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Abstract

Kidney stone formation is a common disease and the incidence
rate is constantly increasing worldwide. It has been shown that the
classification of kidney stones can lead to an important reduction of
the recurrence rate. The classification of kidney stones by human
experts on the basis of certain visual color and texture features is
one of the most employed techniques. However, the knowledge of
how to analyze kidney stones is not widespread, and the experts
learn only after being trained on a large number of samples of the
different classes. In this paper we describe a new device specifi-
cally designed for capturing images of expelled kidney stones, and
a method to learn and apply the experts knowledge with regard to
their classification. We show that with off the shelf components, a
carefully selected set of features and an state of the art classifier
it is possible to automate this difficult task to a good degree. We
report results on a collection of 454 kidney stones, achieving an
overall accuracy of 63% for a set of eight classes covering almost
all of the kidney stones taxonomy. Moreover, for more than 80% of
samples the real class is the first or the second most probable class
according to the system, being then the patient recommendations
for the two top classes similar. This is the first attempt towards
the automatic visual classification of kidney stones, and based on
the current results we foresee better accuracies with the increase of
the dataset size.

Keywords: kidney stone; optical device; computer vision; image clas-
sification.

1 Introduction

Medicine and healthcare are among the most important fields where ex-
pert systems have found application (Wagner, 2017). For instance, com-
puter aided detection and diagnosis systems can enhance the diagnostic
capabilities of physicians or reduce the required time. Many of them are
based on diverse imaging modalities like brain CT and MRIs, mammo-
graphies, chest X-ray and a long etc. Another type of expert systems are
decision support systems, whose purpose is not as much to produce a di-
agnostic but to analyze data (eg. images) and present some kind of result
so that decisions can be made more easily. At the core of such systems
one can often find classifiers, which are typically trained on data samples
to generate a discrete prediction (a class label) plus a confidence score or
a probability for each class, when presented a new sample. This is the
case of the work described in this paper, which deals with the problem
of kidney stone classification.

Urinary lithiasis —the formation of kidney stones— shows a steady
incidence increase in developed countries. Around 10% of population in
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developed countries suffer a stone episode at least once in his/her life
(Romero et al., 2010; Scales et al., 2012). Emphasis should be made
on the high prevalence affecting this disease. Some European follow-up
studies have quantified the stone recurrence rate (repeated stone episodes
for the same patient) at 40% in 5 years (Hesse et al., 2003; Andreassen
et al., 2007). These dramatic numbers reflect not only a disturbing and
painful disease but also a considerable burden for the national healthcare
systems (Strohmaier, 2012).

Once the stone episode has passed, it is widely agreed that an ad-
equate study of the causes of stone formation is required in order to
decrease the high recurrence of this disease (Kok, 2012; Grases et al.,
2002; Siener and Hesse, 2012). In fact, it has been pointed out that the
correct treatment of stone patients can drop further stone formation as
much as 46% (Nolde et al., 1993; Strohmaier, 2011). The urinary stone
represents a solid description of the metabolic disturbances suffered by
the patient, so it should be regarded as the starting point of an individ-
ualized treatment.

Aware of the importance of stone characterization, clinical scientists
have used a variety of approaches for the description of urinary calculi.
Already in the second half of the 19th century, the first classification
of stones was devised, based on features such as color, hardness and
shape. A number of techniques have been used from that starting point.
IR spectroscopy, X-Ray diffraction and stereoscopic microscopy stand as
the most extended analysis methodologies (Schubert, 2006). The rest
of techniques (electron microscopy, Raman spectroscopy, hyperspectral
imaging among them) have been mainly used for research purposes.

IR spectroscopy is easy to use and yields quantitative results, but
the sample needs to be grinded and the distribution of components in
the stone, related to its etiology, is inevitably lost. X-Ray diffraction
presents the same drawback, as well as less available instrumentation.
Hyperspectral imaging has proven to be a high-performance alternative.
Like in IR spectroscopy, hyperspectral images are suitable to detect the
presence of chemical components based on the spectral signature of the
sample but, at the same time, to know their spatial distribution on the
imaged surface of the stone. A few works have attempted to perform
a pixel-wise classification according to some kidney stone classes with
infrared and near infrared spectral imaging, like (Piqueras et al., 2011),
(Blanco et al., 2012) and notably Blanco et al. (2015). However, their
do nor perform a large scale study with hundreds of stones, like us.
Additionally, the problem of this approach is that the equipment needed
for its implementation is costly and not always available even in clinical
laboratories.

