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Abstract—Food photos are widely used in food logs for diet
monitoring and in social networks to share social and gastro-
nomic experiences. A large number of these images are taken in
restaurants. Dish recognition in general is very challenging, due
to different cuisines, cooking styles and the intrinsic difficulty of
modeling food from its visual appearance. However contextual
knowledge can be crucial to improve recognition in such scenario.
In particular, geocontext has been widely exploited for outdoor
landmark recognition. Similarly, we exploit knowledge about
menus and location of restaurants and test images. We first adapt
a framework based on discarding unlikely categories located far
from the test image. Then we reformulate the problem using a
probabilistic model connecting dishes, restaurants and locations.
We apply that model in three different tasks: dish recognition,
restaurant recognition and location refinement. Experiments on
six datasets show that by integrating multiple evidences (visual,
location, and external knowledge) our system can boost the
performance in all tasks.

Index Terms—food recognition, location, probabilistic model-
ing, image recognition, mobile applications

I. INTRODUCTION

Eating is an essential activity, with food being connected
to countless aspects and events in our life. With the de-
velopment of recent technologies, such as smartphones and
computer vision, food-related applications have flourished.
Health monitoring is an important research area. Examples
of health-related applications are food logs[1, 2, 3], calorie
intake estimation[4, 5, 6] and nutrition analysis[7, 8, 9].
Dietary self-monitoring has been proved effective for chang-
ing eating habits, helping people to lose weight[10, 11].
Another popular area is cooking-related activities. Examples
are cooking video indexing[12] and authoring[13], cooking
activity recognition[14, 15], menu planning[16, 17, 18], recipe
recommendation[19, 20], enhanced recipes[21, 22] and cook-
ing support and assistance[23, 24]. Finally, other works focus
on food images taken in a social context, providing automatic
annotation[25, 26, 27] and retrieval of similar images. Social
networks are also useful to predict consumption patterns[28,
29, 30] and food analysis[30, 31].
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In order to realize these applications effectively, recog-
nizing food directly in images[25, 32, 33] is highly desir-
able. However, unrestricted food recognition is still extremely
challenging even for humans, especially relying only in the
visual information. Actually, when addressing complex recog-
nition problems, humans incorporate prior and contextual
knowledge[34]. Similarly, intelligent systems can also leverage
external knowledge to simplify the problem.

In this paper, we focus on the specific but popular scenario
of dining out in restaurants and taking photos of food (i.e.
dishes). Those photos can be kept in personal food logs,
used to retrieve nutritional information, recipes or any other
information of interest, or shared in social networks as new
experiences. The user is often not familiar with the particular
dish or even the restaurant (e.g. while traveling in a foreign
country) so automatic recognition is convenient. In that sce-
nario, two important tags are the name of the dish and the
restaurant. Unconstrained dish recognition in such scenario
is extremely complex due to the large number of classes
and great variation due to different cooking and presentation
styles across restaurants. For that reason we leverage external
information (menu and restaurant information) and exploit
geographic location to simplify the problem and improve the
performance.

We adopt a probabilistic approach, allowing us to design
flexible models for each of the components of the problem, and
often leading to improved performance. Thus, we propose a
probabilistic model that connects locations, restaurants, dishes
and visual features. By combining visual and location signals,
and knowledge about the restaurants, we can significantly
improve the performance of automatic annotation of dish and
restaurant names. Additionally, we can refine the estimated
location, which is particularly useful in indoor environments
where the estimation is more difficult.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III introduces the problem
of dish recognition in restaurants. The proposed model is
described in Sections IV and V . Experiments and conclusions
are presented in Sections VI and VII.

II. RELATED WORK

In our particular scenario (i.e. dish recognition in restau-
rants) we can identify two relevant groups of related works:
food recognition and context-based image recognition.

Early works in food recognition were able to classify
among a few dozen types of food[35, 36, 33]. Kawana and
Yanai[37] proposed a mobile food recognition system that
can recognize 256 food categories. Convolutional neural net-
works (CNN5s)[38, 39] have been applied successfully to food
recognition[32, 40, 41]. However, large-scale food recognition,



covering multiple cuisines and fine-grained classification, is
still a very challenging problem.

