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candidates [29], [19], we exploit an effective shape descriptor
to extract such nearest candidates. As in [23] we estimate
each object part separately while reducing the search space.
We first extract palm joints, which provide a basis for
fingers, using nearest candidates. Following [17] we define
an efficient objective function and then minimize parameters
of each finger model to fit with its appearance. Our function
is different from [17] since they extract fingertips while we
accurately segment fingers. Thanks to this objective function
we get a fast convergence to the finger model parameters
while handling occluded parts.

Motivated by [31], our estimated joints are applied in
a sequence of frames to minimize parameters of a trained
bilinear model [1] consisting of shape and trajectory bases.
This process further refines the estimation of occluded parts.
Our approach has proven to be more robust under large
viewpoint sets and complex hand poses than state-of-the-
art approaches. Fig. 1 shows our pipeline: nearest neighbors
extraction, hand segmentation, single-frame pose recovery,
and temporal pose recovery. To evaluate our method, we
created a synthetic dataset with +600K hand pose samples
for single-frame pose recovery and +1M frame sequences
for temporal pose recovery, with high deformations and
occlusions in both learning and test sets. Egocentric datasets
have been recently introduced [18]. However, hand-object
interaction is not within the scope of this paper.

II. RELATED WORK

The field of hand pose estimation has become very active
due to the use of depth sensors. An excellent survey on
existing methods can be found in [8]. In this section we
focus on those approaches most related to our contribution.
Hand pose estimation methods can be roughly divided into
model-based methods and data-driven methods ([6], [16]).

Model-based techniques consider an a priori 3D hand
model whose pose is determined over time by some tracking
procedure ([19], [11], [17]), like the Particle Swarm Opti-
mization presented in [14]. Unfortunately, these approaches
require some kind of accurate initialization, and due to the
fast motion and non-rigid nature of hands, together with
finger self-occlusions, it is still a challenge for single-hand
trackers to correctly maintain the state of an animated 3D
hand model over time.

Abstract— State-of-the-art approaches on hand pose estima-
tion from depth images have reported promising results under 
quite controlled considerations. In this paper we propose a 
two-step pipeline for recovering the hand pose from a sequence 
of depth images. The pipeline has been designed to deal with 
images taken from any viewpoint and exhibiting a high degree 
of finger occlusion. In a first step we initialize the hand pose 
using a part-based model, fitting a set of hand components 
in the depth images. In a second step we consider temporal 
data and estimate the parameters of a trained bilinear model 
consisting of shape and trajectory bases. Results on a synthetic, 
highly-occluded dataset demonstrate that the proposed method 
outperforms most recent pose recovering approaches, including 
those based on CNNs.

I. INTRODUCTION

Hand pose recovery has attracted great interest in recent 
years due to the availability of affordable depth cameras. 
Depth sensors have allowed researchers to use non-invasive, 
accurate approaches to hand pose estimation, which are more 
robust to illumination and color changes than standard RGB 
cameras. These features have lead to significant advances in 
multiple applications including human-computer interaction, 
virtual reality, robot learning and gesture recognition, just to 
name a few [4], [5], [7], [8].

Although recent hand tracking approaches based on depth 
cameras achieve high performance for some applications, 
there are still several open challenges to tackle, such as finger 
self-occlusion, hand-body occlusions, low resolution/noisy 
depth images, and above all, the inherent complexity of 
modeling hand motion due to its highly articulated nature. 
Available datasets mainly provide front-face hand defor-
mations, which are not suitable to compare state-of-the-
art approaches against hard cases with large occlusions. To 
the best of our knowledge, little attention has been paid 
to incorporate temporal motion information in hand pose 
recovery problems. As an example, Oikonomidis et al. [14] 
only initialized the model using previous frame.

