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Abstract A novel specular highlights detection

method in colonoscopy videos is presented. The method

is based on a model of appearance de�ning specular

highlights as bright spots which are highly contrasted

with respect to adjacent regions. Our approach pro-

poses two stages; segmentation, and then classi�cation

of bright spot regions. The former de�nes a set of can-

didate regions obtained through a region growing pro-

cess with local maxima as initial region seeds. This pro-

cess creates a tree structure which keeps track, at each

growing iteration, of the region frontier contrast; �nal

regions provided depend on restrictions over contrast

value. Non-specular regions are �ltered through a clas-

si�cation stage performed by a linear SVM classi�er

using model-based features from each region. We intro-

duce a new validation database with more than 25, 000

regions along with their corresponding pixel-wise anno-
tations. We perform a comparative study against other

approaches. Results show that our method is superior

to other approaches, with our segmented regions being

closer to actual specular regions in the image. Finally,

we also present how our methodology can also be used

to obtain an accurate prediction of polyp histology.
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1 Introduction

Colorectal cancer is the fourth cause of cancer death

worldwide [11], with the early detection of its precur-

sor lesions - polyps - being crucial to increase patient

survival rate. Among the advances in endoscopy imag-

ing [7] to allow a better scene observation, computa-

tional tools have been proposed to help clinicians dur-

ing the di�erent stages in the procedure [22,23,14].

The majority of these tools are focused on polyp char-

acterization (detection, segmentation or classi�cation),

although some of them are focused on characterizing

other elements for di�erent applications. For instance,

luminal region characterization [5] is used to help in

navigation and blood vessels detection [20] could allow

tracking regions of interest in the insertion and with-

drawal phases. Recent works [6] also show that charac-

terizing di�erent elements in the scene has an impact

on method performance.

In this paper, we focus in this paper on the char-

acterization of specular highlights. They are not actual

endoluminal scene structures as they appear due to im-
age acquisition, scene illumination and the structures'

re�ectance properties but, as they alter the content of

the scene to be analyzed by both clinicians and compu-

tational systems, their presence can a�ect the outcome

of a colonoscopy procedure [6]. From a clinical point of

view, specular highlights di�cult the observation of im-

age regions with potentially useful information for ap-

plications such as in-vivo lesion histology through visual

analysis of the polyp region. Furthermore, their highly

contrasted appearance may deviate clinicians' attention

from actual clinical targets in the image.

As regards computational systems, the appearance

of specular highlights also makes them highly attractive

to computational region of interest (ROIs) detectors,
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Fig. 1 Specular highlights detection pipeline.

diverting their attention from actual targets in the im-

age. As their appearance varies in each frame, computa-

tional systems have to be aware of their presence when
dealing with structure tracking in video sequence analy-

sis. Finally, their presence over polyps might result in a

loss of texture information, damaging the performance
of computational lesion characterization methods. Con-

sidering all this, their detection would be a bene�t for

both clinicians and automatic computational tools.

There are several challenges that specular highlights

detection in colonoscopy images present. First of all,

it is di�cult to model their appearance, as it varies

greatly within an image. Besides, not all of them can

be detected by intensity thresholding. As the intensity

of specular highlight depends on the amount of incident

light, they appear darker in in poorly illuminated ar-

eas - Fig. 2 (c) -. Secondly, slight illumination changes

alter their appearance within consecutive frames, (Fig.

2 (a-b)) thus detection has to be performed separately

for each frame. Consequently, e�orts should be made

to reduce the computational cost of the detection, in

order to include it as part of a clinically useful sup-

port system working under real time constraints. Fi-

nally, the lack of public annotated databases makes it
di�cult to compare similar approaches, even outside

colonoscopy image analysis. We associate this with the

di�culty related to creating pixel-wise annotations of

specular highlights.

The contributions of this paper are two-fold; the

introduction of a specular highlight detection method,

(a) (b) (c)

Fig. 2 Examples of variability on specular highlights appear-
ance. Images (a) and (b) shows variation of specular high-
lights appearance in number and structure among two con-
secutive frames. Image (c) highlights with a blue frame an
example of a specular highlight within a dark region.

and the de�nition of a completely new hand-made pixel-

wise annotated validation database. Our method is

based on the de�nition of model a of appearance de�n-
ing specular highlights as bright regions highly con-

trasted with respect to neighbor image areas. The �rst

stage consists of the segmentation of these bright re-
gions in the image. Unfortunately, other image regions -

such as overexposed regions or highly illuminated struc-

tures - may fall within this category, therefore a re-

gion classi�cation stage is performed to eliminate them

from �nal method's output. We present our processing

pipeline in Fig. 1.

Our validation database, to be publicly available

upon papers' publication, contains more than 25, 000
fully annotated specular highlights regions of di�erent

sizes and shapes. We use it to perform a comparative

study of several general and colonoscopy-speci�c spec-

ular highlight detection methods. We also present an

application of our methodology as part of a computa-

tional support system to predict polyp histology.

The rest of the paper is structured as follows: Sec-

tion 2 describes state-of-the-art on specular highlight

detection. Section 3 introduces our model of specular

highlights appearance. Section 4 details bright spot re-

gions segmentation, region classi�cation as explained in

5. Section 6 presents the comparative study, the results

of which are presented in Section 7 and discussed in

Section 8. Concluding remarks are drawn in Section 9.

2 Computational approaches for specular

highlights detection

Specular highlights detection has been an active re-

search topic in the last decades. The majority of meth-

ods are based on the dichromatic re�ection model

(DRM), which separates highlights into di�use and

specular components. Di�erences among DRM-based

methods are based on how this separation is performed.

Tan et al. [24] propose a distribution of specu-

lar and di�use points in a two-dimensional maximum

chromaticity-intensity space, and tackle separation of
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the re�ection component by identifying the maximum

di�use chromaticity which requires an additional anal-

ysis of image noise. This same space is used in the ap-

proach presented by Xu et al. [26], which states that

for objects with ideal Lambertian surfaces, di�use chro-

maticity is constant, but that of specular is variable.

This method assumes that, in case of uniformly colored

surfaces, any local di�use chromaticity should be the

same as the global one, and proposes the use of local

windows to explore changes from this global value in or-

der to detect specular highlights. We can also include in

this group the work of Yang et al. [27], which estimates
the maximum di�use chromaticity values of the specu-

lar pixels by directly applying a low-pass �lter to the

maximum fraction of the color components of the orig-
inal image. The method assumes that maximum values

of di�use chromaticity are propagated from di�use to

specular components.

Other DRM-based approaches are not based on dif-

fuse chromaticity. Shao et al. [21] deals with specular-

ities on non-Lambertian surfaces basing their method

on de�ning specular highlights as regions with higher

luminance in the image. Highlights are detected by ap-

plying iteratively increasing-order thresholding over lu-

minance value. The work of Mairon et al. [16] follows

a similar trend though it uses luminance and satura-

tion from HSV color space, being specular pixels those

in which the fraction between those channels is below

a given threshold value. Finally the work of Yoon et

al. [28] provides a specular-free two band image using

simple pixel-wise real-time computations.

Angelopoulos et al. [2] method is based on Cook and

Torrance re�ectance model, which describes the direc-

tional distribution and spectral composition of the re-

�ected light and its dependence on local surface geom-

etry, surface roughness and material properties.

Specular and di�use components separation is more

di�cult in colonoscopy images due to: 1) the presence

of overexposed regions due to illumination, making it

impossible to recover di�use component and 2) the pres-

ence of image regions with non-linear camera response

due to image post-processing for visualization purposes.

Colonoscopy-speci�c methods thus propose alternative

strategies for specular highlights detection deviating

from those already mentioned.

Arnold et al. [3] propose a two-module approach: the

�rst uses color balance adaptive thresholding to deter-

mine those pixels in the image candidate to be inside a

specular region. The second deals with those remaining

specular pixels presenting di�erences in intensity to the

center of the specular region. Our previous approach

[9] extends this method to tackle detection of pixels

that constitute the boundary of the original specular

region and whose appearance resembles a shadow of

the highlight. This is done by analyzing specular high-

light regions frontiers and the di�erence between the

original image and the median of pixels not part of the

original output to obtain which pixels have an intensity

value marginally higher than its neighborhood. More re-

cently, Alsaleh et al. [1] proposed the use of an adaptive

threshold which considers color variation of the input

image to de�ne the threshold value from which a pixel

is labelled to be part of a specular highlight. Contours

of specular highlights are identi�ed as those specular

highlight pixels with strong gradients.