When humans face complex recognition problems, they
often exploit contextual information, which is often more im-
portant than the content itself[34]. Similarly, modern devices
can exploit different sources of knowledge (e.g. websites,
databases) and contextual information (e.g. GPS, accelerom-
eter). The most representative example is mobile recognition
of landmarks[42, 43] based on location and image retrieval
techniques to find photos of the same landmark from geo-
tagged photo databases, and use them to annotate the test
image. location can effectively bound the search to only a
subset of images. Typically, local features such as SIFT are
extracted, and encoded with a bag-of-words representation[44]
or using vocabulary trees[42, 43]. As landmarks are rigid
and geometrically almost invariant, retrieving similar images
and performing geometric verification often finds the right
landmark. Classifiers can also be used instead of retrieval tech-
niques. In this case location helps to restrict the classification
to the landmarks in the geographic neighborhood (i.e. shortlists
the candidate classes).

Recently, three works[1, 45, 46] almost simultaneously pro-
posed restaurant-oriented food recognition, where the restau-
rant context (menu and images) and location are leveraged to
improve food recognition. They basically reduce the candidate
categories to those in the menus of the neighboring restaurants
(i.e. shortlist the candidates). In particular, Bettadapura et
al.[45] focus on automatic food logging, aided by online
restaurant information. Menu-Match[1] also retrieves nutri-
tional information. They evaluate their methods with relatively
small datasets (4350 images from 10 restaurants, and 645
images from 3 restaurants, respectively). Xu et al.[46] focus on
a larger scale scenario, with the data obtained by crawling on-
line restaurant databases (collecting menu, location and user-
contributed images of dishes). The resulting Dishes dataset
contains around 115K images collected from 646 restaurants
in 6 cities. Their study focuses on classification under ge-
olocalized conditions, showing that geolocalized training can
improve classification performance and efficiency. In contrast,
here we focus on better modeling contextual data and the
relation with the other components, rather than on the visual
classifier itself.

III. DISH RECOGNITION IN RESTAURANTS
A. Dish recognition in restaurants problem

Traditional food or dish recognition tries to identify the class
s of an input image from its visual descriptor x, using certain
visual classifier p (s|x). We focus on the more constrained
problem of dish recognition in restaurants, assuming that the
user is located within a restaurant. Thus, in addition to the
visual model, the system has access to additional contextual
information, in particular the menu of the restaurant and the
geographic location of both restaurants and users.

The recognition system takes the pair (uq,x) as input,
where g, are the local coordinates and the visual descriptor
x. When a new image is captured, we assume that the mobile
device has estimated its current location ¥, = (\;, ¢,) via

its location services, where A, and ¢, denote latitude and
longitude.

For a given restaurant k, the information the system exploits
is its menu M} (i.e. the list of dish categories served in
restaurant k) and its geographic location Wy, = (A, ¢k ). For
simplicity we use the local coordinates pr, = (ug,vy). The
restaurant database contains K restaurants with a combined
total of D = Ule Mk‘ dishes. The menu is represented as
My, = {s1,...,8p,}, where s; € {1,... D} is the i-th dish
in the restaurant menu M}, with D, different dishes.

B. Approach 1: shortlist

A simple yet effective way to include geolocalized knowl-
edge is by discarding unlikely candidates and thus reducing
the complexity of the problem. This approach is commonly
used in landmark recognition, often referred to as the shortlist
approach[47]. This approach uses location to discard all the
landmarks or buildings outside an area centered at p, and then
search for similar images within the remaining ones. Since the
remaining images belong to a fraction of the candidate classes,
the problem is easier, and can both save computation cost and
increase the accuracy.

This method can be easily adapted to our scenario[l, 45,
46], in which the user takes a photo of the dish and the
smartphone estimates the location via the operating system’s
location services. Since the photo is taken in one of the
restaurants within the geographical neighborhood, only the
dishes in the menus of those restaurants are likely to be the
actual dish in the photo, so the remaining classes can be
ignored in the result of the visual classifier (see Figure 1).
Given the coordinates p, and the visual feature x, predicting
the dish is equivalent to finding the dish with maximum
probability among the candidates

*

s* = argmax p(s|x) (1)

s€Uren, Mk

where H, is the set of candidate restaurants obtained as

H, :H(uq,e) = {k | Hllk*NqH <eVk= 1,...,K}
(2)
where ¢ is the maximum distance from the candidate restau-
rants to the test image.

