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Abstract

Face analysis in images in the wild still pose a challenge for automatic age and

gender recognition tasks, mainly due to their high variability in resolution,

deformation, and occlusion. Although the performance has highly increased

thanks to Convolutional Neural Networks (CNNs), it is still far from optimal

when compared to other image recognition tasks, mainly because of the high

sensitiveness of CNNs to facial variations. In this paper, inspired by biology

and the recent success of attention mechanisms on visual question answer-

ing and fine-grained recognition, we propose a novel feedforward attention

mechanism that is able to discover the most informative and reliable parts

of a given face for improving age and gender classification. In particular,

given a downsampled facial image, the proposed model is trained based on

a novel end-to-end learning framework to extract the most discriminative

patches from the original high-resolution image. Experimental validation on

the standard Adience, Images of Groups, and MORPH II benchmarks show
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that including attention mechanisms enhances the performance of CNNs in

terms of robustness and accuracy.

Keywords: Age recognition, Gender recognition, Deep Neural Networks,

Attention mechanisms

1. Introduction

Human face analysis constitutes one of the most important tasks in com-

puter vision, since the automatic analysis of such a deformable object is of

great importance [1]: the characterization of age, gender, facial attributes,

expressions, garment, and even personality, to cite but a few, are crucial in

several applications, like user identification, social interaction, face tracking,

and behavior recognition [2, 3]. Regarding age and gender classification, al-

though these two tasks have been largely addressed in the past, the reported

performances are far from optimal [4, 5].

In the last few years, Convolutional Neural Networks (CNN) [6] have be-

come the main workhorse for age and gender estimation. CNNs have been

proven to perform very well in a variety of computer vision tasks such as hu-

man action recognition [7], handwritten digit recognition [8], face verification

[9] or automatic face detection [10]. In relation to the task of soft-biometrics

analysis, CNNs have been recently applied to the task of apparent age estima-

tion [11, 12, 13], gender and smile classification [14], and real age and gender

prediction [15]. However, due to the high variability of facial images in the

wild, i.e. for example collected from the web, the low performance of CNNs
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in tasks like age recognition shows that there is still room for improvement.

The main contribution of this paper is a novel feedforward attention mech-

anism that enhances current CNNs’ robustness for highly variable uncon-

strained recognition tasks. Thus, inspired by biology, and the recent success

of attention mechanisms [16], we propose a feedforward attention mechanism

to discover the most discriminative patches of low resolution unconstrained

facial images in order to process them in high resolution. So, beyond the

increase in resolution, our method allows the network to assign more impor-

tance to the least occluded or deformed parts of the image, thus becoming

the model more robust to noise and distractors. We perform a thorough

evaluation on standard age and gender recognition benchmarks [17], proving

that our attention pipeline is more robust than any previous state-of-the-art

CNNs pretrained for facial recognition.

In particular, including attention on CNNs shows an increases in perfor-

mance for standard CNNs such as VGG-16 [18] when applied to the Adience

[17], Images of Groups (IoG) [19] and MORPH II datasets [20] for the tasks

of age and gender recognition. Thus, on one hand, Adience and IoG consist

of unconstrained facial images captured in the wild, showing that our model

is capable of detecting soft biometric traits such as age and gender from facial

pictures captured in uncontrolled environments, with distractions, deforma-

tions, and occlusions. Moreover, on the other hand, the proposed mechanism

also shows improvement in controlled environments such as the MORPH II

databaset, thanks to using higher resolution fixations.
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2. Related Work

This section discusses other work that is relevant to understand our ap-

proach, together with the context and historical evolution in the use of neural

networks for gender and age recognition.