In this paper, a solution to the problem of hand pose 
recovery in depth image sequences is proposed. The solution 
combines both spatial and temporal information. We present 
a system for efficient hand pose recovery in non-controlled 
settings involving self-occlusions. Based on current trends 
towards minimizing pose parameters in the space of nearest



Fig. 1. Diagram of the proposed method. In the first step, a single-
frame hand pose is estimated. First palm joints and finger segments are
recovered through nearest shapes. Then finger models are fitted using
extracted candidates. In the second step, temporal data is incorporated to
refine first step estimation.

On the other side, data-driven methods directly predict
at each frame the pose of the hand by learning depth and
image features [23]. Contrary to using hand trackers, which
lead to model drift over time, single-frame detection methods
are initialized at each frame, thus recovering more easily
from estimation errors [19]. Multiple procedures based on
Random Forests (RF) have emerged including Hough Forests
[29], Random Decision Forests [10] and Latent Regression
Forests [24], as detailed in [8]. Unfortunately, the number of
occluded joints is commonly bigger in hands than in human
bodies. As a result, techniques based on RF usually require
huge training sets, and some kind of viewpoint estimation
is needed in order to improve performance [25]. Some data-
driven works analyze the hand in the space of nearest shapes
in order to reduce the search space [19] or approximate
unknown pose parameters through matrix factorization [3].
Following current trends in Computer Vision, although both

the architecture and weight initialization of a neural network
strongly determine its performance, CNN-based techniques
continuously improve the state-of-the-art accuracy on differ-
ent benchmarks [27], [13]. In the context of this paper, it is
of interest the approach presented in [13], which introduces
a prior hand model and a specific refinement stage, i.e. one
CNN per joint, to improve joint localization. Aside from the
advances achieved by CNNs, these methods for hand pose
estimation still fail to accurately extract fully-occluded finger
joints.

Temporal information and trajectory analysis, besides the
shape itself, provide discriminative information to analyze
shape and recover occluded parts. Works from structure from
motion, such as matrix imputation [21], statistical model
analysis and non-rigid structure from motion [15], [26],
showed the benefits of using temporal information for shape
analysis. Zhou et al. [31] proposed a spatio-temporal model
for the problem of human pose recovery. Although their
approach obtains promising results, the complexity of the
minimization problem makes it not applicable for all types
of pose deformations.

In all the aforementioned approaches, a balanced trade-off

between real-time and accuracy performance is maintained.
Techniques exhibiting high accuracy typically work at low
frame rates, thus becoming unsuitable for interactive systems
of spatially-immersive scenarios.

III. METHODOLOGY

The basic idea of the proposed method is to recover a hand
pose through a combination of part-based model fitting and
data-driven approaches in a single frame and, afterwards, re-
fine occluded joints in a sequence. As illustrated in Fig. 1, we
first extract nearest shapes by introducing a shape descriptor
(Sec. III-A). We apply nearest shapes with two purposes:
3D palm joints recovery and hand segmentation (Sec. III-B).
Given the palm joints and segmented fingers, we extract a
number of candidates for each finger using a set of predefined
examples. We then send these candidates to the optimization
process to minimize an objective function which fits a finger
model to the segmented finger (Sec. III-C). We minimize the
parameters of each finger separately. Finally, occluded joints
are refined by solving the coefficients of the trained bilinear
model in a sequence of F images (clip). We cluster clips in
order to reduce non-linearity (Sec. III-D).

In order to evaluate our method on highly-variable poses
and viewpoints, as well as temporal analysis, we created a
rich synthetic dataset mimicking the features of commodity
depth cameras (Sec. IV-A). We illustrate some properties of
the hand model used to create this dataset in Fig. 2. We
created a hand model with 25 semantic segments used as
low-level pixel labels in the dataset. At a higher level of
semantics, we segmented the hand by assigning each pixel
a label from the set L = {l1, ..., l6}, where L represents
fingers and the palm. Next, we detail the main components
of the proposed approach.

A. Nearest shapes extraction

Several state-of-the-art works [19], [29], [10] use Random
forest (RF) to extract viewpoint or nearest neighbors from the
deeper branches of the trees trained on a particular dataset.
Such methodology can be seen as stochastic shape extraction
and leads to some irrelevant nearest shape recovery. Besides
that, this approach is not efficient for large scale datasets.
On the other hand, common statistical shape descriptors try
to find a correlation among the components composing the
shape and grouping them into bins.