The main novelty of our approach from other

colonoscopy approaches relies on absence of intensity
thresholding contrary to the works of [3],[9] [1], as its

use may end in the loss of specular regions in dark im-

age areas. With respect to all presented approaches,

our method is one of the few based on de�ning spec-

ular regions rather than on the analysis of individual
pixels as it focuses on the contrast between highlights

and their neighboring regions. Finally, our method is

the �rst one, up to our knowledge, exploring the use

of the blue channel of RGB images to di�erentiate be-

tween specular and di�use component of the specular

highlights, under the assumption that the latter tends

to appear reddish in colonoscopy images.

Comparing presented approaches is di�cult due to

the lack of publicly annotated database. The only avail-

able comparison study was done for colonoscopy images

domain [9] but it was a region-based analysis and the

validation database was not public. Therefore, there is

a need of large public datasets which, apart from pixel-

wise analysis, deals with images from di�erent domains,

being this out of the scope of this paper.

3 Model of Appearance of Specular Highlights

Our specular highlights detection method is based on a

model of their appearance. This model is based on how

specular highlights are generated and their correspond-

ing appearance in colonoscopy images. Specular high-

lights appear as a result of the re�ectance of the struc-

tures that appear in the endoluminal scene as they are

illuminated by the colonoscope. The colonoscope has a

light source and a camera aligned in the same direction

so we can model the colonoscope as a pinhole camera

and a punctual illumination source placed in the same

position. We also consider that the colon surface is reg-

ular and that its re�ectance can be approximated by

Phong's illumination model [8]. Consequently, the im-

age acquired can be approximated as:
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I = IaKa + fatt(Idiff + Ispec)

Idiff = IpKd cos θ

Ispec = IpW (θ) cosn α

(1)

where I is the light re�ected by the surface towards

the camera, Ia is the ambient intensity, Ka is the am-

bient re�ection constant, fatt is the attenuation factor,

Idiff is the di�use re�ection component and Ispec is the
specular re�ection component. Idiff is calculated as the

product between incident light intensity Ip, a surface-

speci�c di�use re�ection coe�cient Kd, and the cosine

of θ (angle between surface normal and incident light).

Ispec is calculated as the product between incident light
intensity Ip, the specular re�ectionW (θ) coe�cient and

the n-th power of the cosine of α (angle between the

observing direction and the re�ected light).

Our model de�nes specular highlights as bright re-

gions ful�lling the following conditions:

1. The region contains at least a local maxima.

2. From all the regions that contain the same local

intensity maximum, the �nal region is the one which

maximizes mean gradient in its boundary.

3. Pixels belonging to each region are all above the

intensity threshold which might be di�erent for each

specular region in the image.

The �rst condition is a direct consequence of image

acquisition: as both light source and camera are at the

tip of the endoscope, cosθ ≥ cosα. When observation

of the scene is aligned to surface normal both θ and

α are zero, maximizing their corresponding cosines. In

this case we will have a maximum in the amount of light

re�ected back to the camera and, consequently, specular
highlights will contain a local maxima in the image.

The second condition considers deviations from pre-

vious ideal situation; when the observation direction

deviates from surface normal, α = 2θ. Considering this
and that the specular component depends on the n-th

power of the cosine of α, small variations in α lead

to stronger decreases in specular highlight intensity.

Therefore, we can deduce that specular highlights will

be delimited by strong light intensity gradients.

Finally, and as a consequence of the big decrease in

highlight intensity as surface orientation varies, we can

approximate the surface generated by a specular high-

light as a plane perpendicular to light and observing di-

rections. Under this assumption, light attenuation is the

same for the whole specular region and, consequently,

pixels belonging to a region are all above a same light

intensity, with a di�erent threshold for each specular

region.

4 Bright Spots Region Segmentation

4.1 Overview

Our segmentation strategy can be enclosed into re-
gion growing segmentation algorithms. In our case local

maxima act as seeds de�ning a set of initial image re-

gions. These regions grow by adding neighbor pixels in

an intensity-ordered way so pixels closer in intensity
to the region seed added �rst. During region growing,

colliding regions are merged into a parent region. Re-

gion growing is performed until all initial regions are
merged into a single one containing the whole image.

Our method is based on the de�nition of a regions tree

structure. In order to track information of the growing

process, this information is used to determine which are

the �nal regions to be provided as segmentation results.

Our approach is directly linked to the model of ap-

pearance of specular highlights. Segmentation seeds are

de�ned as local maxima in the image and we use gradi-

ent information to select the �nal output regions. As we

aim to obtain the region which separates better from

the background, region growth is performed until the

whole image is covered to avoid growth to stop at a lo-

cal maxima of the contrast; in this case the region pro-

vided will be smaller than the actual specular region.

Finally, our methodology is specially designed aiming at

its potential inclusion in a CAD system and it is imple-

mented using pre-computed matrices and pixel access

by pointers to reduce the number of calculations.

4.2 De�nitions and data structures

Our methodology is based on the concept of region; at

the initial stage of the algorithm, regions are de�ned as

the set of connected pixels centered at local maxima in
the image and share a same region identi�cation label.

All pixels which are not part of any region are part

of the background. We de�ne innerfrontier as the set
of region pixels which have as neighbor at least one

background pixel. Finally we de�ne externalfrontier
of the region as the set of background pixels which have

at least one pixel belonging to any region as a neighbor.

Fig. 3 (b) shows a graphical example of both frontiers.
We de�ne a RegionInf structure to store informa-

tion related to each region's initialization and growth.

Table 1 shows the content of RegionInf structure.
We use labels to identify regions during the whole

segmentation process. We store this label information

in RegionInf but, for the sake of computational e�-

ciency, we also de�ne a LabelArray table, indexed ac-

cording to label value. This table helps to e�ciently

keep track of which labels are associated with a region.
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Field Explanation

PSeed

Position of the local maxima acting as seed
of the region. If the region is the result of a
merging process, its value will correspond to
the seed of one of the children regions

Labels
List of region labels associated to the speci�c
region

Childrens List of regions merged into actual region
Father Region in which actual region will be merged
CreationLevel Luminance level the region was created at

ToUpdateLevel
Luminance level at which local contrast will
be calculated

FGradSum Sum of inner frontier pixels gradient values
FLen Number of pixels in inner frontier

MaxFGrad
Maximum local contrast value achieved dur-
ing growing process

MaxLevel
Luminance level in which current MaxFGrad
value was achieved

Table 1 Fields of RegionInf structure

We present each of the �elds of this table in Table 3.

This table allows the labelling information to be easily

updated whenever two regions are merged as the val-
ues of PRegion and PNextLabel are changed to re�ect

this (see Fig. 3).

We also de�ne a set of supporting images for compu-

tational e�ciency purposes. RegionsIm represents the

di�erent regions in the image. Positive values represent

labels of pixels belonging to image regions; labels are

di�erent for each image region. Externalfrontier pix-

els have a −1 value whereas background pixels are set

to 0.NeighIm provides information of pixels' neighbor-

hood at each growing iteration. Pixel value represents

the number of neighbors belonging to the background

so innerfrontier pixels have a value higher than 0.

4.3 Bright spot regions segmentation algorithm

Our segmentation algorithm consists of 4 di�erent

stages: 1) Region Initialization, 2) Region Growing, 3)
Region Selection and 4) Region Marking which are de-

tailed next. Our method needs of three inputs: 1) lu-

minance image (LumIm), 2) module of gradient image

(GradIm), and 3) minimum value of frontier contrast

(MinGrad) a candidate region should possess. GradIm
should have a low value - even zero - for those pixels

belonging to local maxima of LumIm. This condition

is ful�lled in the continuous domain but not in the dis-

crete one. To solve this, we manually set GradIm to

zero for image local maxima; if this is not done, local

maxima may not grow as their associated inner frontier

may already have a high frontier contrast. This is ag-

gravated whenever an unsharp mask is applied in video-

processors to enhance image visualization [7].MinGrad
value is only used at region selection to prune the re-

gion tree and determine �nal segmented regions. Table

2 summarizes the terminology associated with the dif-

Term De�nition
Supporting Images

RegionsIm
Image representing the di�erent regions in
the image. Each di�erent pixel value repre-
sents a di�erent image region.