IV. PROBABILISTIC FRAMEWORK
A. Model

While the underlying idea of the shortlist approach is very
intuitive, previous works[46, 45, 1] have implemented it in a
simple way and based on simple rules to connect each module.
In contrast, we adopt a probabilistic perspective, modeling
the system as the generative process of Figure 2. In this
way we can use probabilistic models to connect the different
components, rather than heuristic rules.

In our model, the device provides the estimated location p,,
and the visual feature x, which are the observed variables. The
actual location ¢, the restaurant k£ and the dish s are latent
variables. We introduce explicitly the dependency between the
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Figure 1. Overview of the baseline framework for dish recognition in
restaurants (i.e. shortlist method).
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Figure 2. The proposed probabilistic model. The estimated location p, and
the visual feature x are observed variables, and the actual location ¢, the
restaurant k£ and the dish s are latent variables.

restaurant and the dish (via the menu), the visual feature and
the dish (via the visual classifier) and the restaurant and the
location of the user. We explicitly introduce a new variable ¢
denoting the (true) location of the user, which is different from
the observed location p,, estimated by the location services of
the device.

Given the previous observed and latent variables, and the
graphical model, the joint distribution p (s, k, ¢|p,, x) can be
factorized as

p(s,k elpg.x) =p(elp,) pkle)p(slk,x) ()

In this factorization we can identify three factors:
the neighborhood model p(cp|uq), the restaurant location
model p (k|e) and the (restaurant-conditioned) visual model
p (s|k,x), which accounts for the explicit dependency on the
menu of k.

To predict the dish, we marginalize Equation (3) over k and

@
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The predicted dish can be then obtained by solving

s* = argmaxp (s|uq,x) (5)
se{1,...D}
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Figure 3. Modeling neighborhoods and restaurant locations: (a) shortlist

approach (piecewise disc and delta, respectively), and (b) alternative models
using Gaussian distributions.

B. Revisiting the shortlist approach

Now we can revisit the shortlist approach of Figure 2 from
this probabilistic perspective. Comparing Equation (1) and
Equation (3), we can easily identify the neighborhood model
as a circle of radius € centered at p,

o=ty < €] 6)

Restaurants are represented as points. Thus, the correspond-
ing restaurant location can be modeled with the delta function
as

PsL (‘P\Nq) =

psi (klp) = 3 (lo—pll) (7

For each restaurant, only the dishes in its menu are candidate
categories, and thus have non-zero probability. We can include
this fact in the visual model as

psL (8k,x) o p(s]x)[s € My] (8)

where [P] is 1 if the statement P is true, and O otherwise.
Note that Equation (8) can be normalized to recover the full
probability.
Using Equations (6), (7) and (8) in Equation (4) we obtain
K
(s]x) x [s € My]
k=1

/ llo=sel < (o=l o

K
ZSGMk/ 5 (llp = pgll) dep
pEH,

k=1

PsL (Sll'l'q7 X) xXp

=p(slx) |s€ U M, 9)

keH,

where H, = {¢| ¢ — p,|| < €} is the e-circular geograph-
ical neighborhood of the test image. Note that solving Equa-
tion (5) for Equation (9) is equivalent to solving Equation (1).

C. Alternative neighborhood and restaurant location models

Figure 3a illustrates the neighborhood and restaurant models
described in the previous section. We can see that both models
have obvious limitations. The hard-threshold neighborhood
model considers all the candidate classes equally probable, no
matter the restaurant is in the border of the neighborhood or
very close to the estimated location. A model with soft decay



would be more realistic (see Figure 3). Thus, instead of (6),
we use a Gaussian model for the neighborhood

G (Plig) =N (g, Bq) (10)

with 3, = 031.

Similarly, representing a restaurant with a point is not
realistic, as they cover certain spatial area. If we had full access
to the dimensions and layout of each restaurant we could use
it as p (k|ep). Unfortunately, we do not have that information,
so for convenience we simply use another Gaussian model

(1)

with ¥, = g = O'I%I, where we assume the same model for
all the restaurants. Note that Equation (11) collapses to the
model of Equation (7) when og = 0.