2.1. Age Recognition

Not only the first studies in the 90s used the analysis of facial geometry

[21] to estimate the age of a person, but also more recent techniques like

the pipeline used in [22], presenting a combination of Biologically Inspired

Features (BIF) and then using Canonical Correlation Analysis (CCA) and

Partial Least Square (PLS) based methods. Indeed BIF were already used

in [23] to represent face images, paving the way to works like [4, 24], show-

ing that the automatic approach had matched the human performance. In

fact, most of the approaches previous to CNNs were based on a two-stage

pipeline, i.e. extracting features such as Local Binary Patterns (LBP) [17],

and then classifying with a Support Vector Machine (SVM), or a Multi-layer

Perceptron (MLP) [25, 26]. On the contrary, CNN based methods typi-

cally implements the two-step pipeline described above in just one step: the

network learns both extracting the best features and either classifying such

features into age categories [15, 27] or performing age regression [28, 29].

Deeper CNN models have been also applied to age and gender recognition

[30], although most of them depend on domain-specific pre-training [31, 32].

Cascaded combinations of deep models were also considered in [33].
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CNNs for facial images analysis have not been restricted to age estima-

tion, but also to face verification, facial attribute estimation, and gender

recognition. One illustrative example is the method presented in [34] which

achieves a 99.2% face verification accuracy on the challenging Labeled Faces

in the Wild dataset [35]. Unfortunately, this so impressive performance has

not been yet achieved in other facial analysis tasks like gender recognition,

for example, as shown next.

2.2. Gender Recognition

Regarding gender recognition, in contrast to age analysis, there is work

from the early 90s where neural networks were already proposed, like the

pioneering approach presented in [36]: authors proposed two neural network

structures, an autoencoder and a classifier whose input was the encoded

output layer of the autoencoder. The drawback of this method was that it

relied on manual cropping, scaling and rotating the face of the picture, which

was taken in a controlled environment.

Inspired from the age estimation methodology, pipelines based on a fea-

ture extractor and a stacked classifier were also proposed like in [37], [38],

and [39]. On the other hand, the same CNN-based methods used for age

were also applied to gender [28], [15], demonstrating that CNNs are truly

capable of learning how to perform different tasks without any modification

besides the data used for learning. For example, in [40] a CNN is trained to

perform gender recognition by fine-tuning a pre-trained network, and then
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an SVM is trained using the deep features computed by the CNN.

2.3. Neural Networks with Attention

Attention is a powerful mechanism that allows neural networks to look

in more detail into particular regions of the input image to reduce the task

complexity and discard irrelevant information, mildly inspired in the eye

fixations performed by the human visual system [16].

Previous approaches for applying bioinspired visual attention mechanisms

rely on finding visually salient regions on the image for processing them in

a posterior step [41, 42]. In the context of neural networks, Larochelle and

Hinton [43] proposed a third-order Restricted Boltzmann Machine (RBM) to

combine high resolution ”glimpses” of a sequence of fixations for image clas-

sification. Likewise, Denil et al. perform image tracking with an RBM fed

with foveated images selected by a control pathway [44]. A simpler model was

proposed by Ranzato [45], which predicts a glimpse location from a down-

sampled image and then uses it to extract a high-resolution patch. Spatial

Transformer Networks (STN) [46] can be also considered as a form of at-

tention, however, differently from other attention approaches like the one

presented in this paper, they focus on a single spatially continuous region of

the image. In all these proposed papers, attention is shown specially well-

suited for images in the Wild, with multiple occlusions and distractors, which

is the case of Adience and IoG datasets.

More recently, RNNs have become central to attention mechanisms since
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they naturally integrate the information extracted from glimpses at different

time-steps [16]. The ability to look ”into the past” has made RNN-based

attention mechanisms ideal for Natural Language Processing (NLP) tasks

such as Neural Machine Translation [47], text-based question answering [48],

image captioning [49], and Visual Question Answering (VQA) [50, 51].

In our work, we assume faces have already been detected, cropped, and

aligned, and thus, there is no need to do a sequential search through the image

with an RNN so as to find the most relevant image regions. However, since

the main hypothesis of all the aforementioned papers is that CNN models

can not give the same importance to all the regions of an image, mainly due

to the high variability of unconstrained environments, attention mechanisms

can be suitable in our case to automatically select specific regions of a face for

further processing them in more detail, while ignoring background clutter.

Based on these findings, we next describe our proposed attention-based CNN

models.