NeighIm

Image representing information of pixels'
neighborhood. Values for each pixel represent
the number of neighbors (pixels which do not
belong to any region yet).

Data Structures

RegionInf
Data structure representing information re-
lated to each region's initialization and
growth.

LabelArray
Table used to keep track of which labels are
associated with a given region.

Heap

Binary max-hepa used to store ordered in-
formation about pixels belonging to exter-
nal frontiers. Ordering is performed accord-
ing value in LumIm image.

Algorithm inputs
LumIm Luminance image.

GradIm
Module of the gradient applied over the input
image, which is used to control region growth
process.

MinGrad
Minimum value required that the frontier
contrast of a given region should possess in
order to be part of the output of the method.

Table 2 Summary of the terminology related to the main
images and structures used in the explanation of bright spot
regions segmentation algorithm.

ferent supporting images and structures that the seg-

mentation algorithm uses.

4.3.1 Region Initialization

This �rst step consists of de�nition of the set of initial

image regions as the local maxima of LumIm [25]. A

di�erent label is assigned to each region in RegionsIm.

Starting values of FGradSum and FLen can be cal-

culated as innerfrontier and externalfrontiers are

de�ned - see Fig. 3 (a) -. This �rst step also updates

NeighIm. Initialization stage is also used to create the
regions tree which will keep track of region structure

during the growing process. In this �rst stage all image

regions, all of them independent, are connected to the

root of the LabelArray structure.

4.3.2 Region growing

Our region growing strategy is performed by adding

neighbor externalfrontier pixels to the actual region.

Pixel addition is sorted by intensity level. We use a bi-

nary max-heap - referred to as Heap - to store ordered

information about pixels belonging to external fron-

tiers. Ordering is made according to luminance value.

Each speci�c intensity level de�nes a
Field Explanation

PRegion
This value points at the region the speci�c
label belongs to

PNextLabel
This �eld is used to create the list of linked
labels that are associated to a same region

Table 3 Fields of LabelArray table
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Fig. 3 Synthetic example of (a) Region initialization and
(b-e) Region merging. Each region label is represented with a
di�erent color and limited by a thick contour. External fron-
tier pixels are painted in gray, dotted pixels belong to the
internal frontier. Pixels at current intensity level are under-
lined; those currently are also highlighted in bold.

growing iteration. This iteration ends when all pixels

with ToUpdateLevel intensity values have been pro-

cessed. Once this happens, local contrast can be cal-

culated. If its value surpasses current MaxLevel value

in the region's RegionInf structure, both MaxLevel
and MaxFGrad �elds are updated. Fig. 3 (b) exem-

pli�es this, and we can observe how MaxFGrad and

MaxLevel are updated for the yellow region once ex-

ternal frontier pixels at intensity level 4 have been as-

sociated with the region.

Region growing process is performed as long as there

are pixels in Heap. Having an empty Heap means that
all pixels in the image belong to any region, as shown

in Fig. 3 (e). Each time a pixel p is extracted from

the Heap, it is added to one of its neighbor regions

and, consequently, corresponding value of its neighbors

in NeighIm will decrease by an unit. Moreover, each
of the neighbors of p which earlier belonged to the

background will now be part of the external frontier

of regions. Consequently, their value in RegionsIm is

changed from 0 to −1 and they are added to the Heap.

In case a pixel p has more than one neighbor re-

gion, p is added to one of the regions and a new

parent region is created as the result of merging all

neighbor regions (see Fig. 3 (c) and (d)). Children re-

gions' labels are combined into the parent regions's la-

bel through LabelArray structure without needing to

change pixel labels. In case constituting regions were

created at LumIm[p] level, the regions are substituted
by the merged region and original regions disappear

from the regions tree.

Region merging involves updating both RegionsInf

of constituting regions and LabelArray so PRegion of

children regions point to the parent. The only change

in RegionsIm is related to assigning a region label to

pixel p as shown in Fig. 3.

The result of this stage is the �nal regions tree of the

image. The structure of this tree represents both region

initialization and region growing stages as initial regions

are merged until all pixels in the image are associated

to a region. In this case, the remaining region covers

all the image and corresponds to root of the regions

tree. The full region growing algorithm is described in

Algorithms 4, 3 respectively, and 2.

Contrary to some region growing approaches [18],

we perform region growing until the whole image is cov-

ered in order to avoid stopping on a local maxima of

the contrast. This would result on having segmented

regions smaller than the ones actually appearing in the

image.
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Fig. 4 Synthetic example of region selection. Each circle represents a region and its corresponding local contrast value is
placed inside. Green colored regions are those pre-selected by the system, while a red cross over the green colored region
represents discarded regions.

4.3.3 Region selection

Although we already have the complete regions tree,

our method has still not decided what the �nal output

regions will be. To determine this, the regions tree is

recursively explored to keep only those regions which

are actual candidates to be bright spot regions. These

regions comply with our model of appearance and with

the two following criteria: 1) all candidate regions are

disjointed pixel sets and 2) its local contrast has to

be the maximum achieved during its associated grow-

ing process, with this value being equal or higher than

MinGrad.

The �rst criteria forces an automatic rejection of the

parent region if a children region is selected as method's

output. The second one fosters maximum separation

between the region and the background; combined with

the �rst one, which ensures selected regions have higher

local contrast than all their children regions.

The result of this stage is a regions tree where se-

lected regions are marked. The algorithm checks if all

descendants of a region have a lower local contrast

value. If this is the case, the region is marked and all

its descendants are eliminated. This process starts from
the leaves of the tree down to its root. We provide a

pseudo-code for this step in Algorithm 5 and we show

a synthetical step by step example in Fig. 4.

4.3.4 Region marking

The �nal step consists of labelling each pixel in the

original image according to the selected regions . Con-

sidering this, possible values of pixels in the image can

go from 0 - if the pixel does not belong to any of the

proposed output regions - to Nreg, where Nreg corre-

sponds to the number of regions provided as result of

the previous step. The �nal step of our algorithm goes

through the regions tree and 'paints' in the �nal output

image each of the marked regions.

A �ood-�ll algorithm - [4] proposes a possible imple-

mentation - is used in order to generate full connected

regions from local maxima. In our case, the seed for

�ood-�ll algorithm for a particular region is the local

maxima of one of the constituent regions. Starting from

this seed, only connected pixels with luminance level

equal or higher than MaxLevel value of the particular
region will be labelled as part of the �nal region. The

label assigned to the pixel depends on the number of

marked regions that have already been analyzed.

As can be seen, our approach searches for the re-

gions with higher contrast with respect to the back-

ground, regardless of their intensity level and actual

shape. The lack of any intensity thresholding allows us

to capture bright spots appearing in darker regions of

the image. The sole use of gradient information without

any kind of shape information allows to focus only on

contrast information as well as making it unnecessary to

apply re-initialization and shape regularity constraints

that are applied in other region growing approaches,

especially in active contour models [18]. These meth-

ods could lead to similar segmentation results, but to

perform well several parameters have to be optimized.

Our approach only needs of two inputs apart from orig-

inal image: GradIm and MinGrad. The latter is only

used to reduce the number of �nal regions provided by

the method but not for de�ning their quality. Our ap-
proach could also be seen as similar to the concept of

Maximally Stable Extremal Regions (MSER) [17,19],

although our approach only provides disjointed regions

as output and considers gradient information (apart

from region content) in the growing process.