Using a probabilistic interpretation, we can consider the
menu as a prior over the global visual classifier model p (s|x),
with the menu modeled as p (s|k) = s‘eMl"] The resulting

restaurant-dependent visual model is
[SEEAIH

p(sh)

Using the new models from Equations (10), (11) and (12)
in Equation (4) we obtain the new marginal probability

(slx) x z_: [S;ﬁk]

< [ N (lig ) %N (g B e (13)
7

G (kle) = N (e|py, Zi)

PR (slk,x) = (12)

D (8|1, x) oxp

Using the following relation for the product of two multi-
variate Gaussians

N (lpg, Bo) N (plpi, Bi)
=N (eltrg, Zq + k) N (0]0,A)
A=zt +m)7
0 =A (2 ny+ 2 )

(14)

in Equation (13) we further obtain

K SEMk
P (8] pq: %) o<p (%) XZ A
-1

[N Gl By + 2 X A (616, 4) dp
7

K
x pls Y0 Sk A

— |Mk| (ll’k‘uqazq+2k)

15)

V. SOLVING OTHER TASKS

In this probabilistic framework, the joint distribution
p(s,k,¢|p,,x) can be used to perform inference over any
latent variables. So far, we focused on predicting the dish.
However, by marginalizing over other variables we can also
infer the restaurant and even the location. For these problems
we focus on the alternative model described in Section .IV-C.

A. Restaurant recognition

Marginalizing Equation (3) over s and ¢ we obtain

D
p (g, x) = Z/ p (s k. olpy, x) de
®

s=1

I
WE

p(8|k7X)/p(¢|uq)p(k|<p)dso (16)
)

@
I
—

and using Equations (6), (7) and (12) we obtain
p (klpg,x)

x / N (@l1g: ) % N (plitg, 1) dep
7
Lsenm, P(51%)

o N (bilbg: Bq + Zie) M| a7
The predicted restaurant is obtained as
k* = argmaxp (k\uq, x) (18)

ke{l,..K}

B. Location refinement

Typically, location services in mobile devices only leverage
radio signals, such as those from GPS or mobile stations. As a
byproduct of the probabilistic approach, we can also integrate
the knowledge about restaurants and the visual evidence to im-
prove the initial estimation of the location. This is particularly
useful in indoor environments with many restaurants such as
shopping malls, where some location signals (e.g. GPS) may
not be available or not reliable.

Marginalizing Equation (3) over s and k& we obtain

K s
p(Plig.x) =p(elrg) Y pkle) > plslk,x)  (19)
k=1 s=1
and using Equations (10), (11) and (12) we obtain
p (plpg,x) Zwk-/\/ |0k, Ar) (20)
with
Av= (20 ) 1)
0r = Ak (B, 1y + 2 ) (22)
s|x
gy = ZsGJVIkp( %) 23)

| M|

In Equation (20) we see that p (<p|uq,x) is modeled as a
mixture of Gaussians. The mean ¢, and covariance Ay of
the component k£ depend both on the initial estimation of the
location and the restaurant model. The weight wj accounts
for the evidence that the visual feature x comes from the
restaurant k.

In contrast to the dish and restaurant, the location ¢ is
a continuous variable. To find the location that maximizes



Algorithm 1 Location estimation algorithm.

Input: Initial location g, and visual feature x
Output: Location ¢
1: for k=1: K do
Compute Ay, 0 and wy, using Equations (21), (22) and
(23)
3: end for
4: Initialize ¢ = p,
5: repeat
6: fork=1:K do
7
8
9

»

Compute 7 () using Equation (25)
end for
: Update estimated location ¢ using Equation (24)
10: until converged
11: return ¢

Equation (20) we use a maximum likelihood approach. Setting
% Inp (go|uq,x) = 0 we obtain

1

M=

=) ()0 (24)
Zf:l Vi (‘P) k—1
where we define
N (0|0, A
i () = N (2100 Ar) (25)

Y1 wi (2185, A;)

Unfortunately, Equation (24) is not a closed-form expression
due to the dependency of ~x (@) on . However, we can
alternative estimate Ay, 0 and wy for fixed 7 (), and
then estimate 7 () with the updated Ay, 0 and wy (see
Algorithm 1).