3. Feedforward attention for age and gender recognition

The proposed model consists of three basic modules, see Figure 1: (i) an

attention CNN (”where”) that predicts the best attention grid to perform

the glimpses, (ii) a patch CNN (”what”) that evaluates the higher resolution

patches based on their importance predicted by the attention grid, and (iii)

a Multi Layer Perceptron (MLP) that integrates the information obtained

from both CNNs and performs the final classification. We detail these mod-
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Figure 1: The proposed attention model. A lower resolution image is fed to the
”where” CNN, which predicts a k × k attention grid. This grid is then used to extract
high-resolution patches, from which the top n are pooled. The patches are then fed to the
”what” CNN, whose output is weighted by the attention grid. Finally, feature maps from
the ”where” and ”what” streams are concatenated and fed to an MLP classifier.

ules next.

The attention CNN is fed with all training images. We used the VGG-

16 model since it has become the well-performing standard CNN that is

supported in most of the deep learning programming frameworks [18], but

any other CNN could be considered instead. This CNN is specifically trained

to predict an attention k × k grid G:

G(k×k) ∈ R≥0,
∑
i,j

Gi,j = 1,

where k is an arbitrary number, and the values Gi,j represent the (nor-

malized) importance of each patch. Then, a high-resolution version of the

input image is divided in k × k patches, and fed to the patch CNN.
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The patch CNN is fed with high resolution patches of the faces. Similarly

to the attention CNN, any model could be used for this task, however, to

reduce the computational requirements of this architecture, we reuse the first

convolutional layers of the attention CNN. The output of this module consists

of a matrix:

P(k2×d) ∈ R,

where k2 is the number of patches and d is the output dimension of the last

convolutional layer. Global Average Pooling (GAP) is then used to reduce

the spatial dimension of P to one, thus making it possible to feed images in

their original resolution. These feature maps are subsequently weighted by

G to reflect the importance of each patch of the grid.

In the literature, such weighting can be performed using either a weighted

sum, denoted as ”soft attention” in [49]:

P∗ = g ·PGAP, (1)

or alternatively the element-wise product, also called the Hadamard product:

P∗ = g ◦PGAP; (2)

where g(1×k2) ∈ R≥0 is a flat view of G. In the experimental section, we show

that both strategies yield similar results. Then, on one hand, the Hadamard
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product can be chosen to reduce the computational time complexity at the

expense of memory. And, on the other hand, the weighted sum can be chosen

in limited memory scenarios but conveying higher computational time cost.

Additionally, for further reducing the computational cost, we pool the

top n patches before feeding them to the patch CNN, thus using a ”hard

attention” mechanism instead. It is important to note that the gradients

will not propagate to those grid positions outside the top n, but since the

importance given to those discarded positions are zero or very close to zero,

the network is still able to learn. Additionally, as it is usually done in the

literature, we also performed random patch sampling given the distribution

of the attention grid, however. the difference in performance when compared

to sampling the top n patches is not statistically significant.

The classifier is fed with features from the pool5 layer of the attention

CNN, and the weighted features of either the pool4 or pool3 layers of the

patch CNN. Lower level features maps from the patch CNN are preferred

because they correspond to local-level image features.

We also consider two strategies for merging the feature maps of both

CNNs: (i) concatenate them after an L2 normalization, and (ii) learn a

projection of the patch CNN feature maps to the attention CNN feature

map space, and simply add them. In the next section, we demonstrate that

the normed concatenation yielded slightly better results than the project-

and-add strategy.
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Figure 2: Adience sample. Sample of each age group and gender from the fourth fold
of the Adience dataset.

The resulting feature maps are then fed to the final classifier, which con-

sists of the fc6, fc7, and fc8 layers of the VGG-16, as typically done in

the CNN literature. In the following sections, several experiments are pre-

sented for testing the robustness and accuracy of the whole attention-based

architecture.

4. Benchmark Datasets

To evaluate the performance of our approach on unconstrained facial

images, we test it on the Adience dataset proposed in [17], and following

the same evaluation benchmark. This dataset consists of 26.5K images dis-

tributed in eight age categories (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53,

60+) with the corresponding gender label.