4.3.5 Computational e�ciency of the method

Our implementation aims at computational e�ciency

through several design decisions. We add a 1-pixel

width frame around both RegionsIm and NeighIm to

allow for a more e�cient access to pixel values by us-

ing pointers instead of coordinates, eliminating all the

comparisons related to checking image margins. Dis-

placement arrays are used to accelerate the access to

the neighbours of a given pixel. These arrays store the

address di�erence between a pixel and its neighbors.
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Feature Feature Feature
1 Mean gray value 9 Max. chromaticity value 17 Min. chromaticity value in boundary
2 Min. gray value 10 Mean gray value in boundary 18 Max. chromaticity value in boundary
3 Max. gray value 11 Min. gray value in boundary 19 Standard deviation of LumIm inside region
4 Mean blue channel value 12 Max. gray value in boundary 20 Standard deviation of LumIm in boundary
5 Min. blue channel value 13 Mean blue channel value in boundary 21 Mean GradIm value in boundary
6 Max. blue channel value 14 Min. blue channel value in boundary 22 Min. GradIm value in boundary
7 Mean chromaticity level 15 Max. blue channel value in boundary 23 Max. GradIm value in boundary
8 Min. chromaticity level 16 Mean chromaticity value in boundary 24 Region size in pixels

Table 4 Features used for discriminating specular highlights from the total of bright regions

As regards computational complexity, our method
works in parallel with each region so its complexity can

be approximately related to the size of the image (O(n),
with n being the number of image pixels). Processing

each pixel allows accessing to its neighborhood and po-

tential updates of the region tree. All this process has
a linear complexity with respect to the number of im-

age pixels (O(n)). Other operations have no linear com-

plexity, as accessing the heap has no linear complexity
(O(log(next), with next being the number of external

frontier pixels). LabelArray updating complexity de-

pends on the number of local maxima and on region

merging progress. As can be seen, it is di�cult to pro-

vide an exact calculation of the overall complexity as

the number of local maxima and external frontier pix-

els varies on each image. However, experiments on dif-

ferent size images do show a certain degree of overall

linear complexity. Processing a high de�nition (HD) im-

age (size 1920× 1080), 28 times larger than a standard

de�nition (SD) one of 384×288, has an associated com-

putation time of 31 times longer (0.8 seconds vs. 0.025
seconds). This puts our method in a complexity level

close to other pixel-based methods with linear complex-

ity presented in Section 2.

5 Specular highlight region classi�cation

The output of our segmentation method is a set of

bright regions but, as mentioned in Section 1, some

of them may not contain a specular highlight. In or-
der to discard them, we propose a region classi�cation

stage. This stage is also strongly linked to our model of

appearance as it de�nes a set of model-based features

to be extracted from candidate regions. These features

are fed to a classi�er which will then provide, as a re-

sult, the model used to generate the �nal output of our

method.

In Table 4 we present the 24 features that we extract

from each region. Features 1−6 are based on conditions
1 and 3 of our model and explore intensity values within

candidate regions. The blue channel is used under the

assumption that as di�use component tends to be red-

dish in colonoscopy images, specular component might

be better observed in the blue channel. Features 7 − 9

analyze whether color information is lost within region.
As the second condition of our model de�nes specular

highlight regions as having a strong contrast with their

neighbor regions, we compute intensity and color-based

features for region boundary. This boundary is de�ned

from a 2-width pixel dilation over an area occupied by
candidate region. Boundary strength is explored in Fea-

tures 21− 23 in terms of GradIm information. Finally

we also add size information under the assumption that
specular highlights tend to be small.

With respect to the choice of the classi�er, we have

decided to use Support Vector Machines (SVM) [13] for

the sake of the simplicity of use, resource e�ciency and

considering potential real-time implementation of our

methodology. In our case, SVM will perform a binary

classi�cation between specular highlights and the rest

of bright regions. We use LIBLINEAR implementation

of SVM [10] running under Matlab 2015a.

We fed the classi�er with feature vectors extracted

from candidate regions, in which positive examples are

linked to specular highlight regions and negative ones

with the rest of bright regions. Labelling of regions into

positive and negative is done by comparison their de-

gree of overlap with ground truth specular region, com-

puted using DICE similarity score [29]. We de�ne two

parameters, posthresh and negthresh to cluster candi-

date regions into positive and negative examples. These
values are not necessarily adjacent, for instance, we

could set very restrictive values (high posthresh and low

negthresh) to train the classi�er with really strong ex-

amples. We perform k-fold cross validation to avoid de-

pendence on the results on a speci�c dataset division.

6 Experimental setup

6.1 Validation database and performance metrics

We introduce our CVC-ClinicSpec database which,

to the best of our knowledge, is the �rst one to be pub-

licly available. CVC-ClinicSpec annotated specular

highlights ground truth of the 612 images from CVC-

Clinic database [6]. CVC-ClinicSpec database con-

tains 25914 specular highlights regions of di�erent sizes

and appearances. Table 5 shows some statistics about
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Size Number of regions Mean size and StD
1-10 13885 [57.43%] 5.31± 002.54
11-50 8700 [33.57%] 21.72± 010.07
51-100 1356 [05.28%] 69.00± 013.73
101-500 907 [03.50%] 187.72± 086.46
> 500 54 [00.20%] 795.94± 501.85

All 25914 [100.00%] 22.22± 57.53

Table 5 Facts and �gures of CVC-ClinicSpec database.
StD stands for standard deviation.

these regions. More than half of them are quite small

(size < 10 pixels). Only about 1000 regions [3.70%]

could be considered as large size (> 100 pixels).

Ground truth was performed by an expert, who

manually marked specular pixels in each image using
a graphic tablet. The expert was trained by showing

examples labelled from CVC-COLONDB database [8].

Fig. 5 shows an example of database content. Ground

truth is a binary image in which white pixels correspond

to specular pixels in the image.

We assessed the performance specular highlight de-

tection methods using standard pixel-wise and region-

wise performance measurements. A good performing

method should not only detect all specular regions, but

it also has to segment them accurately. To calculate

these measurements, we assume the output of a given

method to be a binary mask in which white pixels corre-

spond to specular highlights. We compare method out-

put with ground truth to de�ne performance metrics.

As regards pixel-wise metrics, True Positive Pixels

(TPP) are those marked by the method and present in

the ground truth. False Positive Pixels (FPP) are those

marked by the method but present in the ground truth.

False Negative Pixels (FNP) are those absent in meth-

ods' output, but present in the ground truth. Region-

wise metrics are de�ned similarly. It is important to

mention that we only ask a given method to provide one

single ground truth pixel to consider its corresponding

region as detected (True Positive Regions (TPR)). We
propose to use Precision, Recall and F1-score for pixel

and region-wise performance metrics. We do not com-

pute True Negative Pixels or Regions, as positive and

negative classes are not balanced. Consequently, the use

(a) (b)

Fig. 5 Example of CVC-ClinicSpec database. (a) shows
an original image and (b) its corresponding ground truth.
White pixels in (b) correspond to specular highlights pixels.

of related metrics (Speci�city, Accuracy) would not be

representative of the actual method performance.

For our experiments to re�ect segmentation qual-

ity, we propose using a DICE similarity score. It is im-

portant to mention that in all cases we provide results

per region. Using mean values in these kind of experi-

ments may not provide a fair representation of the per-

formance of a method in a way such that an isolated,
badly segmented region in an image would impact neg-

atively on the results of other better segmented ones.

6.2 BSSC parameter setting

Our bright spot regions segmentation (BSSC) method

requires two input images, and one parameter. In the
experiments presented in this paper, we use the gray-

scale version of CVC-ClinicDB images as LumIm, the

module of Sobel gradient over LumIm as GradIm and

we set MinGrad to 100 assuming that relevant bright

spot regions should be highly contrasted with respect

to their neighborhood.

As for data preparation for region classi�cation, we

decided to set posthresh to 40% and negthresh to 0%
so the classi�er is fed with good specular highlight re-

gions as positive examples and strictly non-specular

pixel containing regions as negative examples. Finally,

we propose to use 4-fold cross-validation, as such that,

for each fold, 75% of the images will be used for building

the model and the remaining 25% for validation.

6.3 Comparative study

A comparative study is presented in this paper with the

methods that are shown in Table 6. Inclusion criteria is

based on the availability of source code to perform a fair

comparison in a same database. We included an active
contour model-based segmentation method in the com-

parison [18] and an implementation of MSER region

segmentation algorithm based on [19] in order to com-

pare our approach with other region-based approaches

using the same initial seeds. For all cases we have used

Method Domain Information Approach
Tan et al. [24] General Intensity Pixel-based
Yoon et al. [28] General Intensity Pixel-based
Yang et al. [27] General Intensity Pixel-based
Arnold et al. [3] Colonoscopy Intensity Pixel-based
Bernal et al. [9] Colonoscopy Intensity Pixel-based
Meziou et al. [18] General Intensity Region-based
Níster et al. [19] General Intensity Region-based

BSSC Colonoscopy
Intensity +
Gradient

Region-based

Table 6 Methods analyzed in the comparison study.
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Pixel-wise analysis Region-wise analysis

Method TPP FPP FNP Prec Rec F1 TPR FPR FNR Prec Rec F1
Tan et al. 421017 1960577 154818 17.68% 73.11% 28.47 20733 12412 5181 62.55% 80.01% 70.21
Yoon et al. 491752 6411019 84083 7.12% 85.40% 13.15 24152 49094 1762 32.97% 93.20% 48.71
Yang et al. 385796 1181934 190039 24.61% 67.00% 36.00 20876 19008 5038 52.34% 80.56% 63.45
Arnold et al. 537267 3128062 38568 14.66% 93.30% 25.34 22373 4542 3541 83.12% 86.34% 84.70
Bernal et al. 543483 2727902 32352 16.61% 94.38% 28.25 22707 4416 3207 83.72% 87.62% 85.63
Meziou et al. 405729 1152364 170106 26.04% 70.45% 38.02 16202 2776 9712 85.37% 62.52% 72.17
Níster et al. 393354 421989 182481 48.24% 68.31% 56.54 11909 1222 14005 90.69% 45.95% 61.00
BSSC 454269 173794 121566 72.33% 78.89% 75.47 22779 2273 3135 90.93% 87.90% 88.49

Table 7 Summary of specular highlight detection results over CVC-ClinicSpec ground truth.