In this work we train a classifier to segment a hand into
a set S = {si}25i=1 with 25 classes defined in the dataset
and group probability responses of the classifier into log-
polar bins. Therefore we first select a fixed random number
of pixels from the hand and estimate each class response for
each pixel applying the trained classifier. For aggregating the
responses into bins, we reconstruct a point cloud of selected
pixels and divide XY Z axes into three axis pairs XY , XZ
and Y Z. Thus, we map the point cloud to front, top and side
views and apply measurements separately on each view.

We compute the log-polar binning based on shape con-
text [2]. Let q = 1

N

∑N
i=1 Pi be the center of the point cloud

where N is the number of points and let Pi ∈ R3 denote
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Fig. 2. Finger models. a) Hand 3D model used for the dataset generation,
b) unique color labels used to identify surface points on the hand, c) DOF
for different joints. Joints are indexed by assigned numbers. This figure also
shows how skeleton is fitted inside hand. d) Palm coordinate system. Finger
parameters are computed based on this coordinate system.

the i-th point in world coordinates. We set q as the center of
the log-polar coordinate system. Then histograms of different
views (front view for instance) are computed as:

Hxy(k, c) =

N∑
i=1

{Ric|(P xyi − q
xy) ∈ binxy(k)}, (1)

where Ric denotes probability responses of the i-th point
and c-th class predicted by the classifier, and k is the bin
number. Finally histograms at each view are concatenated
and normalized. Applying such descriptor we discriminate
both spatial and class dependencies of different shape points
into bins, being fast to compute, invariant to slight rotations
of the hand and robust against boundary noise due to the
random selection of points. We show an illustration of our
descriptor in Fig. 1. We set 8 angle and 5 radius bins as the
log-polar binning parameters of the shape descriptor. Finally,
for a fast extraction of the K nearest shapes, a kd-tree is
trained based on the extracted features. We apply the work of
Shotton et al. [20] as our segmentation classifier and train 14
trees with depth 20 using 100 random features, 150K random
samples with a subset of 500 randomly selected pixels per
frame and 1000 uniformly distributed offsets with a scaling
factor of 120mm. To fit data in memory we train each tree
with 23% of random data.

B. Palm and finger extraction
Given the nearest shapes and their corresponding joints,

one could minimize coefficients of a weighted sum of
basis models (like PCA) to extract hand pose. However we
observed that this process does not perform well in practice.
Instead, we divide the problem of pose estimation into two
subproblems: palm pose estimation, as global hand pose, and
fingers pose estimation. Each problem is solved separately.
In the model, palm pose is first detected. We assume palm
is rigid and refer to palm pose as a composition of wrist and
base joints of all fingers except the thumb in 3D space (i.e.
joints 4, 8, 12, 16 and 20 in Fig. 2(c)). Sun et al. [23] regress
palm pose by iterative refinement of an initial pose. Sharp
et al. [19] estimate a global view point and iteratively fit a
model by generating some hypothesis candidates. It has been
shown that NN-based approaches perform well in practice
[8]. In this work we rely on extracted nearest shapes to both
estimate palm pose and segment the hand.

Nearest shapes can vary in shape and pose and need to be
aligned to each other beforehand. We use palm joints of near-
est shapes to align them through Procrustes analysis. This

provides a uniform and smooth distribution of palm points
in the point cloud of the nearest shapes. Given this point
cloud with their corresponding labels li, we find an affine
transformation A with scaling factor s to hand point cloud P
by applying iterative closest point matching (ICP) [30]. For
a faster convergence, we modify ICP process to find closest
points from group of points with the same label. Pixel labels
of test frame were estimated by RF beforehand. Then, we
get the palm joints by transforming the nearest shape joints
given A and s.