VI. EXPERIMENTAL RESULTS
A. Experimental setup

Dataset. Most food benchmarks do not include
restaurant[25, 35, 36, 37, 48] or geographic location[1].
Dishes![46] is a restaurant-oriented food recognition dataset
that includes menus, restaurant locations and dish images,
crawled from www.dianping.com for six Chinese cities.
The selected restaurants have at least three different dishes
in the menu, and at least 15 images per dish. Following
Xu et al.[46], we use 10 images for training and the rest
as test images. We separate the data in the different cities
and studied them independently (more details about the
datasets are shown in Table I). Figure 4 shows the geographic
distribution of restaurants in the Beijing dataset.

Overview of the content. Dishes differs from other food
datasets in the type of content. To understand the type of
content we must pay attention to how the data was collected.
While most food datasets[1, 35, 48, 49] define a set of classes
and then collect data (either by manually taking photos or
querying a search engine), Dishes was collected in a restaurant
basis, without targeting specific classes. Only restaurants with
more than 3 dishes in the menu and dishes with more than 15
images are kept. Since the data is based on user contributions,

Uhttp://vipl.ict.ac.cn/isia/datasets_dish/index.html

Table 1
DATA USED IN THE EXPERIMENTS.
. #dishes #images
City Arestaurants Total  Per restaurant Total Per dish

Beijing 187 1173 6.27 45541 38.82
Shanghai 198 1253 6.33 37590 30.00
Tianjin 78 435 5.58 10811 24.85
Nanjing 64 328 5.13 7895 24.07
Hangzhou 62 371 5.98 9124 24.59
Guangzhou 57 272 4.77 6543 24.06

A

simmer Palace .
HAE

Figure 4. Geographic distribution of the restaurants in the Beijing dataset.
The window shows an example of dense area.

having enough images just depends on the interest of users
in taking photos and sharing them. Thus, the content rarely
includes uninteresting and everyday dishes (e.g. beef noodles),
because they are rarely shared, and thus not likely to be found
in the dataset. In contrast, popular and exotic dishes, or nicely
presented dishes are more commonly shared and consequently
likely to appear in Dishes (see Figure 5).

Thus, while a majority of restaurants and dishes are Chinese,
there is also a significant diversity of other cuisines (e.g. West-
ern, Japanese, Korean). Figure 5 shows examples of dishes
from the dataset. Most of them have attractive presentations,
which often differ from restaurant to restaurant.

Simulating test locations. Images in Dishes are crowd-
sourced from web data and lack accurate location data, other
than the location of the corresponding restaurant. This indirect
information is too coarse and not suitable to evaluate properly
the proposed methods. Thus, following Xu et al.[46], we
simulated the location of the test images assuming a simple
query location model®. This model includes two factors: the
location of the user within the restaurant r and the location
error g

(26)
27)

¢ = pptr
By = Pt+8
where ¢ is the location within the restaurant (used as ground

truth location) and g, is the actual location (used as estimated
location, i.e. provided by the location services of the device).

2This model is just for simulation purposes. Not to be confused with the
models in Sections IV and V.
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Figure 5. Examples of dish names and photos available in Dishes. Users tend to share exotic dishes and dishes with attractive presentations.

Both are obtained from the location p,, of the corresponding
restaurant k£, combined with the relative location within the
restaurant r and the error g of the location service of the
device (e.g. GPS). Since we do not have the layout of the
restaurant, we assume a square of L x L (L = 25 meters in
our experiments), which is modeled by two unidimensional
uniform distributions

L
r = 5(”(7131)31/{(7171)) (28)
and the error g is assumed Gaussian g,
g = N(0,080c1) (29)

with opoc = 40 meters in our experiments. This model is
illustrated in Figure 6, along with examples of simulated test
queries and their corresponding ground truth locations and
restaurants

Neighborhood parameters. The most important parameter
in the model is the size of the neighborhood, with the radius
specified either by e or o,. Note that ¢ is a parameter
of the shortlist method, which cannot be compared directly
with the parameter o, of the probabilistic method. For better
comparison, we inspected the recognition accuracy curves for
dish recognition and restaurant recognition accuracies, and
we found that ¢ = 30, gives a reasonable alignment. For
the probabilistic model, the support of a Gaussian function
is infinite, but in practice we set the probability to zero for
restaurants whose distance to the location of the test image is
larger than 100,. In our experiments we evaluated € in a range
from 10 to 2000 meters.