The Adience benchmark measures both the accuracy in gender and age

recognition tasks using 5-fold cross-validation in which the provided folds are

subject-exclusive. The final score is given by the mean of the accuracies of

the five folds. The same subject-exclusive folds are used for age and gender,
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Reference Features Classifier Task Accuracy (%)

Levi [15] Learned CNN Age 50.7
Chen [33] Learned CNN Age 52.9
Rothe [32] Learned CNN Age 55.6
Ozbulak [31] Learned CNN Age 57.9
Rothe [32] Learned CNN Age 64.0

Eidinger [17] LBP+FPLBP SVM Gender 76.1
Tapia [52] LBP SVM Gender 79.8
Levi [15] Learned CNN Gender 86.8
Wolfshaar [40] Learned CNN Gender 87.2
Ozbulak [31] Learned CNN Gender 92.0

Table 1: Previous results on the Adience dataset.

and there is a subset of only nearly frontal faces which we have not used since

faces in real world images present a higher diversity on the pose. This dataset

is designed to be as similar as possible as real-world challenging face images,

therefore, the faces present many changes in pose, rotation, appearance, light

and noise. Figure 2 shows some samples of the dataset presenting significant

differences between them. It is important to remark that the eight age range

groups and the number of samples per age class are not equally distributed

since some classes have more samples than the others.

In Table 1 the previous results published on the Adience dataset for age

and gender estimation are listed. The results can be divided between the

ones using LBP features (and variants) and the ones using a deep learning

approach. As expected, CNNs yield significantly better results than SVMs

on LBP features extracted from facial images.

To test the generalization capability of our models on age recognition, we
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Adience [17] 0-2 4-6 8-13 15-20 25-32 {38-43, 48-53} 60+
IoG [19] 0-2 3-7 8-12 13-19 20-36 37-65 66+

Table 2: Mapping between Adience and IoG. This Table shows the mapping between
Adience and Images of Groups age categories to perform cross-dataset evaluation.

have tested them using the Images of Groups (IoG) dataset presented in [19].

This dataset consists of 5.1K images of groups of people where 28.2K faces

have been annotated with gender and age group labels. Like the images from

the Adience dataset, the ones from IoG dataset present several differences in

pose, appearance, and light, and they are even more challenging because the

size of the faces is much smaller than Adience faces.

The 7 age groups from this dataset are quite similar to the 8 groups used

in Adience dataset, so we can train models on the Adience dataset and then

evaluate them on the IoG dataset: the mapping between Adience and IoG

age categories is defined in Table 2.

In Table 3 there is a listing of all the previous results on the Images of

groups dataset, indicating the methods used to tackle the problems of age or

gender classification.

Deep Learning was also used in this dataset by Mansanet et al. [30] and

Dong et al. [60], achieving good results in both age and gender recognition.

In these deep learning approaches, similarly to our proposed network, the

best features to perform age or gender recognition are not hand-crafted but

learned from the data.

In order to evaluate the advantages of the proposed mechanism in a con-
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Ref. Features Classifier Task Data Split Acc. (%)

[53] ML-LPQ SVM age original 56.0
[54] OHLG SVM age custom1 59.5
[55] LBP+SIFT+CH SVM age Dago’s [56] 63.0
[17] LBP+FPLBP SVM age Dago’s [56] 66.6
[39] BIF SVM age 5 fold 68.1

[57] HOG+LBP+LTP+WLD SVM gender Dago’s [56] 92.5
[58] ASR+ SRC gender custom3 93.3
[52] LBP SVM gender custom3 94.6
[30] Local-DNN MLP gender Dago’s [56] 96.3
[59] CNN+HOG+LBP+LOSIB SVM+CNN gender Dago’s [56] 97.2

Table 3: Previous results on the Images of Groups Dataset. 1, 2, 3: Different data
splits used by the authors.