(a) (b) (c)

Fig. 6 Boxplots showing distribution of (a) pixel-wise and (b) region-wise F1 scores per image obtained by each method.
DICE scores per detected region are shown in (c).

the parameter setting proposed in corresponding pa-

pers. As regards MSER, for the cases in which pro-

vided regions are not disjoint between them, we opted

to provide the one resulting from the intersection of all

overlapped regions as �nal region, aiming to foster co-

incidence between potential output regions and to po-

tentially reduce over-segmentation.

We propose an F1-score for region-wise and pixel-

wise analysis, and DICE score for segmentation quality

analysis as comparison metrics. For the F1-score, we
treat each individual frame as a di�erent study, and we

compare F1-scores for each study, with this score being

calculated from all the regions present in an image. As

the number of detected regions may be di�erent for each

method, DICE comparison makes us deal with unpaired
data, and also de�ning the statistical tests to be used.

In order to account for statistically signi�cant dif-

ferences in methods' performance, a Saphiro-Wilk test

is performed to �nd out if available data follows a nor-

mal distribution. If this is the case, statistically signi�-

cant di�erences between methods are assessed using an

analysis of variance (ANOVA) over F1-score or DICE

values. In case of non-normal data distribution , a non-

parametric test (Kruskal-Wallis) test is used. Finally,

in order to account for pair-wise statistical di�erences,

we perform a Wilcoxon rank-sum test for paired data

and Mann-Whitney U-test for unpaired data. All tests

are performed using a con�dence level 1− α = 0.95.

7 Experimental Results

7.1 Pixel and region-wise results

Pixel-wise performance results are shown in Table 7.

A signi�cant di�erence can be observed between the

performance of our method and the rest of approaches,

which is particularly notable in the case of Precision

results. Fig. 6 (a) shows a boxplot showing the distri-

bution of F1 scores per image obtained by each of the

methods, where we can again observe how our method

outperforms the rest of approaches.

Saphiro-Wilk test over F1 scores rejected the null
hypothesis that data follows a normal distribution (p−
value = 0) so we run a Kruskal-Wallis test which indi-

cated di�erences between the methods analyzed, reject-

ing the null hypothesis (p−value < 0.05). Pair-wise dif-

ferences were explored using a Wilcoxon rank-sum test

which con�rmed that our proposal shows signi�cant dif-

ferences with the rest of the methods (p−value < 0.05).

Table 7 shows region-wise performance of the di�er-

ent methods. We observe a performance gap between

general and colonoscopy methods, with the main dif-

ference being related to the number of FPR, which

is higher for general methods. Regarding colonoscopy

methods, our approach shows the better balance be-

tween TPR, FPR and FNR, which can be better ob-

served by di�erences in F1 scores. In Fig. 6 (b) a box-

plot is presented, showing the distribution of F1 scores

per image for each method, where we can observe the

better overall performance achieved by our method.
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Size All sizes (25914 regions) 1 − 10 (14883 regions) 11 − 50 (8700 regions)

Method Detected regions
Mean DICE ±
StD

Detected regions
Mean DICE ±
StD

Detected regions
Mean DICE ±
StD

Tan et al. 20733 [80.00%] 61.90 ± 26.80 10077 [67.70%] 62.44 ± 24.36 8331 [95.75%] 60.62 ± 27.64
Yoon et al. 24152 [93.20%] 56.17 ± 32.47 13190 [88.62%] 57.33 ± 30.38 8633 [99.23%] 55.80 ± 33.58
Yang et al. 20876 [80.55%] 62.39 ± 24.53 10279 [69.06%] 62.40 ± 23.50 8272 [95.08%] 60.76 ± 25.06

Arnold et al. 22373 [86.33%] 13.66 ± 15.33 11858 [79.67%] 06.54 ± 06.75 8218 [94.45%] 17.17 ± 14.15
Bernal et al. 22707 [87.62%] 13.50 ± 15.47 12149 [81.63%] 06.39 ± 06.67 8261 [94.95%] 16.92 ± 14.07
Meziou et al. 16202 [62.52%] 64.43 ± 22.13 5892 [39.58%] 58.98 ± 20.29 7992 [91.86%] 66.01 ± 21.55
Níster et al. 11909 [45.95%] 55.34 ± 30.26 3838 [25.78%] 30.83 ± 24.37 5862 [67.37%] 63.76 ± 26.68

BSSC 22779 [87.90%] 74.72 ± 18.57 12133 [81.52%] 69.50 ± 19.49 8434 [96.94%] 79.92 ± 15.20

Size 51 − 100 (1370 regions) 101 − 500 (907 regions) > 500 (54 regions)

Method Detected regions
Mean DICE ±
StD

Detected regions
Mean DICE ±
StD

Detected regions
Mean DICE ±
StD

Tan et al. 1365 [99.63%] 63.20 ± 31.73 906 [99.88%] 65.34 ± 32.71 54 [100.00%] 67.38 ± 28.05
Yoon et al. 1369 [99.92%] 51.71 ± 38.32 906 [99.88%] 49.96 ± 39.50 54 [100.00%] 51.29 ± 34.22
Yang et al. 1365 [99.63%] 66.84 ± 26.05 907 [100.00%] 70.08 ± 26.36 53 [98.14%] 68.63 ± 23.88

Arnold et al. 1351 [98.61%] 33.01 ± 19.35 894 [98.56%] 44.10 ± 21.38 52 [96.29%] 57.55 ± 21.83
Bernal et al. 1351 [98.61%] 33.13 ± 19.79 894 [98.56%] 45.87 ± 21.63 52 [96.29%] 62.33 ± 19.84
Meziou et al. 1359 [99.19%] 71.84 ± 24.42 905 [99.77%] 73.96 ± 25.73 54 [100.00%] 77.88 ± 24.16
Níster et al. 1294 [94.45%] 73.47 ± 20.97 868 [95.70%] 78.22 ± 16.70 47 [87.03%] 84.38 ± 10.15

BSSC 1320 [96.35%] 82.61 ± 16.22 847 [93.38%] 85.11 ± 14.80 45 [83.33%] 79.34 ± 25.94

Table 8 Summary of specular highlight region segmentation results, broken down according ground truth region size. StD
stands for standard deviation.

Fig. 7 Qualitative methods' comparison. (a) Original image and (d) corresponding ground truth, (b) Tan et al., (c) Yoon et
al. , (d) Yang et al., (e) Arnold et al., (g) Bernal et al., (h) Meziou et al., (i) Níster et al. and (g) BSCC (our proposal). True
Positive Pixels are painted in green, false positives pixels in blue and false negatives pixels in red.

Saphiro-Wilk test over F1 scores rejected the null

hypothesis that data follows a normal distribution (p−
value < 0.05). Kruskal-Wallis test also rejected the null

hypothesis that all data comes from the same distribu-

tion (p− value = 0). Finally, pair-wise di�erences were

explored by means of a Wilcoxon rank-sum test, which

provided signi�cant di�erences between BSSC and the

other methods methods (p− values < 0.05).

7.2 Segmentation quality results

We present overall segmentation results in Table 8, and

boxplot showing distribution of DICE scores per region

in Fig. 6 (c). A mean and standard deviation of DICE

scores is presented for each method. We also present a

breakdown of the results according to region size.