In stereoscopic microscopy (Daudon et al., 1993; Cloutier et al., 2015;
Grases et al., 2002) the external surface and a section of fragments are
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observed at a magnification of 10X to 40X. The color, 3D shape (e.g. lob-
ulations, surface roughness and smoothness), size, shape and orientation
of crystals, deposition layers, the existence of a core etc. provide cues to
the expert with regard the stone class. Thus, stereoscopic microscopy re-
lies on the expertise of the technician who performs the analysis. While
very precise, it is time consuming, cannot be offered at a competitive
price and generally the analysis is carried out in laboratories external to
the hospital, so the waiting time for the results may become an issue.

This paper presents a system composed of a device and automatic
classification method, specifically conceived for the fast and on-site anal-
ysis of urinary stones. The system is based on the principles of stereo-
scopic microscopy, so the sample is classified attending to the amount
and distribution of mineralogical components, as they appear on images
captured by a standard camera. To the best of our knowledge, this is
the first attempt to automate the visual classification of kidney stones.
Hence, we consider as the main contributions of this work :

1. The construction of a fully functional device, including hardware,
user interface and classification software, for the visual recognition
of renal calculi.

2. The first extensive dataset for this kind of samples, available upon
request at (Lumbreras et al., 2017). It consists of 14,500 images of
908 stone fragments from 454 producers, recording separately both
the external and internal side of each fragment, under visible and
near infrared light sources.

3. The identification of discriminant color and texture features to train
a state-of-the art classifier that attains a baseline accuracy of 63%
for the top class and 83% for the top-2 classes, in spite of the
large intraclass variability combined in some cases with consider-
able inter-class similarity.

4. We show that a boost in performance is possible with the use of the
urinary pH level, obtaining 70% and 89% top-1 and top-2 accuracy,
respectively. Moreover, confusions align with classes judged more
similar by the annotator expert.

The organization of this paper is as follows. Section 2 presents a
widespread taxonomy of kidney stones. They are characterized by the
presence of certain chemical components that show up as color and tex-
tural features. Section 3 describes the device we have built to acquire
images of kidney stone fragments. We follow a certain procedure to
record a sample, which is a collection of images of a pair of fragments
from one same patient. Accordingly, we have built a large dataset with
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samples of all the classes but the one less frequently found (section 4).
On the images of the dataset we have computed a set of visual features
related to color and texture which then are fed into a random forest clas-
sifier (section 5). In section 6 we combine the class probabilities given
by this classifier with those obtained from the urinary pH level, a non-
visual feature that helps to distinguish some classes. Section 7 reports
the results for four variants of the classifier, depending on the scheme of
classes used (8 main classes or 12 fine-grained classes) and the use or not
of the urinary pH level as an additional feature. Finally, section 8 draws
the main conclusions and avenues of future work.

2 Kidney stone taxonomy

There is a well known taxonomy proposed by M. Daudon in 1993 (Daudon
et al., 1993). It is a hierarchical classification whose first level considers
the main or two main chemical species in the stone (calcium oxalate, uric
acid etc.). A second level is provided to account for different etiologies or
pathologies that such broad classes do not discern well. Thus, urologists
consider also what the minor components are and their spatial distribu-
tion. The later means, for instance, whether they are on the surface or
the inside of the stone, forming a core, layers, radial structures, lobules
or uniformly spread. Table 1 relates the two taxonomies.