Although our trained RF could segment the hand, it is not
reliable under some situations, especially for distinguishing
fingers (See Fig. IV-B for some samples). Correct hand
segmentation is critical for the accuracy of our approach.
Since we fit a finger model based on segmented pixels of
that finger, an incorrectly segmented finger instantly causes
a failure pose. Quadratic discriminant analysis provides a
proper way to assign each point in the point cloud in query
a label from aligned point cloud of nearest shapes efficiently.

C. Pose estimation

We fit a simple finger model for each finger separately
to get fingers poses. Each finger model S is composed of
three cylinders and half-spheres except for the thumb, which
is composed of an ellipsoid, two cylinders and three half-
spheres. Finger model parameters are computed based on
the palm coordinate system (see Fig. 2).

Given hypothesis parameters h, camera calibration pa-
rameters, palm pose and finger properties like length and
diameter of bones, we can render a 3D model of the finger
S and project it onto the image plane. Let IM , MM and
MF be the depth image of the projected finger model,
the projected finger model mask and the segmented finger
extracted from Sec. III-B, respectively. Then, we set the
background of IM to zero and define Min = MF ∧MM

and Mout = ¬MF ∧MM (see Fig. 3). The goal is to find
hypothesis parameters h that best fit the model to the finger
in query. Therefore we define the objective function E(h, I)
to compute the amount of discrepancy between IM and I
with respect to MF through:

E1 = 1− #Min

#MF + ε
, (2)

E2 =

{
10 if Min ⊂ �,
E1

mean(min(|IM (Min)−I(Min)|,λ))
λ if Min 6⊂ �,

(3)

E3 =
#(IM (Mout) < (I(Mout) + τ))

#(Mout) + ε
, (4)

E(h, I) = w1E1 + w2E2 + w3E3, (5)

where λ and τ are some depth difference thresholds. Term E1

computes overlapping area between MM and MF normal-
ized by #MF . Term E2 controls the mismatching of depth in
the overlapping area Min. Such a mismatching depth energy
is directly related to #Min. We consider this situation in
the first case of Fig. 3. A small area Min can generate a
lower depth mismatching energy which can cause a wrong



Fig. 3. Objective function E. We jointly maximize overlapping area Min

(E1) and minimize depth discrepancy between generated model and hand
finger (E2). We show the overlapping area (green) can have a relation to
the depth difference. A small depth difference may not guarantee a good
matching, and therefore, we penalize it by multiplying it to the normalized
non-overlapping area (blue). Hence a small depth difference is only useful
if blue area is small as well. In the second and third cases we should avoid
collision between the model surface IM and other finger surfaces available
in Mout (E3). τ controls the area between fingers.

matching. Therefore we scale E2 by multiplying it to E1 as
a function of #Min to reduce the effect of #Min in the
depth mismatching energy. We add term E3 to avoid finger
collision to non overlapping pixels Mout. We consider this
situation in the second and third cases of Fig. 3. We add the
term ε to avoid division by zero and set it to a low value.
The number 10 in E2 is a maximum energy, and w1, w2,
and w3 are some fixed weights.

Particle swarm optimization (PSO) is a commonly used
approach to minimize such an objective function. However,
it is not efficient for minimizing over all possible parameters
and it is easily trapped to local minima [9]. In order to cope
with such problems, we predefine a low number (300 in our
case) of sample fingers which cover most finger poses and
evaluate a simple function over all predefined samples to
select the best candidates. We use simple facts to design
this evaluation function. As the first rule, all finger joints
should be located in the hand mask after projecting them onto
the image plane. Secondly, the joints should have at least a
depth equal to the hand surface depth plus a threshold. Let
Jxyzf ∈ R3×fN be the matrix of 3D locations of the joints
belonging to the finger f and Juvf ∈ R2×fN be the matrix of
2D locations of the joints of finger f after projecting onto
the image plane where fN is the number of joints. Therefore
all joints should meet the constraint I(Juvf )+ω ≤ Jzf , where
ω is a constant value. Since we set the background of I to a
high value, this constraint satisfies the first rule as well. We
consider a third rule for visible fingers such that the joints
should not be far from the finger point cloud. We formulate
these rules for finger f as:

Cfd = {I(Juvfi )− Jzfi + ω}, i ∈ 1, ..., fN , (6)

Cf =

{
Cfd if MF ⊂ �,
{Cfd, γ‖Ixyz(MF )− Jxyzf ‖} if MF 6⊂ �,

(7)

Err(Cf ) =
∑

{c|c∈Cf∧c≥0}

min(c, ϕ), (8)

where Ixyz(MF ) is the center of finger point cloud and
Jxyzf is the center of the candidate joints. ω is a depth
threshold that controls the distance of the joints to the hand
surface. γ is a weight to balance different terms. Eq. 7 is
treated as a constrained inequality and therefore negative
values are desirable. As a consequence we sum over positive
costs limited by constant threshold ϕ Eq. 8 to evaluate each
sample finger. Finally a number of samples with the lowest
error are selected as candidates and feed into PSO. We set
the number of generations and population size to 5 and 30,
respectively. For completely occluded fingers (i.e. MF ⊂ �)
we apply Eq. 7 and make an average finger from outcomes.
All the thresholds and weight terms are experimentally set
to some fixed values as follows: τ = 15, λ = 25, w1 = 0.25,
w2 = 0.65 and w3 = 0.1, ω = 8, γ = 4 and ϕ = 50.

D. Spatio-temporal pose recovery

Time-varying spatial data is involved in a vast range
of computer vision applications [28], [26] and proved to
be useful in extracting missing data. Spatial correlation or
trajectory analysis of independent points solely fails to model
all information in spatio-temporal data. Akhter et al. [1]
combined two linear shape and trajectory bases learned by
discrete cosine transform and SVD to exploit spatio-temporal
regularities. We follow this work to generate linear bases
of hand data. To train bilinear bases, we have generated
a dataset including smooth deformation of fingers in a
reference view in a sequence. The advantage of keeping a
reference view is that all the frames are previously aligned
by their palm joints. Then we extract fixed-length clips by a
sliding window over the sequences. A clip is represented
by Q ∈ RF×5D where F is the number of frames and
D is the number of parameters for each finger. Clip Q
can be factorized by TCBT (as introduced in [1]) where
T ∈ RF×kt and B ∈ R5D×ks are learned trajectory and
shape structures and C ∈ Rkt×ks is the coefficient matrix.
Given the learned T and B, the goal is to minimize a function
over coefficients C in order to extract clip Q at test time.

A common problem with linear basis models like PCA and
SVD is that they are sensitive to the correlation coefficient
or distribution of the data. A solution is to divide the space
of clips (e.g. clustering) in order to provide more correlation
among data. However, this solution is not exact. In, [31]
authors search over all clusters to find best models. However,
this is not suitable for a huge number of clusters, as in our
case. In order to cope with previous issues, we propose a
fast and approximate solution to find best models.

In the training step, we apply k-means to cluster data. We
regenerate each cluster by extracting νN nearest clips to the
cluster centroid where N is the number of clips in the cluster
and ν > 1. In fact, we extend each cluster with overlapping
to its adjacent clusters. Afterwards, we train bilinear models
T and B on each cluster (as described in [1]). This causes
the models to be more robust at cluster boundaries.



At test time, given the last clip Q (initialized using Sec.
III-C) and parameters visibility V ∈ {0, 1}F×5D (extracted
from RF), we are able to find nearest clips in a dataset
by a trained kd-tree. However, visible and invisible joints
have the same weight in the clips and possible errors in
the initial estimation can cause a false nearest cluster. More
specifically, the task is to find a cluster that best describes
both the appearance and occluded parts, and then minimize a
function on coefficients C. Therefore we define the objective
function STC(Q,V, T,B, µ, σ) as:

STC =

F∑
f=1

5D∑
i=1

Vfi|Qfi −Qrfi|+ β

F−1∑
f=1

Ψf,f+1, (9)

where Qfi extracts the i-th parameter in frame f , Qr =
TCBT denotes reconstructed parameters through coeffi-
cients C, Ψ is a smoothness function among correspondent
parameters in frames f and f + 1, and β is a regularization
weight. We define the smoothness function as:

Ψf,f+1 =

5D∑
i=1

¬(Vf,i ∧ Vf+1,i)

∣∣∣∣Qrf,i −Qrf+1,i − µfi
σfi

∣∣∣∣ ,
(10)

where µfi and σfi are precomputed mean and standard
deviation distance for i-th parameter in the frame f for
each cluster, respectively. The first term in Eq. 9 denotes
the appearance cost and the second term penalizes large
movements of the occluded joints.

We approximate the best cluster by first extracting a
number of nearest clusters, traversing a trained kd-tree using
clip Q. This kd-tree is trained based on clusters centroids.
Subsequently, we generate a number of random poses around
clip Q and evaluate function STC on them for each extracted
nearest cluster. Finally, we take that cluster which generates
minimum average error.

Efficient minimization of Eq. 9 is required. Levenberg-
Marquardt algorithm is a standard minimization technique,
although finding a good initial point to minimize Eq. 9 makes
the problem intractable. In order to overcome this problem,
we use PSO with a number of randomly selected particles
around Q and apply TTR(BT )−1 for all random clips to
generate initial particles, where R is a random clip and T
and B are trained bliniear structures of the best cluster. To
have a fair distribution of fingers and removing undesired
clips, we apply Eq. 8 on all fingers for all random clips and
select a subset of best candidates by sorting clips regarding
their maximum finger error. As a consequence, the solution
is achieved in a few generations. We set the number of
generations and population size to 5 and 100, respectively.

We use finger parameters in all frames as a trajectory
descriptor which is invariant to finger length and hand shape.
Finger parameters have an advantage versus the 3D joints
locations since we have more control on them, like adding
constraints or generating a more meaningful shape without
adding extra regularization. Given that this process mainly
improves occlusion recovery, we combine the recovered
invisible joints to the visible joints estimated in the initial

step as the final pose. In the experiments, we show that initial
pose estimation has a low error which is reliable enough to be
used in the occlusion refinement process. We apply full rank
matrices to train the bilinear model, with ks = 7, kt = 7,
clip length F = 7 frames and β = 0.1.

IV. EXPERIMENTS AND RESULTS

In order to present the results, we first discuss the consid-
ered data and the experimental setup.

A. Dataset and setup

Data generation Datasets were generated with Blender
2.74 using a detailed, realistic 3D model of a human adult
male hand (Fig. 2(a)). The model was rigged using a hand
skeleton (Fig. 2(c)) with four bones per finger, reproducing
the distal, intermediate, and proximal phalanges, as well
as the metacarpals. The thumb finger had no intermediate
phalanx and was controlled with three bones. Additional
bones were used to control palm and wrist rotation. Unfea-
sible hand poses were avoided by defining per-bone rotation
constraints. All finger phalanges had only 1-DoF rotation (for
finger flexion/extension) but metacarpals had 2-DoF rotation
to allow for finger adduction/abduction. This resulted in 4-
DoF per finger (except for the thumb), which proved to be
enough to reproduce all reasonable poses in the context of
gesture-based interaction (see some sample poses in Fig. 4).

Points on the hand’s surface were assigned a unique color
label identifying the underlying skeleton joint, as shown in
Fig. 2(b). The palm center was assumed to be roughly at the
metacarpals’ centroid.

The animated hand model was rendered using a virtual
camera reproducing the image resolution and the intrinsic
parameters of the target depth sensor (Kinect-2). The virtual
camera was always aiming at the hand, from a view direction
which was chosen randomly from a uniform discretization
of the Gauss sphere (we used 320 directions associated with
the normal vectors of a subdivided icosahedron).

Training datasets We generated two different training
sets. For the first dataset, we generated three pieces of
data: a color image (pixel labels), a depth image, and a
text file containing the location of the skeleton joints. Each
training example was generated by randomly choosing a
view-direction and a hand pose (Fig. 4). We generated over
600K samples for this dataset and used it for RF training
and nearest neighbor extraction.