Visual features and classifier. For the visual classifier
we use a deep network (AlexNet architecture trained on
ILSVRC2012[38]), implemented with Caffe[50]. We extract
the activation of the layer fc7, and then train a regularized
logistic regressor for the particular dataset using Liblinear[51].

Training data. A problem with Dishes is that it imposes
very strict constrains on the required data in order to train
visual classifiers (at least 3 dishes per restaurant and at least
15 images per dish). This results in only a fraction of the
restaurants meeting these demanding requirements, and the

Locations (simulated)

Restaurant location
=+ Query location @ (ground truth)
X Estimated location pg (noisy)

Figure 6. A dense neighborhood with several restaurants and the resulting
simulated locations (with o,0c = 40 meters). The top right corner
shows how the estimated locations are simulated: from the location of the
restaurant g, we randomly sample a location ¢ within squared-shaped
restaurants (considered ground truth location) and then add noise to simulate
the location p, (used as the noisy estimation obtained in the device). A
circular neighborhood of radius 200 meters is shown for reference. Different
colors represent different restaurants. Better view in electronic version.

dataset is very sparse in geographic location. The consequence
is that often there is only one restaurant in the neighborhood.
In order to evaluate more realistic and challenging settings,
we also report the performance in cases with high density of
restaurants (e.g. shopping malls, food streets), defined as those
test queries whose e—neighborhood has at least 5 restaurants
(the example in Figure 6 has a relatively high density of
restaurants). Note that in this case the test set depends on
€, so the accuracies for different values of e are not directly
comparable, since they do not include the same queries. For
small neighborhoods, the number of test queries may be too
low to be representative.

Tasks and methods. We evaluate the three tasks described
earlier, i.e. dish recognition, restaurant recognition and loca-
tion refinement. We consider the following methods:

e Visual (VS): only considers visual information, ignores
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Figure 7. Dish recognition accuracy (Beijing dataset).

contextual (i.e. location nor restaurant information).

o Contextual (CX): only considers contextual information,
ignores visual.

o Location (LC): the input location information (i.e. p, in
our simulations).

o Shortlist (SL): baseline described in Section III-B.

e Probabilistic (PR): proposed methods described in Sec-
tions IV-C and V.

Evaluation metrics. In most of the experiments we report the
recognition accuracy. However, since the dataset is imbalanced
with different classes having different number of test images,
we also report the average per class accuracy as a comple-
mentary quality index. For location refinement we report the
distance to the (simulated) ground truth location ||—@||.

B. Dish recognition

Table IT and Figure 7 compare the average accuracy of the
shortlist and probabilistic methods. In order to evaluate the
contribution of the content and the context, we also include
two baselines: the visual classifier (without considering loca-
tion nor prior knowledge) and a purely contextual classifier,
which ignores visual information. The latter only considers
the dishes of the restaurants the neighborhood, and then
chooses randomly one of the candidate dishes, since they are
equally probable (this is the best we can do without visual
information).

As expected, visual information is very important, and
visual already achieves remarkable accuracies between 54-
70%. The context by itself is less reliable, but contexutal
can reach up to 17%. Combining both type of information
increases notably the performance (by 13-25%), which makes
the system much more competitive. Both shortlist and proba-
bilistic achieve a similar best accuracy, with the later being
slightly better. However, shortlist is very sensitive to the
specific choice of the neighborhood size €, while probabilistic
is much more robust and the accuracy depends less on o4, in
general benefiting from larger neighborhoods.
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Figure 8. Restaurant recognition accuracy (Beijing dataset).

C. Restaurant recognition

For this second task we evaluate the accuracy for restau-
rant recognition using the proposed probabilistic model (Sec-
tion V-A). Using only location information, we include the
nearest restaurant to the estimated location p, as a baseline.
We also include another baseline based on selecting the
coordinates of the restaurant with the dish detected by shortlist
(if several restaurants have that dish, we select the nearest to
t,). The results are shown in Table III and and Figure 8.

Due to the sparsity in the location and the large number of
cases with only one restaurant in the neighborhood, a purely
location-based approach has already good performance. In this
case, visual classification is not so reliable unless the accuracy
is very high. Otherwise a wrong prediction would often lead
to a wrong restaurant, and a drop in restaurant recognition
accuracy. Thus, the performance here is also very dependent
on the particular choice of e. Finally, probabilistic is more
robust to the choice of o, and significantly outperforms the
other two methods by effectively combining both location and
visual information, with a remarkable accuracy of 91.06% in
dense areas.

