic segmentation, analyzing
the effects of various combinations of features. In [112],
synthetic images are used for training a scene-specific and
spatially-varying pedestrian appearance model to operate
on video surveillance images. In [113], CNN-based object
detectors are successfully trained on virtual images for op-
erating on video surveillance images too. In [114], the aim
is to detect objects such as drones, planes and cars, espe-
cially focusing on synthesizing training images that match
those provided by real-world cameras in the presence of



noise. More recently we can find new works in line with
our work using SYNTHIA (Sect. 3). For instance, [115, 81]
demonstrate the great usefulness of synthetic images for
CNN-based on-board semantic segmentation using differ-
ent virtual environments for collecting training data. In
[116], the usefulness of synthetic training data is demon-
strated for indoor semantic segmentation based on RGB-D
images.

The possibility of controlling different parameters when
generating synthetic images from virtual scenarios has in-
spired different works where the robustness and accuracy
of different image descriptors are evaluated [117, 118, 119,
120], or where the focus is on gaining understanding of
learned image features [118], or robustness with respect to
photo-realism is assessed for CNN-based semantic segmen-
tation [121] (being the conclusion that a photo-realism is
just needed up to some level, but beyond it domain adapta-
tion is still needed; i.e. as we has mentioned before follow-
ing our study in [56]). Evaluation and training methods
for optical flow have been also developed with the help
of precise flows obtained from rendered sequences, which
is a really relevant issue since groundtruth optical flow is
hard to be obtained from real images with uncontrolled
multiple motions. In [122], optical flow annotated data
is derived from the open source 3D animated short film
SINTEL. With respect to previous real-world datasets a
bunch of challenging conditions are incorporated, i.e. long
sequences and motions, motion and defocus blur, specular
reflections and atmospheric effects. In [123], scene flow is
estimated by a deep CNN that combines optical flow and
disparity estimation. To achieve this purpose a synthetic
dataset with sufficient realism, variation, and size was used
for training the deep CNN. In [124], optical flow is also
generated with ground truth using synthetic sequences of
driving scenarios. The sequences in the dataset vary in
speed, road texture, egomotion and independent moving
vehicles in the scene.

Rather than performing classical domain adaptation
or transfer learning for solving specific tasks with specific
models, a different approach that has attracted increas-
ing interests comnsists in directly transforming the source
images so that they look like the target ones but preserv-
ing the ground truth (annotations). Ideally, this approach
has the advantage of being task and model agnostic. For
instance, [125] follows such an idea by using generative
adversarial networks (GANs) and without requiring anno-
tations on the target domain.

Rendered training data has not been used only for
image-based object detection. In [126, 127], 3D point
clouds are obtained from web-available 3D object mod-
els; with them classifiers are trained to operate on 3D laser
scans collected by navigating through urban environments.
In this case there is also a domain gap, thus, a small set of
human annotated 3D laser scans is used to perform domain
adaptation.

Using virtual environments for training computer vi-
sion algorithms is a very appealing and relevant topic,
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but we can say the same about using them for debugging
during algorithm development and, especially, for testing
systems. For instance, by exploiting visually and behav-
iorally realistic virtual environments, [128, 129] research
the realization of a fully autonomous sensor network able
to cover large public areas. [62] shows the usefulness of
virtual environments to design and validate people track-
ers for video surveillance, and [130] for evaluating back-
ground subtraction and head detection algorithms under
video surveillance settings too. Even more interesting, [80]
proposes an efficient real-to-virtual world cloning method.
Then, the virtual world can be used as proxy to assess
the performance of vision-based algorithms under differ-
ent environment and image acquisition conditions of in-
terest (e.g. fog). As proof-of-concept, a new multiobject
tracking dataset called Virtual KITTT is created. The con-
ducted experiments suggests that conclusions obtained on
this synthetic benchmark transfer to the real world (i.e.
the real KITTI dataset). On the other hand, the validity of
synthesized lower level cues such as optical flow and stereo
depth for assessing the respective computation methods
has also been under research [131, 132, 133].

Finally, it is also worth to mention that virtual worlds
are being used for learning high-level artificial behavior.
For instance, in [134] the computer learns to play Atari
games using deep and reinforcement learning. In [135],
an artificial agent self-learned how to reproduce human-
like behaviour while playing a first-person shooter video
game (BotPrize competition). In [136], abstract scenarios
made with clip art are used to learn unwritten common
sense. For this purpose, it is argued that image photo-
realism is not necessary since common sense is assumed to
be encoded on semantic visual information and not at pixel
level. In [137], this approach is followed also to discover
semantically important features and the relation between
the saliency and memorability of objects and their seman-
tic relevance. In our main field of interest, i.e. self-driving,
deep CNNs are used to learn end-to-end the task of driving
(i.e. from images to direct vehicle maneuvers commands)
by training in a virtual driving environment [138].

5. Conclusions and Future Work

In this paper we have reviewed our pioneering work
on learning visual representations to perform computer
vision tasks of interest, by using realistic virtual worlds
which provide automatic and precise annotations; which
are very hard or even impossible to collect by human an-
notators. We focused on the ADAS and self-driving con-
text. In particular, we have studied this training paradigm
for developing different pedestrian models (holistic, patch-
based, deformable part-based) relying on human-designed
features (HOG, LBP, Haar, EOH) and high performing
classifiers (SVM, AdaBoost, Random Forest). Moreover,
we have studied also how such virtual-world data can be
used to train deep CNNs for the challenging task of pix-



elwise semantic segmentation. In all cases, the learned
models have been operating in real driving scenarios.

By doing this, we realized about the domain gap be-
tween virtual and real worlds. However, we have shown
that such a gap does exist also between real-world datasets
provided that sensor and/or object and environment con-
ditions significantly change from training to testing time.
Therefore, we proposed to cast the visual domain gap be-
tween virtual and real worlds as a domain adaptation prob-
lem. Accordingly, we developed both feature-transform-
based and model-transform-based methods for eliminat-
ing the gap, always keeping in mind to reduce as much as
possible human annotation.

Overall, we can affirm that we have driven a long route
of research for training our car to see using virtual worlds.
As use to happen, such driving has been just the start
of the journey towards a horizon of new possibilities of-
fered by the use of realistic virtual worlds. Many things
remain to be done in the rest of the journey. So far, hu-
man annotation still can be required for validating com-
puter vision algorithms. Therefore, more research should
be done for using the virtual environments for testing; in
line with [80], or by using circular evaluation procedures
[139]. From the model training perspective, we would
like to focus on self-annotating full video sequences with
incremental/on-line procedures that rely on initial virtual-
world-based visual models. In addition, we are very inter-
ested in cross-image modality domain adaptation in line
with the proof-of-concept we did in [47] for adapting our
virtual-world-based pedestrian detector to operate on FIR
images. Learning to act/drive relying on deep learning
and reinforcement learning as in [140] is also a topic we
would like to research using virtual, but realistic, driving
scenarios. Finally, we are obviously interested in research-
ing better domain adaptation methods for deep models as
well as image-to-image transformations to convert virtual-
world images into real-world ones, i.e. as a task and model
agnostic domain adaptation procedure.

Overall, the large amount of related works presented
in the last years, here reviewed, is a clear sign of the in-
creasing relevance of virtual environments for training and
testing intelligent systems.
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