Results indicate that our proposal is the one which

provides higher DICE scores when all regions are con-

sidered. We can also observe from Table 8 that there is

di�erence in performance scores according to the size

of the target region. On the one hand, our proposal

achieves higher DICE scores in all categories but pro-

vides lower detection rates for larger regions. On the

other hand, general methods increase the detection rate

for those larger regions. There are larger di�erences

across methods happen for small regions in which de-

tection rates and DICE scores experience a decrease.

Apart from di�erences related to the methodologies,

di�erences in performance for all methods can be asso-
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Method Detected regions Mean DICE ± Std
Tan et al. 2895 [86.00%] 57.23 ± 30.07

Yoon et al. 3200 [95.06%] 50.23 ± 36.05
Yang et al. 2922 [86.80%] 60.44 ± 27.48

Arnold et al. 2926 [86.92%] 23.44 ± 19.82
BSV2013 2950 [87.64%] 23.21 ± 19.81

Meziou et al. 2765 [82.14%] 66.02 ± 25.00
Níster et al. 1920 [57.04%] 66.98 ± 26.12

BSSC 3010 [89.42%] 80.10 ± 16.07

Table 9 Summary of specular highlight region detection and
segmentation results, considering only regions inside polyps.

ciated with the di�culty in manually marking specular

highlights pixels, as potential small errors - of even just

one pixel - in ground truth creation impact higher on
the performance scores for small regions.

A statistical analysis was performed on DICE scores

for all detected regions. The Saphiro-Wilk test rejected

that data comes from normal distribution (p− value <

0.05) and posterior Kruskal-Wallis test con�rmed that

not all methods share a same data distribution (p −
value = 0). Again, pair-wise di�erences were further ex-

plored using a Mann-Whitney U-test for unpaired data.

Results indicate statistical di�erences between BSSC

and the rest of approaches (p− value = 0).

All three validation experiments shows a quanti-

tative and statistically signi�cant di�erence between

the performance of our methodology and both general

and colonoscopy-speci�c approaches. In case of similar

region-wise detection score, BSSC is the one that pro-

vides more accurate regions which can be observed by

higher pixel-wise Precision and DICE scores.

In order to better illustrate these di�erences, we

show a graphical comparison between compared meth-

ods in Fig. 7. In this image, we can observe how the

majority of the methods are able to correctly detect the

specular regions but we can also observe that some of

them are impacted by other bright regions not part of a

specular highlight and that, for the case of colonoscopy-
speci�c methods, they do not accurately segment the

specular region, providing a number of false positives.

Regarding the comparison between pixel-based ap-

proaches, Yang et al. is the one which o�ers a best com-

promise between number of detected regions and DICE

score whereas between region-based approaches, our

method outperforms the studied level sets approach,

specially on pixel-wise Precision.

Taking into account, as mentioned in Section 1, that

we foresee specular highlights detection as part of a

bigger polyp characterization system, we consider it of

interest to provide a break down of the results only

considering specular highlights inside polyps. Specular

highlights detection could be used to determine which

image areas should not be used in later processing

stages. In this context, quality of region segmentation is

crucial, because if the detected region covers more pix-

els than the actual specular region, pixels with relevant

texture information may be discarded.

Table 9 shows a summary of detection and segmen-

tation results. The �rst conclusion that can be drawn,

is that overall detection score improves for all meth-

ods when only specular highlights inside polyp regions

are considered. With regard to the quality of the seg-

mented regions, DICE score improves for colonoscopy-

speci�c methods but gets worse for general methods.

It is interesting to observe how our method is able to

outperform similar region growing approaches. There-

fore, the combined use of intensity and gradient-based

features appear as a suitable solution for this problem.
Again, our proposal achieves the highest DICE score

appearing as the solution which would allow to keep

more relevant polyp region information and therefore
it is the most suitable to be included as part of a global

polyp characterization computational support system.

8 Discussion

In this section we discuss some topics that have arisen

after analyzing our methodology and the results of the

comparison study. More precisely, we tackle the impact

of the decisions regarding parameter tuning of our ap-

proach, the impact that ground truth creation may have

on method performance, including the consideration of

which of the regions have to be labelled and, �nally, the

clinical use of a specular highlight detection method by

assessing its impact in two speci�c applications.

8.1 Impact of BSSC con�guration on performance

In Section 6 we presented the speci�c parameter con-
�guration of our method used in the comparison study.

We set those parameter values based on our model of

appearance, aiming at a strong distinction between pos-

itive and negative examples and the presence of high

contrast between specular highlight regions and their

neighbor regions. We analyze here the impact of each

individual decision on system con�guration.

As regards the output of our bright spot regions seg-

mentation method, we decided to set MinGrad to 100

aiming to eliminate those weak regions still remaining

on the regions tree. This value only a�ects the num-

ber of positive and negative regions that are fed to the

classi�cation stage but not the quality of the segmented

regions, as shown in Table 10. This happens as result

of our segmentation strategy, as regions kept after the

region selection stage are disjointed between them.

Even by setting MinGrad to a high value, the

mean size of discarded regions remains lower than 11
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Method regions
Non-reachable
ground truth regions

MinGrad Positive
Mean

DICE
Negative Regions Mean

area

0 28027 67.77 124686 101 02.60
10 27303 69.23 523723 171 03.35
20 27237 69.36 224938 180 03.57
30 27117 69.57 116824 219 05.70
40 26987 69.77 75415 269 11.04
50 26775 70.04 54728 381 11.62
60 26518 70.32 42040 542 11.14
70 26196 70.63 33444 773 10.40
80 25787 71.00 26866 1086 10.70
90 25322 71.41 21655 1462 11.24
100 24779 71.84 17580 1914 11.05

Table 10 Impact of MinGrad value on the number and
quality of regions provided by the bright region segmenta-
tion stage. BSCC optimal con�guration sets 100 as MinGrad
value.

pixels, which implies that losing those regions would

have little e�ect on the subsequent stages of the pro-

cessing pipeline, such as textural structure recognition.
Consequently, MinGrad values also sets the maximum

performance that our method may achieve. The lower

MinGrad, the higher the number of negative exam-

ples which could cause the introduction of some bias

into the classi�er. We obtain better performance scores

with higher MinGrad values as indicated in Table 11.

In this case we obtain higher Recall scores at the cost

of slightly lowering Precision.

Once segmented regions are determined by

MinGrad, we have to cluster them into positive and

negative regions to train the classi�er. This decision is

based on an overlap coe�cient over ground truth and

we set posthresh = 40% and negthresh = 0%, aiming to

train the model with very low quality negative regions

and adequate positive ones. In Fig. 8 (a) we show the

results of a quantitative study on the e�ect on F1

score of posthresh. As expected, the lower posthresh,

the higher the Recall. As posthresh goes beyond 40%,

we can observe a clear decreasing trend on Recall score
(and consequently, F1-score). In this case the classi�er

is being fed with very strong positive regions which

helps in reducing the number of false positives at the

Pixel-wise analysis Region-wise analysis

MinGrad Prec Rec F1 Prec Rec F1
0 67.06% 77.35% 71.84 92.49% 83.67% 87.73
10 67.19% 77.47% 71.96 92.49% 83.67% 87.86
20 68.26% 77.69% 72.67 93.03% 83.51% 88.01
30 67.36% 78.90% 72.67 91.01% 85.49% 88.16
40 69.76% 78.99% 74.09 93.58% 84.29% 88.69
50 67.24% 79.21% 72.74 91.48% 85.53% 88.40
60 69.96% 78.02% 73.77 92.98% 83.40% 87.93
70 67.27% 79.92% 73.05 87.77% 87.70% 87.73
80 67.62% 79.45% 73.06 86.77% 87.26% 87.01
90 71.81% 78.63% 75.07 92.33% 85.53% 88.80
100 72.33% 78.89% 75.47 90.93% 87.90% 89.39

Table 11 Impact of MinGrad value on performance scores.
BSCC optimal con�guration sets 100 as MinGrad value.

Fig. 8 Impact of posthresh and negthresh values in region-
wise results of our proposal. BSCC optimal con�guration sets
40 as posthresh value and 0 as negthresh value. Vertical axis
represents the value for each of the three studied metrics (Pre-
cision, Recall and F1)

cost of imposing very strong restrictions on what a

specular highlight region should be.