D. location refinement

Finally, we evaluate the potential of the proposed model to
refine the estimated location by incorporating visual evidence
about the dish and prior information about the restaurants.
As we simulated the location of test images, we can measure
the error in the estimated location using different methods
(see Table IV). We compare the restaurant location estimated
using the iterative method of Algorithm 1 (probabilistic), and
compared with the initial estimation g, and the coordinates of
the restaurant predicted by shortlist, as in the previous section.

By incorporating visual evidence and prior knowledge about
the location of the restaurant, the error in the estimation can
be reduced dramatically, from 50 to less than 5 meters. The
probabilistic method generally improves for larger €, while
shortlist is very sensitive to the performance of the visual
classifier, and consequently to the value of € (see Figure 9).



Table II
DISH RECOGNITION ACCURACY.

Radius All (> 0 restaurants) Dense (> 5 restaurants)
Dataset € (SL) Accuracy (%) Average class accuracy (%) Accuracy (%)
304 (PR) VS CX SL PR VS CX SL PR CX SL PR
50 11.21 42.45 77.5 1296  40.17 74.34 N/A N/A 74.14
200 11.59 7793 78.24 13.85 7431 74.76 736 7647 78.64
500 54.75 1092 7622 76.70 | 50.31 1244  72.14 73.19 947 7299 76.52
Beijing 1000 11.09 7348 74.76 1297 68.86 70.82 9.62 7242 74.79
2000 11.37 69.85 71.70 13.54 6471 67.33 | 11.12  69.06 71.63
Best 11.67 7793 78.58 1420 7431 75.28
(e, 30¢) (700) (200)  (100) (700) (200)  (100) )
50 11.28 4132 7549 11.03 39.63 72.28 2.06 69.94 70.38
200 11.12 7499 75.97 1072 7170  72.54 4.63 71.01 74.74
500 54.04 1145 7246 74.09 | 51.67 11.24  69.11 70.67 8.99  70.29 73.50
Shanghai 1000 11.36  69.60 72.03 1096 6641 6849 | 1027 67.82 71.66
2000 11.33 6526 69.04 11.21 6190 6524 | 10.82 64.50 69.04
Best 11.91 7499 7637 11.56  71.70  73.03
(e, 30¢) (90) (200)  (100) (90) (200)  (100) )
Tianjin 50 12.55 4197 78.10 1434 4171  77.81 2.08 59.72 70.98
200 1235 77777 78.35 13.89  77.23  78.02 5.56 7223 77.65
500 61.45 12.52 7511 76.74 | 59.31 14.00 7435 76.23 7.81 72.55 75.75
1000 13.08 72.81 74.62 1416 7175 73.67 | 10.79 71.74 74.38
2000 12.83  69.52 72.05 13.89 6795 70.71 | 1239 68.74 71.98
Best 13.31 7177  78.78 1450 77.23 7845
(e, 30¢) (100) (200) (90) (100) (200) (90) )
Nanjing 50 1549 4195 76.84 1642 42,10 77.03 N/A N/A 68.83
200 1590 7574 7492 16.39 76.80 77.48 5.66  75.84 74.92
500 60.15 16.25  74.13  75.67 | 60.37 1736  73.86 75.84 | 12.86 70.70 74.49
1000 1554  69.25 7294 1632 69.06 7273 | 13.99 66.58 71.75
2000 16.23 6644 69.21 17.64 6622 69.04 | 15.14 64.34 68.72
Best 1634 7677 7744 17.82 7680 77.59
(e, 30q) (400) (200)  (100) (400) (200)  (100) )
50 14.19  46.21 82.71 16.18  44.89  79.38 N/A N/A 74.88
200 14.37 8347 84.78 1629  79.67 81.32 6.12 7927 83.75
500 69.56 14.19 8147 83.39 | 63.85 16.15 7721 79.74 | 10.83 79.18 83.98
Hangzhou 1000 1498 7883 81.55 17.21 74.00 77.47 | 13.80 75.84 81.43
2000 13.54 7523  78.65 1475 7052 7342 | 1295 75.13 78.65
Best 14.98 83.47 84.85 17.21 79.67 81.52
(e, 304) (1000)  (200)  (100) (1000)  (200)  (100)
50 16.30  40.72 74.84 16.45 3959 7342 6.06  79.80 72.68
200 16.77 7546  75.52 16.77  74.11 74.21 7.93 71.90 74.35
500 62.88 16.06  73.53 7452 | 61.56 16.15 72.12 7325 | 11.19 71.31 73.76
Guangzhou 1000 16.69  70.86  72.85 16.62  69.22 7147 | 1551 69.33 72.76
2000 16.66  68.38  70.15 16,70  66.71 68.41 16.20  68.09 69.98
Best 17.21 75.46  75.67 1779 7411 74.37
(e, 30q) (70) (200)  (100) (70) (200)  (100)