Reference Method Classifier Task MAE

Chang [61] AAM OHRank age 5.69
Wang [27] CNN DLA age 4.77
Rothe [62] CNN SVR age 3.45
Huerta [29] CNN MLP age 3.31
Rothe [32] CNN DEX age 2.68

Table 4: Previous results on the MORPH II dataset using the same data split. For
the sake of clarity and fairness in the comparison, all these reported MAEs use the same
data split and data subsets, only [29] provide a more complete evaluation procedure, using
different data splits of 44K (MAE 3.31) and 55K (MAE 3.88).

trolled environment (i.e. centered, unoccluded faces with common back-

ground), we test it on the MORPH II dataset, which consists of more than

50K mug shots. We follow a well-known experimental setup in the literature

[63, 61, 11, 32] consisting of a subset of 5474 pictures with ages comprised

between 16 and 77 years old. From the subset, a 80% of them for training

and a 20% for validation. The performance of previous approaches on the
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same data split of the MORPH II dataset are listed in Table 4. Performance

is reported in Mean Average Error (MAE), the standard error measure for

age regression in the literature:

MAE =

∑n
i=1 |yi − ŷi|

n
, {Y, Ŷ } ∈ R (3)

where yi is the ground truth value corresponding to the ith example, and ŷi

is the predicted value for that example.

5. Experimental Evaluation

Our model is based on the VGG-16 CNN [18], and it is implemented

with Tensorflow [64]. We use domain-specific pre-training for initializing the

CNN weights since it has been proved to achieve better performance than pre-

training in general tasks such as Imagenet [31, 32]. Parameters are initialized

with the standard VGG-16 architecture trained for face recognition on 2.6M

images of 2.6K people [65] since, unlike [11], (i) it has been also tested for

gender recognition, (ii) it uses the base VGG-16 model (without DEX), (iii)

it focuses in a higher variety of facial analysis tasks than IMDB-WIKI, and

(iv) it would deviate from the main purpose of this work, which is to evaluate

the effects of attention mechanisms of CNNs for facial recognition tasks. The

fully-connected layers are initialized with the Xavier initializer [66]. Models

are optimized with sgd for 30 epochs, or until they reach a plateau. The

learning rate is initially set to 0.0001 and divided by 10 every ten epochs. All
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Accuracy (%)
Baseline VGG-16 (no Attention) 57.80
VGG-16 + SVM [31] 57.90

Attention mode
No grid 59.41
Project. 61.42
Eltwise 61.78

Weight Sharing
No 61.37
Yes 61.55

Merge mode
Add 61.35
Concat. 61.78

Table 5: Average validation error rate when fixating different properties of the atten-
tion mechanism and random combinations of the rest, on a random fold of the Adience
dataset. The proposed attention mechanism is proven robust to the weight sharing, differ-
ent strategies of weighting the patches, and merging the feature maps from the attention
and patch streams.

the other hyper-parameters are found by random search unless we explicitly

specify otherwise.

Next, we evaluate the influence of the different design decisions in the

proposed model, namely the attention mode, weight sharing, merge mode,

attention grid and patch depth. Following the same procedure as in the

related works applied to this dataset, any possible design decision is firstly

evaluated on a random fold to make the experimentation tractable, since

results are proven consistent between folds.

Attention mode. We found that performing the Hadamard product be-

tween the attention weights and the patch feature maps was slightly better

than the weighted sum (”Project.” in Table 5). No weighting at all (no

attention) resulted in the worst performance.

Weight sharing. As it can be seen in Table 5, using independent weights
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Figure 3: Maximum accuracy for different combinations of grid size (k), and
choosing n patches. Dashed lines represent the accumulated percentage of patch pixels
with respect to the whole image. Dividing the image in 16 regions, and choosing the top-5
patches results in best performance by just processing a 2% of the high-resolution pixels.

for the patch network yields small improvements in average. However, we

observed the opposite effect for big patch network inputs due to overfitting,

e.g. n = 20, k = 8. Thus, since the proposed model is robust to changes in

weight sharing, we decided to keep the weights shared to reduce the memory

consumption of the network.