For the second dataset, we just produced the text files
containing the joints locations. Camera viewpoint was fixed
in this dataset in order to benefit from a reference viewpoint
and palm joints were aligned. We provided temporal data in
this dataset including a smooth interpolation between pairs
of key poses. Key poses were chosen either randomly or
from a small set of predefined poses. We included different
deformation speeds in this dataset. The unique motion range
of the thumb (which includes opposition-reposition, besides
flexion-extension and adduction-abduction) forced us to pre-
vent finger self-intersections by inserting additional frames.
This guaranteed feasible and natural hand movements. We



Fig. 4. Upper two rows are some sample poses, lower two rows are a
small sample set of the depth images generated for the test set. The image
shows ten interpolation frames between four predefined hands poses.

generated over 1200K frames for this dataset and used it to
extract clips and train bilinear model.

Test dataset For generating this dataset we followed the
same rule as our second dataset except we produced the
color labels, depth images, and text descriptions, and camera
rotations were smooth along pose interpolation frames (see
Fig. 4). We generated over 8K frames for this dataset.1

Real dataset To the best of our knowledge there is no
real dataset consisting of both hand segments and pose at
the same time. Some datasets just provide fingertips [22].
However, we selected MSRA dataset [23], which shows a
large variety of hands and viewpoints, and the definition
of joints locations is similar to ours. We then provided a
groundtruth segmentation on this dataset using available joint
locations and our hand model.

B. Results

Evaluation metric We used the 3D Euclidean distance
from joints to groundtruth for evaluating the different ap-
proaches. We also measured the success rate as in [23] to
compute percentage of each error threshold.

Evaluation on the synthetic dataset For comparison, we
used as the baseline a transformed average shape from the
nearest neighbors according to our shape descriptor and ICP.
We compared PSO vs. greedy for single-frame pose recovery
as well. In the greedy approach after applying our population
selection proposal (Eq. 8), the best candidate was selected
by evaluating Eq. 5. We include our occlusion refinement
approach and we show how it can be combined with greedy
to slightly improve occluded joints. Fig. 5(a) shows the per-
joint average error (mm) for different approaches. As it can
be expected PSO performs slightly better than the greedy
approach. However, the difference is not significant and
the greedy approach runs faster than PSO. Joints belonging
to the palm exhibit accurate palm pose recovery even in
quite difficult poses which is quite critical for recovering
the pose of individual fingers. Notice that the baseline is
the most accurate approach for the thumb joints. A possible
explanation is that the thumb has higher movement range
than other fingers and it is thus hard to recover with model-
based approaches. Bilinear optimization solely does not
improve the overall error and resulted in lower accuracy
than single-frame techniques, but when combined with the
greedy solution we could improve occluded parts poses
by 3.7mm (i.e. visible joints from greedy and occluded

1The dataset is publicly available.

ones from bilinear optimization). Although this is not a big
improvement, the results show the benefits of incorporating
temporal data. However, increasing the number of frames
within each clip adds complexity to the bilinear coefficient
optimization and precludes real-time performance.

For the current version of the system, the hand can not
be occluded by any other object. Since we use ICP and
QDA, model drifts might occur when the number of visible
pixels from the hand is dramatically reduced (due to pose,
viewpoint, camera noise, or missing data). Not availability of
nearest shapes does also influence the pose recovery process
for both hand segmentation and palm pose recovery tasks.

We also compared our proposal with the DeepPrior ([13])
Convolutional Neural Network approach. Fig. 5(b) illus-
trates the success rate error among proposed methods and
DeepPrior. DeepPrior shows the lowest accuracy. This could
be because of the high pose variability and presence of
occlusions [13]. We trained DeepPrior with 300K samples,
200 epochs and learning rate 0.001. We also show some
qualitative results in Fig. 8(a) and 8(c).