This second level has a total of 21 classes, making it difficult to adapt
to the clinical practice. Moreover, since our goal is to train a classifier,
we will need as much samples as possible per class. Unfortunately, many
second level classes (and even some of the first level) have a low natural
frequency of occurrence, so they may not be well represented in a dataset.
F. Grases and colleagues (Grases et al., 2002) simplified this classification
scheme and we draw from them our first scheme of classes which are:

• calcium oxalate monohydrate (COM)

• calcium oxalate dihydrate (COD)

• mixed calcium oxalate and hydroxiapatite (CO−HAP)

• hydroxiapatite (HAP)

• struvite (STR)

• brushite (BRU)

• uric acid anhydrous and dihydrate (UA)

• mixed uric acid and calcium oxalate (UA+CO)

• cystine (CYS)

5



When collecting samples to build the dataset, we were able to gather
just a few samples of cystine, one of the less frequent ones (around 1%).
They were insufficient to properly train the classifier and hence we dis-
carded it. In contrast, we realized that a few subclasses of COM and
COD were relatively well populated (see table 1), thus giving us the
chance to provide more specific classification results and consequently
better patient recommendations. Hence we decided to expand the first
scheme of classes to a second scheme. Along the way, we are going to
borrow the class notation of (Grases et al., 2002) for which the classes of
first scheme are denoted by numbers (2, 3 . . . 9) whereas the labels for
the second are the former plus a suffix if necessary. Accordingly, COM
was divided into:

• pure COM (2)

• COM with traces of hydroxiapatite and/or organic matter in the
core (2b)

• COM with little amounts of COD in the core (2codt)

and COD was also split into:

• COD with presence of hydroxiapatite (3b)

• COD with COM, resulting from the transformation of COD, which
is unstable, to COM (3t)

• COD, transformed to COM plus traces of hydroxiapatite (3bt)

The exhaustive visual description of each class is out of the scope of
this paper. We refer the reader to the seminal paper (Daudon et al.,
1993) and the more recent work (Cloutier et al., 2015), where they are
listed and illustrated with examples. Nonetheless, we can get a glimpse
of them in figures 1 and 2. They show 8 images of stone fragments for
each main class, as acquired by our device. In each case, half the images
are from the outer part of a fragment, half from an inner section. We
can appreciate that some classes are quite similar in aspect (e.g. STR,
HAP and BRU) and also the large intraclass variability common to all
of them.

The first problem is a consequence of the lack of a clear frontier be-
tween classes because they may share the same components in different
proportions. For instance, classes 2b, 3bt, CO−HAP and HAP form a
continuum of calcium oxalate with increasing proportion of hydroxiap-
atite. The same phenomena occurs in the case of UA and UA+CO, and
2, 2codt and 3t. This makes kidney stone classification a tough problem
for the human expert and obviously for the classification software.
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COM

COD

CO+HAP

HAP

Figure 1: Sample images for the main stone classes acquired with white LEDs lighting. First row shows the
external view of a fragment, second row the view of a section (core), most times of another fragment.
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STR

BRU

UA

UA+CO

Figure 2: Continuation of figure 1.
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3 Device

The device, specially developed for the analysis of kidney stones, as-
sembles low-cost off-the-shelf components, being a simple, compact and
robust piece of equipment. The final prototype consists of an enclosure
that holds the camera, lens, focusing ring and a lighting board, plus a de-
tached base acting as sample holder. Figure 3 shows an schematic view.
All the structural components have been 3d printed in ABS plastic. Di-
mensions are 70 × 70 × 85 mm3, making it suitable to be placed on an
desktop without disturbance. Figure 4 shows a picture of the first batch
of prototypes where we can apreciate the relative size of the system.

The camera is a conventional RGB CMOS 5 megapixel small camera,
model daA2500–14uc from Basler1. Its sensor spectral sensitivity allows
us to acquire color images both in the visible and near infrared ranges
(below 1000 nm) as we will explain. To this end, we got removed the cut-
off IR coating and filter from the lens and camera, respectively. Image
resolution is 2592 × 1944 pixels/channel. The camera is connected to the
host computer with an USB3 cable through which our software obtains
the pictures, sets the acquisition parameters, like the exposure time, and
also sends two output signals that control the lighting board. In order
to obtain similar colors across the several device exemplars we calibrate
the gain parameter for each channel with a white background template.

The sample is located just about 60 mm below the sensor plane. At
this distance a conventional lens with fixed aperture has a shallow depth
of field and consequently a large part of the fragment surface is often out
of focus. For this reason, our design includes a modified version of the
conventional Evetar M12B1216IR lens, which is 12 mm focal length and
F1.6 aperture (wide open). We contacted with the manufacturer2 who
provided us a F16 version of this lens, resulting in a larger depth of field
whereby almost all the surface is in focus for almost all fragments. The
loss of light by narrowing the aperture is not an issue because we control
the time exposure and the light intensity. The focus is manually adjusted
by rotating a wheel in contact to the lens.