Merge mode. Compared to projecting the patch feature maps to the at-

tention stream output space and adding them, feeding the classifier with the

normed concatenation both streams resulted in the best performance by a

small margin.

The Attention Grid. As it was shown in Figure 1, a k × k weight grid is

predicted on the low-resolution input image. Since this grid is used to extract
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Figure 4: The predicted attention grid. The top row corresponds to a grid learned
with k = 4, n = 4, and the bottom row to k = 16, n = 5. High attention is shown in red,
and low attention in blue. As it can be seen, the attention grid predicts low values for
background, glasses, and rings, while it is most centered

n patches, we can control the portion of the image that will be fed to the

patch CNN by tuning n and k. Figure 3 shows the impact on performance

of choosing different combinations of k, and n. As it can be seen, for most

combinations, our approach outperforms the baseline score by a 2.4% margin

with n = 5, and k = 16. Samples of the attention grid are shown in Figure

4, which corresponds to the predicted attention grid for k = 4, n = 4, and

k = 16, n = 5.

Patch CNN Depth. Given that the convolutional layers of the attention

path are reused, the depth of the patch CNN is conditioned to the five con-

volutional modules of the VGG-16. From this CNN, we compared features

from the pool3, and pool4 because they shrink the input size, and they are

less invariant than features from pool5. We empirically found that using
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pool3 yielded a 0.6% improvement over pool4. And this is consistent with

the fact that lowest level features maps from the patch CNN are preferred

since they better correspond to local image features.

Summarizing, including attention in CNN models is robust to any pos-

sible design configurations as presented in this paper, i.e. the attention

grid application mode, the feature merging, and weight sharing. In fact,

the most critical hyperparameters are the grid size k, and the number n

of patches to feed to the patch network. For the next section, the pa-

rameters were fixed to attention mode=eltwise, weight sharing=yes,

merge mode=concat, k=16, n=5, and the high-resolution images size is 600×600

before random cropping and random flip.

6. Evaluation on age and gender recognition

As it can be seen in Table 6, implementing the proposed attention mech-

anism on VGG-Faces [65] increases the accuracy in 4% on age recognition

and 0.6% on gender recognition when not considering attention [31]. For

the age classification problem, 1-off accuracy is also reported, indicating the

accuracy of our model considering a one error distance prediction as cor-

rect. As expected, the 1-off accuracy of our model is 2.3% higher than the

best-reported accuracy with VGG-16 pretrained with Faces.

To the best of our knowledge, the top accuracy score obtained in gender

classification Adience benchmark is 92.0% [31], and their results on age esti-
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Accuracy (%)
Model Age 1-off Gender

Eidinger [17] 45.1 80.7 77.8
Tapia [52] - - 79.8
Levi [15] 50.7 84.7 86.8
Wolfshaar [40] - - 87.2
Chen [33] 52.9 - -
Rothe (VGG16-DEX) [32] 55.6 89.7 -
Ozbulak (VGG16-Faces + SVM) [31] 57.9 - 92.0
Rothe (VGG16-DEX-IMDB) [32] 64.0 96.6 -

Ours
VGG16-Faces 57.8 ± 4.9 92.8 ± 1.8 92.4 ± 1.9
VGG16-Faces + Attention 61.8 ± 2.1 95.1 ± 0.03 93.0 ± 1.8

Table 6: Accuracies obtained on the Adience dataset for the 5 folds. The VGG-16
model pre-trained on > 3M faces [65] obtains the best performance when the attention
mechanism is included.