By incorporating QDA for segmenting hand into the set L,
we could improve RF segmentation performance. Since each
segment li has a number of sub-segments from the set S, for
a given pixel P belonging to segment li, we discard those
probabilities (given by RF) not belonging to li, and consider
the index of the maximum probability as the final estimated
label for that pixel. Fig. IV-B illustrates some qualitative
results of RF segmentation performance and its improvement
in a number of frames. We compared greedy vs. baseline
and greedy vs. bilinear optimization for some examples in
Fig. 7(a) and 7(b). The purpose of these graphs is to compare
how different methods behave in a sequence of frames2.

Evaluations on MSRA dataset Without accurate hand
segments, we were not able to properly evaluate our ap-
proach on this dataset. However we used inaccurate hand
segments to setup our baseline method on this dataset. To
report results and compare to the state-of-the-art on this
dataset we applied a 9-fold cross validation, where each
fold corresponds to one subject. Fig. 5(c) illustrates success
rate of our baseline approach comparing to [23]. Table I
shows per-joint average error in comparison to state-of-
the-art approaches. Notice that our baseline method clearly
outperforms most of the state-of-the-art approaches on this
dataset. These results show the robustness and accuracy of
our methodology against highly variable poses. Fig. 8(b)
shows some qualitative results on this dataset.

Time complexity Our methodology has a high paralleliza-
tion capability at any stage. It is GPU-friendly since fingers
estimations are minimized separately.

Greedy finger minimization needs just evaluating function
E over the selected candidates. Initial pose estimation is
achieved in real time. Most of the processing time is con-
sumed by PSO optimization over bilinear model coefficients
C. We use 5 generations over 100 particles which is com-
parable to 30 and 100 in [19] respectively. We implemented

2The reader is referred to the supplemental material for further analyses.



(a) (b) (c)

Fig. 5. a) Error per joint. Joint arrangement is shown in Fig. 2(c). The mean errors are 12.86, 12.40, 15.16, 14.72 and 11.09, respectively. b) Success rate
over different error thresholds on our dataset comparing to DeepPrior ([13]), and c) success rate on the MSRA dataset. Note that we took the state-of-the-art
results instantly from [23]. See [23] for details on the methods.

TABLE I
QUANTITATIVE RESULTS ON MSRA DATASET. VALUES ARE PER-JOINT ERROR IN MILLIMETERS. LETTERS R AND T GO FOR FINGER ROOT AND

FINGER TAIL, RESPECTIVELY. WE EXTRACTED VALUES FROM THE RESULTS REPORTED IN THE PAPERS. RESULTS FOR [14] OBTAINED FROM [3].

IndexR IndexT MiddleR MiddleT RingR RingT LittleR LittleT ThumbT Mean
Oikonomidis et al. [14] 31.0 56.0 32.9 56.0 32.9 49.3 35.1 53.7 22.2 38.2

Choi et al. [3] 22.6 43.5 24.0 44.9 23.1 43.1 21.8 39.5 31.1 29.8
Ge et al. [12] 11.5 16.0 9.0 15.6 9.9 15.1 13.2 16.0 16.7 13.0

Ours (KNN+ICP) 9.5 17.3 7.7 17.1 8.3 15.5 10.6 17.7 14.8 12.8

Fig. 6. Qualitative RF performance. Rows from top to bottom: ground truth,
RF, and improved RF results. We improve RF segmentation performance
by around 20%.

(a)

(b)

Fig. 7. a) Greedy vs. baseline. b) Greedy vs. bilinear optimization.

the whole pipeline in Matlab and C++, which although not
optimized, runs at 10 fps.

V. CONCLUSIONS

We have presented a novel joint model-based and data-
driven approach for the problem of hand pose recovery
in depth images. We have introduced a new and large
joint-annotated synthetic dataset with high degree of self-
occlusion. We handled self-occlusions by separately extract-
ing each hand component based on our proposed objective
function in single frames. Then, we refined occluded joints
recovery by including a bilinear model to optimize the
parameters in a sequence of images. We showed that the
method is robust against highly-variable hand poses, while
being able to recover occluded joints both efficiently and
accurately.
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