As regards negthresh, and assuming that its value

must never surpass posthresh, Fig. 8 (b) shows the

results of a separate experiment in which we keep

posthresh = 40% and vary negthresh from 0% to 35% in

5% steps. The results do not seem to follow any general

trend, except for the F1-score, which seems to decrease

as negative threshold decreases.

8.2 Impact of ground truth creation

We mentioned in Section 1 that the lack of publicly

available databases limits the comparison between dif-

ferent approaches. We associated this to the di�culty

on providing accurate annotations of specular high-

lights and we discuss here the impact on performance of

two annotation-related issues: 1) di�erences among ob-
servers and 2) in�uence of other illumination artifacts.

With respect to the former, it has to be noted that

ground truth creation is a highly time-consuming and
highly precision requiring task. Pixel-wise labelling of

the whole database took a month and, due to this, it

was not feasible to ask additional experts to label all

images to account for inter-observer variability. Never-

theless, considering the importance of pixel-wise perfor-

mance in terms of assessing information loss for later

processing stages, di�erences in ground truth creation

may impact performance scores, though they will a�ect

all compared methods the same. For instance, in regions

smaller than 10 pixels - prominent in our database -, an

error of 1 pixel can a�ect Precision results in a 10%.
We asked two additional experts to label the �rst

100 images of our database to study the impact of anno-

tation quality in method performance. Our experiment

consisted of using one of the experts as ground truth

and comparing the output provided by the rest of ex-

perts to account for di�erences in ground truth creation
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Method Pixel-wise Region-wise

Prec Rec F1 Prec Rec F1

Ground truth = CVC-ClinicSpec [3236 regions]

Exp1 41.26 94.37 57.42 85.83 96.26 90.75
Exp2 99.89 99.21 99.55 99.50 99.62 99.56
BSSC 62.99 76.94 69.27 95.31 85.56 90.18

Ground truth = Exp1 [2639 regions]

Exp2 94.57 41.06 57.26 94.04 80.14 86.53
CVC-ClinicSpec 94.37 41.26 57.42 94.61 80.52 87.00

BSSC 73.93 39.48 51.47 95.79 75.18 84.24

Ground truth = Exp2 [3244 regions]

Exp1 41.06 94.57 57.26 85.58 95.86 90.43
CVC-ClinicSpec 99.21 99.89 99.55 99.62 99.50 99.56

BSSC 62.65 77.04 69.10 94.90 85.01 89.69

Table 12 Impact of ground truth creation in pixel-wise per-
formance results. Exp1 stands for independent expert 1, Exp2
for independent expert 2 and CVC-ClinicSpec stands for
ground truth used in the validation framework.

and methods' performance. Table 12 shows quantitative

results of this experiment. The study shows that there

is a di�erence in the number of regions marked by each

expert and whether this di�erence a�ects performance

scores or not. For instance, we observe that Exp1 an-

notated less regions. If we validate our method against

Exp1, it achieves lower region-wise Recall score as the

number of detected regions is reduced. In the pixel-

wise analysis, we observe great similarity between Exp2

andCVC-ClinicSpec and big di�erences of them with

Exp1. Precision and Recall scores might indicate that if

a given region is marked by three experts, Exp1 would

include more pixels than the others.

As mentioned in Section 3, bright spot regions may

include those which are not specular highlights. Among

these are overexposed areas; experts did not label them

as specular highlights as they do not strictly ful�ll their

model of appearance, especially regarding contrast be-

tween the region and all its neighbors. Nevertheless,
some of the compared methods treat them as specular

highlights.

In order to isolate the impact of overexposed regions
labelling and for the sake of providing a fair comparison

between methods and avoiding potential discrepancies

on whether overexposed regions should be included or

not in the ground truth, we performed an additional val-

idation experiment excluding images with overexposed

regions - 178 images in this case -. We show a summary

of the results on Table 13. We can observe how perfor-

mance scores increase for all metrics for the majority of

the methods. The biggest increase is observed in pixel-

wise Precision, which can be interpreted as methods

having di�culties to accurate label highlight pixels in-

cluded in overexposed regions. Fig. 9 shows examples of

the output of BSSC in images with and without over-

exposed regions con�rming our previous hypothesis.

Method Pixel-wise Region-wise

Prec Rec F1 Prec Rec F1

Tan et al. 10.06 -2.80 11.31 1.35 0.01 0.84
Yoon et al. 1.76 -2.61 2.91 3.90 -0.58 4.04
Yang et al. 16.55 -0.51 14.84 3.99 1.78 3.44

Arnold et al. 3.23 1.92 4.79 0.19 1.72 0.92
Bernal et al. 2.45 1.96 3.58 0.16 1.67 0.88
Meziou et al. 23.13 -0.70 19.65 2.61 2.69 2.72
Níster et al. 3.70 2.88 3.52 1.11 1.39 1.47

BSSC 8.30 2.14 5.36 0.28 1.71 1.02

Table 13 Di�erence in performance associated with the ab-
sence of overexposed regions. Values indicate di�erence be-
tween methods' performance in the full dataset (612) against
performance in a subset of images without overexposed re-
gions (434 images).

As performance of detection methods is a�ected by

overexposed regions, their apparition should be con-

trolled either on clinicians' side by correcting scene
lighting or on the technical side by an automatic detec-

tion of overexposed regions presence, discarding images

which contains them for later processing.

8.3 Clinical applicability of specular highlights

detection and bright spot regions segmentation

We mentioned in Section 1 that specular highlights

detection can be part of an intelligent system for

colonoscopy, playing a supporting role in lesion detec-

tion [6] or characterization tasks [12]. Regarding the

former, specular highlights detection can be used in

two ways. First, to indicate lesion presence, especially

in large protruding polyps in which specular highlights

appear larger as they re�ect a higher amount of light

back to the camera. Second, to eliminate potential false

positive detections, as specular highlights appearance is

prone to attract the attention of RoI detectors.
The positive impact of specular highlights detection

in polyp detection has already been assessed [6] but, to

the best of our knowledge, there is no mention about
their use as part of a polyp characterization system.

As mentioned in Section 1, clinicians perform visual in-

spection of the polyp surface to predict lesion histology.

Several paradigms have been proposed but, for the case

(a) (b)

Fig. 9 Impact of overexposed reigons on method perfor-
mance: (a) Original images and (b) BSSC output. True pos-
itive pixels are painted in green, false positives pixels in blue
and false negatives pixels in red.
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Fig. 10 Synthetical representation of the di�erent types pro-
posed by KUDO's pit pattern classi�cation. Types I and II
correspond to non-adenoma lesions whereas types III to V
correspond to adenomatous ones.

of white light colonoscopy, KUDO's pit pattern classi�-

cation [15] is one of the ones most commonly used. This

classi�cation proposes a gross classi�cation of pit pat-

terns into several types which have a correlation with

the degree of malignancy of the lesion. Fig. 10 shows a

synthetical representation of KUDO classi�cation.

As can be observed, the identi�cation of these pat-

terns is based on the fact that they present a contrast

with respect to their neighboring regions and they can

appear and be considered as bright regions in the im-

age. We can also see how both specular highlights and

textural patterns appear as bright regions in the image,

with specular highlights being more likely to attract the

attention of computational methods. In this context, we

foresee specular highlights detection as a way to remove

those regions which could lead to providing an incorrect

automatic prediction of polyp histology.

Fig. 11 shows a potential computational diagnosis

error caused by the apparition of specular highlights.

If our system only relied on the shape of the bright

regions, a high presence of tubular patterns would be

assigned to the polyp, thus indicating an adenomatous

histology when, in fact, there are no prominent tubu-
lar structures on its surface, and the polyp is actu-

ally a non-adenomatous one. Therefore, although our

bright spot regions segmentation could be used to ex-

tract those textural patterns (textons), we also have to

consider �rstly removing those which belong to specular

highlights.

We present here the results of a preliminary study

of the potential of using our bright spot regions seg-

mentation to both detect specular highlights and char-

acterize remaining textons, as part of a CAD system to

obtain an automatic prediction of polyp histology. Our

proposed pipeline has two stages: specular highlights

detection and texton characterization from bright spot

regions segmentation. It should be noted that we re-

move specular highlights �rst and then we again apply

bright spot regions segmentation to the image without

specular highlights. In the second time our segmenta-

Fig. 11 Potential impact of specular highlights over polyp
region on in-vivo polyp histology. The image shows how both
textural patterns appear as bright regions in the image, with
specular highlights being more salient.

tion approach is applied, we use as LumIm the image
resulting after applying a top-hat �lter to the original

image. Consequently, GradIm corresponds to the gra-

dient of the top-hat �ltered image. Finally, it is impor-

tant to mention that, contrary to what we do for polyp

detection, we do not apply any kind of inpainting [9]

to restore image regions below the highlights as in this

case it would create new textural elements which could

a�ect methods' performance. We just ignore the output

within regions covered by them.