The device is equipped with a specific lighting board. A ring of LEDs
is arranged around the aperture for the camera lens, as shown in Figure
3. There are two sets of four white LEDs w1, w2, plus two other sets of
four infrared LEDs ir1, ir2. The later emit light around 880 nm and
940 nm, respectively. The LEDs in each set are placed in cross shape and
are switched on at the same time, to avoid self shadowing. Two on/off
triggered signals control through a decoder the four groups.

1www.baslerweb.com
2www.leadingoptics.com
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a b

Figure 3: (a) Section of the device. (b) Lighting board.

Figure 4: First set of prototype devices.
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4 Dataset

The dataset of images is built upon a collection of 454 samples kindly
provided by the urology department of the Hospital Universitary de Bel-
lvitge (Barcelona, Spain) in the time span of several years. They cover all
the main 9 classes but cystine, for which just 4 samples were available so
we discarded this class as mentioned above. As for the rest, we tried to
get all second scheme classes balanced and, at the same time, to record
as much examples as possible to account for intraclass variability. The
resulting percentages are shown in table 1. Note that HAP, BRU, STR
and AU+CO have slightly more samples than their natural frequency.

One sample consists of two stone fragments from one same unique
stone producer and episode, in order to assure independence. Stones are
expelled either naturally or after extracorporeal shock wave lithotripsy.
In the first case one of the stones is cut with the aid of a scalpel to expose
its inner part. In the second, the operator has to select two fragments,
each one with an inner and an outer surface. This is important because
some classes exhibit characteristic traits in the inner part, like formation
of nuclei or concentric layers, as mentioned. The classification of a kidney
stone based just on its the external surface or just one fragment is faster,
because it requires less time for fragment handling and image capture
and processing. However, in preliminary experiments it proved to be less
accurate than using both fragments, so we discarded this way.

For each side of each fragment we capture a series of 8 images by
varying the exposure time —0.5 and 1 seconds— and light source —w1,
w2, ir1 and ir2 LEDs. Hence, the dataset has a total of 14528 color
images with a resolution of 2592 × 1944 pixels. Figure 5 shows some of
them for two fragments.

In spite of this large figures, we are not going to use all the 32 images
per sample in the classification. We recorded them in order to explore if
they contained complementary information that could be advantageous
for the segmentation and classification. As we will see, the infrared light-
ing ir1 is quite suitable to obtain an almost perfect automatic segmen-
tation of the stone region, but features computed over it did not result
more discriminant or complementary to those computed over the white
light illumination. In the end, to the effect of the stone analysis each
sample is composed of 8 images: two fragments, two sides per fragment
under white w1 lighting at 1 second exposure time (for feature computa-
tion) and near infrared ir1 at 0.5 seconds exposure time (for automatic
segmentation), totaling 3632 images.
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Main Class Dataset Natural
components scheme 1 scheme 2 samples percent frequency

2 31 6.8
COM 2 2b 29 6.4 29.3

2codt 30 6.6

3b 27 5.9
COD 3 3t 53 11.7 33.8

3bt 59 13.0

CO+HAP 4 4 63 13.9 11.2
HAP 5 5 19 4.2 7.1
STR 6 6 38 8.4 4.1
BRU 7 7 14 3.1 0.6
UA 8 8 61 13.4 8.2
UA+CO 9 9 30 6.6 2.6
CYS and others 3.1

Total 454

Table 1: Percentage of kidney stone classes and subclasses in our dataset
and naturally appearing according to (Grases et al., 2002). Even though
figures vary depending on the world location of the study, COM, COD
and UA calculi stand for the vast majority and their proportions are
similar to those in the dataset.
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Exposure Light source
time

w1 w2 ir1 ir2

0.5 sec.

1 sec.
(a)

0.5 sec.