Predicted
0-2 4-6 8-12 15-20 25-32 38-43 48-53 +60

R
e
a
l

0-2 64.2 34.8 0.6 0.1 0.1 0.0 0.1 0.1
4-6 15.8 70.1 12.2 1.3 0.3 0.1 0.1 0.1
8-12 1.9 17.2 59.1 14.9 5.8 0.6 0.4 0.1
15-20 0.1 1.0 12.8 40.7 41.1 4.2 0.2 0.1
25-32 0.0 0.3 1.7 11.4 69.2 16.3 1.0 0.0
38-43 0.0 0.1 0.5 2.1 39.8 47.4 8.0 2.2
48-53 0.0 0.0 0.2 0.8 7.8 41.6 31.1 18.5
+60 0.1 0.0 0.2 0.2 4.1 14.8 27.0 53.6

Table 7: Age confusion matrix for the Adience dataset. This Table represents the
confusion matrix of our model predictions over the whole dataset.

mation are 57.9%. When our proposed method is trained to perform gender

recognition it also achieves state-of-the-art performance on facial gender clas-

sification. In contrast, [32] do not apply their approach to gender analysis.
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Accuracy (%)
Model name Age 1-off Gender

Gallagher [19] 42.9 78.1 74.1
Li [67] 48.5 88.0 -
Shan [68] 50.3 87.1 74.9
Ylioinas [69] 51.7 88.7 -
Dong [60] 54.0 91.0 -
Bekhouche [53] 56.0 88.8 79.1

VGG-16 (Adience) + Attention 60.0 94.5 86.9

Table 8: Accuracies obtained on the Images of Groups dataset. This Table shows
the accuracies obtained on the IoG dataset by averaging the predictions of the models
trained on the Adience dataset. Our results are compared with the previous work where
the same age balanced test set has been used, as proposed in [19].

Reference Method Classifier Task MAE

Rothe [62] CNN SVR age 3.45
Rothe [32] CNN DEX age 2.68

VGG-16 [32] + Attention CNN DEX age 2.56

Table 9: MAE on the MORPH II dataset. Adding attention to [32] decreases the
MAE.

In order to evaluate how well the proposed attention model generalizes, a

cross-dataset experiment was performed on IoG, see Table 8. The 5 models

trained on the Adience dataset for gender recognition were used to classify

the 1, 050 test images from the IoG dataset and their predictions were av-

eraged. As shown in Table 8, this ensemble obtained a gender classification

accuracy of 86.9% on the IoG dataset, surpassing the state-of-the-art score

from [53], which is 79.1% for this test split, thus confirming the generality of

our approach. Table 9, shows the results on the MORPH II dataset. As it
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0-2 4-6 8-12 15-20 25-32 38-43 48-53 +60

Acc.(%) 84.6 82.2 89.0 96.1 98.2 98.6 97.3 94.2

(a) Adience dataset.

0-2 3-7 8-12 13-19 20-36 37-65 +66

Acc.(%) 67.3 82.0 82.7 91.3 96.0 98.0 90.6

(b) IoG dataset.

Table 10: Gender accuracy per age for the Adience and IoG datasets.

can be seen, adding attention results in 2.56 MAE, a relative 4.47% improve-

ment with respect to the state of the art [32]. Additionally, in Table 10, it is

shown that the proposed approach performs very well on adults, whereas it

fails more frequently when classifying very young subjects. This performance

is expected as even for humans estimating the gender of young children is

harder than the gender of adults.

7. Discussion

A novel feedforward CNN pipeline which incorporates an attention mech-

anism for automatic age and gender recognition for face analysis has been

proposed. The presented model consists of an attention network which esti-

mates the most informative patches in the low-resolution image, which are

further processed in a patch network in higher resolution. As a result, the

attention-based CNN is proven to be more robust to clutter and deforma-

tion, inherent in deformable objects like faces. Alternative design choices

for implementing the attention pipeline (i.e. attention mode, weight sharing,
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merge mode, attention grid, and patch network depth) have been proposed

and compared, thus proving the robustness of the whole approach and con-

sistently outperforming the model without attention.

Experiments show that networks enhanced with the proposed mechanism

are more robust in in-the-wild tasks such as age and gender recognition in

the Adience and IoG datasets. Concretely, enhanced models experienced a

relative improvement of 8.75% for age recognition and a 7.89% on age classi-

fication with the Adience benchmark. The generality of the proposed model

has also been demonstrated by performing a cross-dataset experiment, re-

sulting in state-of-the-art performance on the IoG dataset. Moreover, exper-

iments on MORPH II demonstrate that the proposed model enhances CNNs

even in constrained environments with centered faces and gray backgrounds,

resulting in a 4.47% relative improvement with respect to a state-of-the-art

model [32]. An explanation for this effect is that the enhanced CNN has

the ability to perform detailed fixations in the most discriminative patches

depending on the context (for instance gender).