Once specular highlights are removed, we charac-

terize bright regions using the following tubularity for-

mula Tub = Area2

d , where Area equals the number of

pixels of the region and d the sum of the Euclidean

distance from each region pixel to the region contour.

Tubularity is designed to obtain low values for circu-

lar shapes and high values for tubular regions of the

same area. We use the mean of all tubularity values for

an image to classify it into two classes: Adenoma (ma-

lignant) and Non-Adenoma (benign). As shown in Fig.

10, the main di�erence between these groups is related

to the appearance of tubular structures in adenomas.

Consequently, the use of tubulary metrics over good

segmented textons has the potential to obtain a �rst

distinction between these two histological groups.

We compare the histology predicted by our system

and the actual histology obtained after lesion removal.

A total of 51 HD images showing a di�erent polyp

were collected in the Hospital Clinic, Barcelona, Spain.

These images were selected to show as much variabil-
ity in polyp appearance as possible. Experts provided

annotations of the polyp regions using a GUI interface.

Once the lesion was removed, histological analysis was

performed and the images were classi�ed into the two

mentioned groups: Non Adenoma and Adenoma.

We present the ROC curve in Fig. 12 (a) and a con-

fusion matrix in Fig. 12 (b) to show the performance of

the system. An optimal threshold value of Tub = 13.14
to separate the two classes, adenoma vs. non adenoma,

was selected from the operating point of the ROC curve.

Results show that bright spot regions segmentation

and the use of tubularity metric have potential to obtain

an accurate prediction of polyp histology. Our method

is able to provide an accurate 'diagnosis' in 44 out of
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(a) (b)

Fig. 12 Results of our automatic histology prediction sys-
tem. (a) Receiver Operating Curve (Area Under Curve =
0.77) (b) Confusion matrix.

51 (86.3%) images. If we used this prediction to de-

termine whether the lesion has to be removed or not,

we can observe that only in 2 cases (3.9%) using our

method would incorrectly suggest leaving the lesion in

the colon. Finally our approach achieves a 94.7% of ac-

curacy when dealing with adenomatous polyps as it pro-

vides 36 correct predictions out of a total of 38 adeno-

matous images. This accuracy level decreases when non-

adenomatous polyps are considered with 8 (61.5%) cor-

rect detections out of 13 images. Finally, as regards the

potential use of our technology by clinicians, full pro-

cessing of a single HD image takes 2.7 seconds, making

its use feasible in the examination rooms as real-time

constraints are not compulsory for this application.

9 Conclusions and Future work

In this paper, we have presented a methodology

for specular highlights detection in the context of

colonoscopy image analysis. Our proposal is based on an

appearance model de�ning specular highlights as highly

contrasted regions containing a local image maxima.
Our method consists of two stages, bright spot regions

segmentation and region classi�cation. The former pro-

vides a shape and intensity-independent image parti-

tion into a set of disjointed regions that present the

highest level possible of contrast achieved during their
individual growth process. Segmented regions are de-

scribed using model-related features and are fed to a

binary classi�er to discard non-specular regions.
We validate our method in a new database, to

be publicly available, and we compare its perfor-

mance against general and colonoscopy-speci�c detec-

tion methods. The results show that our approach out-

performs all methods, especially regarding pixel-wise

Precision. Regions provided by our method are closer

to the actual specular regions and their removal would

lead to discard less potentially relevant image informa-

tion.
Our methodology has been tested successfully in a

speci�c domain of application, but future work should

investigate the potential of applying our methodology

- especially bright spot regions segmentation - in more

general application domains. We have shown a prelim-

inary study in which specular highlights detection is

included as part of a global computational support sys-

tem, but this study might be extended with new cases

and covering other clinical applications. Finally, an in-

depth analysis of the validation experiments suggest

that future comparative studies could be improved to

tackle some of the topics raised up in the discussion,

such as dealing with the presence of overexposed re-

gions or considering ground truth created by several

observers to account for inter-observer variability.
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Appendix: Bright spot regions segmentation algo-

rithms

Algorithm 1 Initialization algorithm
- Calculation of LMax, local maxima of LumIm.

- Addition of a 1-pixel width frame around RegionsIm with

−1 pixel value.

for nr = 1 → #(LMax) do
RegionsIm[LMax[nr]] = nr;
LabelArray[nr].PRegion = newRegionInf ;

end for

for pixel p ∈ RegionsIm do

NeighIm[p] = #{q|q is connected neighbor of p
&RegionsIm[q] == 0| − 1};

LabelArray[nr].PRegion = newRegionInf ;
if RegionsIm[p] ≥ 0 then

if NeighIm[p] ≥ 0 then
r = LabelArray[RegionsIm[p]].PRegion;
r.Seed = p;
r.FGradSum = r.FGradSum+GradIm[p];
r.FLen = r.FLen+ 1;

end if

else if NeighIm[p] ≤ MaxNeighbors then
RegionsIm[p] = −1;
Heap.Push(p);

end if

end for

- Addition of a 1-pixel width frame around NeighIm;

for nr = 1 → #(LMax) do
r = LabelArray[nr].PRegion;
r.CreateLevel = LumIm[r.Seed];
r.ToUpdateLevel = r.CreateLevel;

end for
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Algorithm 2 Region growing algorithm

while isNotEmpty(Heap) do
p = Heap.Pop();
level = LumIm[p];
FR = NULL;

end while

for {q ∈ RegionsIm | q is neighbor of p} do
NeighIm[q] = NeighIm[q]− 1;
if RegionsIm[q] == 0 then

RegionsIm[q] = −1;
Heap.Push(q);

else if RegionsIm[q] ≥ 0 then
SR = LabelArray[RegionsIm[q]].PRegion
if NeighIm[q] == 0 then

SR.FLen = SR.FLen− 1;
SR.FGradSum = SR.FGradSum+GradIm[q];
if FR == NULL then

FR = SR;
UpdateMaxContrast(FR, level);
- Add Pixel q to FR;

RegionsIm[p] = RegionsIm[q];
if NeighIm[p] > 0 then

FR.Len = FR.Len+ 1;
FR.FGradSum = FR.FGradSum +

GradIm[p];
end if

else if FR! = SR then

UpdateMaxContrast(SR);
JoinRegions(FR, SR);

end if

end if

end if

end for

Algorithm 3 JoinRegions algorithm
if FR.CreationLevel! = level then

if SR.CreationLevel! = level then
NewReg = new RegionInf;
NewReg.Childrens.Push(FR);
NewReg.MaxFGrad = 0;
NewReg.Labels = FR.Labels;
for l ∈ NewReg.Labels do

LabelsArray[l].PRegion = NewReg;
end for

FR = NewReg;
else

tmp = FR;
FR = SR;
FR = temp;

end if

end if

FR.FLen = FR.FLen+ SR.FLen;
FR.FGradSum = FR.FGradSum+ SR.FGradSum;
for l ∈ SR.Labels do

LabelsArray[l].PRegion = FR;
end for

FR.Concat(SR.Labels);
if FR.CreationLevel == SR.CreationLevel then

FR.Children.Concat(SR.Children);
Delete SR;

else

FR.Children.Push(SR);
end if

Algorithm 4 UpdateMaxContrast algorithm
if R.ToUpdateLevel! = level then

FGrad = R.FGradSum/R.FLen;
if FGrad > R.MaxFGrad then

R.MaxLevel = R.ToUpdateLevel;
R.MaxFGrad = FGrad;

end if

R.ToUpdateLevel = level;
end if

Algorithm 5 Region Selection algorithm
for child ∈ pRegion.Children do

MaxG = max(MaxG, SelectRegions(child,MinGrad));
end for

if MaxG ≤ pRegion.MaxFGrad then
DeletepRegions.Children
if pRegion.MaxFGrad ≥ MinGrad then

pRegion.Mark = true;
end if

return pRegion.MaxFGrad;
else

eturn MaxG;
end if