1 sec.
(b)

Figure 5: Set of 8 images taken for the external surface of an (a) struvite, (b) COM fragment. Typically struvite
stones are the brightest and COM the darkest.
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5 Classification

Our classification unit, a sample, is the set of four images of the external
and internal view of the two fragments from one same stone or two stones
produced by a subject. For each one of such images we compute a set
of simple color and texture features, restricted to the region of interest
(ROI) containing the stone fragment. Segmentation of this ROI is not
trivial on the images recorded with white LEDs because of the wide range
of brightness of the different classes and reflections of the background.
But it turned out to be much easier on images acquired with infrared
lighting (see for instance the two rightmost columns of figure 5). Ac-
tually, this is their main use, since features computed on them did not
add much discriminative power to those computed on visible lighting im-
ages. Specifically, a simple thresholding on the image captured with ir1

LEDs and exposure time equal to 0.5 seconds, followed by selection of the
largest region, already yields a good segmentation in all cases. Given the
clear bimodality of the histogram, the threshold value is determined by
the classical Otsu method (Otsu, 1979; Sezgin and Sankur, 2004), which
has proven quite reliable in our case.

We tried many combinations of feature types and their parameters, on
all four light sources and exposure times, which we do not report here.
In the end, the best results were achieved with the following features
computed on images under white LEDs and 1 second exposure time:

• Rotational invariant local binary patterns (Ojala et al., 2002), com-
puted with radius 2, 6 and 8 pixels, and 8, 8 and 10 sample points,
respectively. They seem to represent well the different multiscale
textures. Even though they are color textures, it was sufficient to
compute them on a single channel (red).

• Color histogram, quantizing the color space into 16 bins per chan-
nel, in total thus a vector of dimension 4096.

• Gray level histogram, after converting from RGB to greyscale by
simple channel averaging. In spite of already using the color his-
togram, we added this feature because it contributed to a slight
increase in the total accuracy.

All these features, for all the four views of a sample (external and in-
ternal surfaces of two fragments), are concatenated into a single vector.
To simplify and fasten the learning phase, we applied a simple dimension-
ality reduction technique. We removed those dimensions with variance
below a threshold (e.g. bins corresponding to inexistent or very infre-
quent colors in the dataset). In order to determine its value and the
sensitivity of the result to it, we fixed the features and computed the
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accuracy for a wide range of thresholds. Figure 6a shows that for a value
of 1e-04 or below the global accuracy does not change significantly. The
reduction is however important, keeping just about 700 features (figure
6b).

We obtained the best performance with a random forest classifier
(Breiman, 2001) with 100 trees and 40% of features considered in each
split. The quality of the splits was measured with the entropy criterion.
Random forests obtained a slightly better performance than another clas-
sical method, Support Vector Machines, with the advantage of easier pa-
rameter optimization. We defer the discussion of the quantitative results
to section 7, when we will have completed the presentation of all the
classifier variants.

In cases of sufficient training data one divides the dataset into train,
validation and test partitions, and then optimizes these parameters by
repeatedly training and then checking the result on the validation set.
However, our dataset is not that large: even though for each sample we
have two fragments and many images, there few samples per class in
comparison with other datasets, and specially for the two low frequency
classes HAP and BRU. Hence we decided to train and test by the leave-
one-out strategy so as to maximize the size of the training set : for every
sample, train with all the rest and then test just with it. This means
whenever we wanted to assess a new feature or change some parameter
of the classifier or the feature computation, we had to train N classifiers
using the remaining N−1 samples, being N = 454 the size of the dataset.

This decision had an important implication with regard to the opti-
mization of the many parameters of the features and classifier3. Unless
training one leave-one-out classifier could be performed fast, searching for
the optimum parameters would have been an extraordinary long task.
Fortunately, our development environment was a CentOS Supermicro
cluster with 28 nodes, each with 16 x86 64 GB cores. Thanks to this
facility we were able to launch all the N training jobs in parallel and get
the result in a mere matter of minutes. We implemented the feature ex-
traction and classification in Python on the Scikit-learn and Scikit-image
(Pedregosa et al., 2011; van der Walt et al., 2014) libraries.

6 pH level as a feature

Major chemical components of a kidney stone start to precipitate below
or above a certain pH level of the urine. Table 2 contains the ranges for
each component according to several studies (Grases et al., 2002; Bichler

3For example, just for the LBP features we have to find the best number and size
of the radius, the number of points on the circle in each case, from which channel to
compute them, and whether we want standard, rotational invariance or non-uniform
LBPs.
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Figure 6: (a) accuracy versus threshold on variance of individual com-
ponents in the feature vector, (b) number of selected features versus
variance threshold.
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et al., 2002; Spettel et al., 2013). We realize from this table that the
pH level range, while not different for every class, clearly separates them
into two groups. It thus may help to differentiate samples of visually
similar classes like HAP and STR from BRU, and UA, UA+CO from
calcium oxalate stones COM, COD, CO+HAP. In addition, it is a mea-
sure very easy and fast to obtain. Hence, we have integrated it into the
classification pipeline, giving rise to a variant of the former classifier.