Qualitative results are shown in Figure 6, where images wrongly classi-

fied by VGG-16 (pre-trained on faces) are correctly classified by the proposed

attention model. Also, it is shown how the attention mechanism is able to

ignore clutter. Extreme rotations and occluding attributes (like fancy dress-

ings) are the main reason of misclassifications, together with the presence of

multiple people of different ages in the same image, or simply people who

seem younger or older than their real age. This rises the interesting problem

23



Figure 5: Gender misclassifications. This figure shows several subjects whose gender
have been misclassified. The first row contains females that were wrongly classified as
males, whereas the second row contains males that were misclassified as females.

Figure 6: Corrected miss-classifications when adding our attention mechanism to VGG-16
pre-trained with faces [65]. Each row corresponds to an age group. Note that our approach
is more robust to clutter.

of apparent age estimation, as recently addressed in [70].

For the case of gender recognition, the proposed model mostly fails with

the youngest ages, difficult to be distinguished even by humans, see Fig. 5.
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[56] P. Dago-Casas, D. González-Jiménez, L. L. Yu, J. L. Alba-Castro,

Single-and cross-database benchmarks for gender classification under

unconstrained settings, in: ICCV Workshops, 2011, pp. 2152–2159.

[57] M. Castrillón-Santana, J. Lorenzo-Navarro, E. Ramón-Balmaseda, On

using periocular biometric for gender classification in the wild, Pattern

Recognition Letters (2015).

[58] D. Mery, K. Bowyer, Recognition of facial attributes using adap-

tive sparse representations of random patches, in: ECCV Workshops,

Springer, 2014, pp. 778–792.

[59] M. Castrillón-Santana, J. Lorenzo-Navarro, E. Ramón-Balmaseda, De-

scriptors and regions of interest fusion for gender classification in the

wild, arXiv preprint arXiv:1507.06838 (2015).

[60] Y. Dong, Y. Liu, S. Lian, Automatic age estimation based on deep

learning algorithm, Neurocomputing (2015).

[61] K.-Y. Chang, C.-S. Chen, Y.-P. Hung, Ordinal hyperplanes ranker with

cost sensitivities for age estimation, in: CVPR, 2011, pp. 585–592.

[62] R. Rothe, R. Timofte, L. Van Gool, Some like it hot-visual guidance for

preference prediction, in: CVPR, 2016, pp. 5553–5561.

[63] G. Guo, Y. Fu, C. R. Dyer, T. S. Huang, Image-based human age

estimation by manifold learning and locally adjusted robust regression,

Image Processing, IEEE Transactions on 17 (2008) 1178–1188.

33



[64] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale

machine learning on heterogeneous distributed systems, arXiv preprint

arXiv:1603.04467 (2016).

[65] O. M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in:

BMVC, 2015.

[66] X. Glorot, Y. Bengio, Understanding the difficulty of training deep

feedforward neural networks., in: Aistats, volume 9, 2010, pp. 249–256.

[67] C. Li, Q. Liu, J. Liu, H. Lu, Learning ordinal discriminative features

for age estimation, in: CVPR, IEEE, 2012, pp. 2570–2577.

[68] C. Shan, Learning local features for age estimation on real-life faces, in:

Workshop on Multimodal Pervasive Video Analysis, ACM, 2010, pp.

23–28. doi:10.1145/1878039.1878045.

[69] J. Ylioinas, A. Hadid, M. Pietikainen, Age classification in uncon-

strained conditions using lbp variants, in: ICPR, 2012, pp. 1257–1260.

[70] S. Escalera, J. Fabian, P. Pardo, X. Baró, J. Gonzalez, H. J. Escalante,
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