There are however two caveats. First, the values in table 2 are ap-
proximate and the pH level may vary with time for a subject, so we can
not take them as sharp class borders. Second, we do not have the real pH
for the samples in the dataset as we would like. Hence, we have figured
out a reasonable pH level from the groundtruth class that we do know.
In the intent of achieving a realistic simulation of the actual unknown pH
value, given the groundtruth class of a sample, we draw a random value
p from a uniform distribution between the class limit in table 2 and a
reasonable minimum/maximum urinary pH level that we have set to 4.5
and 7.0, respectively.

Now, we have to combine this new feature with those derived from
images. The random forest classifier we employ produces not only the
class label for the most probable class of a sample but also the probability
of belonging to each one of the classes. Let n be the number of classes and
P (Ci|visual features), i = 1 . . . n these probabilities. A second vector of
probabilities is obtained from the estimated pH value p as follows,

P (Ci|pH = p) =

{

σ(p ; li, s) if CO+HAP, HAP, STR
1− σ(p ; li, s) else

(1)

being li the class border for class Ci found in table 2 and σ(x ; c, s) =
(1 + e−(x−c)/s)−1 a scaled sigmoid function centered at c. Its purpose is
to smooth the probabilities at class borders in a controlled way through
the parameter s, as shown in figure 8. This contributes to avoid an
excessive weight for the pH feature in the final decision. Like before with
the threshold variance, figure 7 shows that the classifier accuracy is not
much sensitive to a wide range of values of s around the chosen value
s = 0.1.

Considering the pH measure and the visual features as independent,
the classifier output is

argmax
i

P (Ci|visual features)P (Ci|pH = p) (2)

17



class pH level

COM < 6.3
COD < 6.3

CO+HAP > 6.0
HAP > 6.5
STR > 6.8
BRU < 6.6
UA < 5.5

UA+CO < 5.5

Table 2: Ranges of urinary pH level per class.

Figure 7: Accuracy of classification of detailed classes depending on the
value of s.
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Figure 8: Class probabilities given pH level for s = 0.1. Curves have
been vertically shifted for better visualization.
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7 Results

We have obtained results for four variants of the random forest classifier
based on the color and texture features described before. They are the
combination of two factors:

• the two class schemes, with different number of classes (8 and 12)

• the use or not of the pH value

Table 3 shows their accuracy. Each figure is the mean of five runs
of training and leave-one-out evaluation. Top-1 stands for the real class
is equal to the predicted, whereas Top-2 means it is the most or second
most probable according to the classifier. Standard deviations of Top-1
and Top-2 accuracies are less than 1.8 and 1.1, respectively. In all cases
the threshold variance is set to 1e-04.

Class scheme Use of pH Top-1 Top-2

1
No 62.91 82.76
Yes 70.01 88.95

2
No 43.90 66.92
Yes 50.84 73.61

Table 3: Percent accuracy for four variants of the random forest classifier.

We note that the use of the attributed pH level consistently increases
the accuracy around 7% in all cases. As already commented above, its
effect is to disambiguate certain class confusions, specifically CO+HAP,
HAP and STR from the rest. We confirm it through the confusion ma-
trices in tables 4 and 5 for scheme 1 classes. The pH feature contributes
mainly to better differentiate classes 3 and 4 (COD from CO+HAP).
Also, it increases the precision of the minoritary class 5 (HAP). A simi-
lar trend is observed in the confusion matrices of scheme 2 classes shown
in tables 6 and 7.

More importantly, there is a large drop in accuracy between class
schemes 1 and 2, about 20%. Classification according to the 8 basic
classes of scheme 1 was already a difficult problem because of large visual
intra-class variations and also inter-class similarities. In effect, while in
the medical literature (Daudon et al., 1993; Cloutier et al., 2015; Grases
et al., 2002) one can find distinct descriptions of prototypical samples
from such classes, reality is much more complex and varied. Sometimes
even the human expert hesitates and resorts to complementary analysis
(like infrared spectroscopy) to support his/her decision. The subdivision
of COM and COD to form the second scheme, with the introduction
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2 3 4 5 6 7 8 9 % recall

2 72 14 1 3 80
3 20 107 9 2 1 77
4 7 13 34 2 6 1 54
5 1 6 2 10 11
6 4 11 3 20 53
7 6 4 0 4 0
8 1 6 6 43 5 70
9 8 5 13 4 13

% precision 66 69 51 29 50 0 65 40

Table 4: Confusion matrix for scheme 1 classes, no pH

2 3 4 5 6 7 8 9 % recall

2 73 16 1 81
3 20 115 2 2 83
4 2 3 52 4 2 83
5 7 4 8 21
6 16 3 19 50
7 7 2 3 2 21
8 1 8 47 5 77
9 8 5 13 4 13

% precision 70 75 66 57 61 60 72 44

Table 5: Confusion matrix for scheme 1 classes using pH

of new four classes, only aggravates the problem. This is appreciated
in the drop of recall for classes 2, 2b and 2codt for example, formerly
80 and 77% and now between 30 and 40%. The cause is to be found
in the top-down nature of the random forest classifier, whereby at each
node a certain feature and threshold value are selected to perform a good
partition of training samples. The relative good news is that most of the
confusions for the new classes are among themselves, that is, most of
the errors in the group 2-2b-2codt are confined to the same group, and
similarly for 3b-3t-3bt. This is just another manifestation of the former
cause. Moreover, the rest of mistakes for each of these two groups are
with the other group, keeping the pattern of the confusion matrix of
scheme 1.

A last observation is that for class scheme 1, classes 5 and 7 have a
very low recall, though the use of pH slightly increases it. The reason is
that they have the lower number of samples, 4.2 and 3.1%, respectively.
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2 2b 2codt 3b 3t 3bt 4 5 6 7 8 9 % recall

2 13 9 4 4 1 1 41
2b 11 9 2 2 2 3 31
2codt 5 3 10 7 1 3 34
3b 1 12 5 7 7 2 35
3t 6 3 2 8 22 8 1 4 41
3bt 2 4 1 2 16 19 6 1 37
4 2 3 1 2 3 5 36 3 6 2 57
5 1 6 3 9 16
6 1 11 3 21 1 1 55
7 1 2 1 1 3 3 3 21
8 1 1 1 6 1 45 6 74
9 5 1 1 1 1 16 5 17

% precision 29 28 48 44 35 40 47 33 52 75 60 36

Table 6: Confusion matrix for scheme 2 classes and no pH

2 2b 2codt 3b 3t 3bt 4 5 6 7 8 9 % recall

2 13 9 4 4 1 1 41
2b 11 9 2 2 2 3 31
2codt 5 3 11 7 2 1 38
3b 1 18 5 7 1 2 53
3t 6 3 2 8 23 8 1 1 2 43
3bt 2 4 2 6 16 21 41
4 1 2 3 54 3 86
5 8 4 7 21
6 14 3 21 55
7 2 2 2 6 2 43
8 1 1 1 52 6 85
9 5 1 1 1 1 16 5 17

% precision 30 31 50 51 37 46 68 57 68 86 67 42

Table 7: Confusion matrix for scheme 2 classes using pH
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In addition to the global accuracy we have delved into the contribu-
tion of each feature. They have been selected on the basis of their success
in other works on color and texture classification. Table 8 shows the accu-
racy of the selected features for the classifier two class schemes without
pH. GLH stands for gray level histogram, CH is color histograms and
LBPs local binary patterns. The number appended to CH is the quan-
tization step for each channel. In all cases the threshold on the feature
variance was set to 1e-04 but for CH8 when it was 1e-05 to compensate
for the lesser number of selected features. It is noteworthy that the color
histogram alone is just 3% below the top result, and contributes more
than LBP which was computed only on the red channel. We believe
the reason is that the color histogram is the only true color feature, and
color turns out to be more discriminative than texture alone. However,
a uniform coarse quantization like that provided by CH8 is not enough,
since the color variability must be concentrated in a small region.

Class scheme
features 1 2

GLH 54.41 37.44
CH8 55.75 37.89
CH16 60.23 40.31
LBP 55.51 34.14
CH8+LBP 62.78 43.83
GLH+CH16+LBP 62.91 43.90

Table 8: Contribution to the global accuracy of each type of feature and
combinations.

8 Conclusions

We have presented the first attempt to automate the visual classification
of kidney stones. Kidney stone formation affects a substantial percent-
age of population, and also has a high rate of recurrence that can be
reduced if stones are properly identified. To this end we have built an
image capture device based on standard components. With it, we have
collected a dataset of thousands of images of both the external surface
and inner sections of kidney stone fragments, corresponding to a total
of 454 samples/subjects. These samples belong to the main eight classes
of kidney stones identified in the literature, with a frequency similar to
their natural occurrence.

Subsequently, we have designed a classifier based on color and texture
features, which are fed into a random forest classifier. With a leave-one-
out training strategy to maximize the number of samples in the training
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set, we reach an accuracy of 63% for these eight classes. This is a low
figure but we are dealing with a difficult problem mainly because of a
large intra-class variability. In its defense, we report a top-2 accuracy of
83% and the analysis of the confusion matrix. This later shows that most
errors happen between classes which are similar in composition (2-3, 3-
4, 8-9) and, more importantly, in their associated recommendations for
the patient, as contained for instance in (Grases et al., 2006; Friedlander
et al., 2015). With regard practical applicability, at present we think
of myStone not as a tool for fully automatic diagnostic —from which it
is still far from—, but for decision support for the urologist, as it may
provide not just a single answer but the computed probabilities for each
class.

Nevertheless, we have one way to improve the accuracy by leveraging
the relationship between classes and the urinary pH level, which increases
the accuracy by about 7%. Admittedly, we simulate it from the class
groundtruth, but the literature supports its discriminative nature and the
simulated values are not ideal but drawn from a random distribution. On
the contrary, splitting the most populated classes COM and COD into
three subclasses each has resulted in a drop of their accuracy, though we
reach a notable 67% top-2.

In comparison, (Blanco et al., 2015) attains a much higher global ac-
curacy of 90.4% with the classes of the first scheme. Only that this figure
refers to the accuracy of pixel classification, not sample (four images) or
even a whole image. For this they did not have to design any color or
texture feature like us but used the signature of an hyperspectral camera
at each pixel, a vector of more than 100 features. Despite their dataset
was only composed of 6 to 8 fragments per class, the fact that they got
this result with a classifier as simple as a quadratic discriminant anal-
ysis is rather surprising. We interpret it as the extreme importance of
selecting a good set of features.

Given these results, we wonder which alternative features and/or clas-
sifier could perform better on regular color camera images. The present
trend, deep learning, is to learn the features themselves and the classifier
altogether. Hence we have already done a number of experiments with
convolutional neural networks for feature learning, followed by a few fully
connected layers to output class probabilities. After trying several com-
binations of network architectures and layers plus the typical ingredients
of regularization (dropout, weight regularization), we have just reached
an accuracy short of 3% with regard the approach described here. We
can not afford doing leave-one-out partitions and parallelization of the
training phase as done here, because of the long time required to train
a neural network and the huge number of folds. Instead, a conventional
k-fold partition for some small k needs be adopted.

As future work we have identified in this context the following four
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lines. First, we hypothesize that our dataset needs to grow considerably
before we can improve the present results with deep learning techniques,
which are quite demanding in supervised data. Thus, we intend to add
more samples to the dataset, trying at the same time to balance the num-
ber of samples per class. Second, the network architecture for classifying
our samples can not be the same as the standard deep convolutional net-
works proposed for single images: each sample consists of four images
which are not pixelwise compatible and thus can not be merged into
a multichannel single image. Some new type of multiview architecture
must be designed. Third, we have to deal with the problem of unbal-
anced classes, for instance through weights or a non-uniform sampling
scheme to build the minibatches. And finally, deep networks are known
for being overconfident on their predictions. This means that some cali-
bration procedure needs to be applied to the scores they provide so as to
approach them to actual probabilities. This is relevant to ours because
the output of the system is not only the most probable class but also the
confidence or belief on each of them.
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