VS: visual (no Iocation), CX: only context (no visual), SL: shortlist, PR: probabilistic.

When the visual accuracy drops, either due to a more complex
problem in denser areas or to a not suitable value of ¢, the error
increases dramatically.

VII. DISCUSSION AND CONCLUSIONS

Even for humans, dish recognition in the wild is extremely
challenging, and in general cannot be solved only from the
visual image without some prior and contextual knowledge.
Integrating different visual and contextual cues is a natural
process in humans to formulate an educated guess. Similarly,
in this paper we describe an approach to perform different
recognition tasks related with the dining out in restaurants

scenario, by taking advantage of visual information, geograph-
ical context, and prior knowledge about the restaurants. We
formulate the problem in a probabilistic framework, which
allows us to perform inference over different hidden vari-
ables leading to different recognition tasks. Compared with
a more simple model (the shortlist approach), the proposed
probabilistic approach combines better and more robustly the
different cues achieving better performance. Often, integrating
heterogeneous and apparently unrelated cues is the key to solve
complex problems. For example, we showed experimentally
that taking a look to your meal may be helpful to better
estimate where you are, provided you are familiar with the
restaurants in the area.



Table III
RESTAURANT RECOGNITION ACCURACY.

Radius All (> 0 restaurants) Dense (> 5 restaurants)

Dataset € (SL) Accuracy (%) Average class accuracy (%) Accuracy (%)
304 (PR) CX SL PR CX SL PR SL PR
50 5217 9527 51.93 96,79 N/A 87.79
200 95.19 9597 95.63 97.14 86.94 93.06
500 84.30 9225 93.00 | 88.75 91.56 94.55 85.40 92.17
Beijing 1000 87.55 88.81 86.18 90.82 84.58 88.25
2000 82.25 8293 79.49 85.44 80.64 82.89

Best 95.19 96.56 95.63 97.60

(e, 30q) (200)  (100) (200) (100)
50 51.53  93.68 51.27 94.06 81.33 83.84
200 92.13 94.01 91.74 94.30 83.04 92.48
500 71,42 87.56 90.67 | 72.22 87.56 90.67 83.39 89.94
Shanghai 1000 82.81 85.82 82.81 85.82 80.36 85.41
2000 76.48  80.22 76.48 80.22 75.55 80.22

Best 92.13  94.72 91.74 94.98

(e, 30q) (200)  (100) (200) (100)
50 51.37  94.77 51.19 95.95 80.56 87.73
200 9423  95.19 95.34 96.50 88.04 93.32
500 68.58 90.19 9237 | 7544 90.82 94.19 85.89 91.20
Tianjin 1000 86.78  88.35 86.62 90.62 84.02 88.19
2000 81.83  83.67 80.99 85.88 80.71 83.58

Best 9423  95.68 95.34 96.75

(e, 30q) (200)  (100) (200) (100) )

50 53.11  96.99 52.93 96.96 N/A 88.83
200 96.47 9746 96.23 97.64 91.26 96.87
500 82.21 9153 9430 | 8349 90.50 95.00 88.22 93.73
Nanjing 1000 84.07 89.01 83.51 90.39 81.52 88.02
2000 7991 81.84 79.03 84.45 77.90 81.22

Best 96.47 97.77 96.23 97.82

(e, 30q) (200)  (100) (200) (100)
50 5344 95.07 53.87 95.61 N/A 85.10
200 9536 97.19 95.19 97.25 88.51 95.71
500 82.66 9237 9470 | 85.85 91.42 95.28 87.69 93.84
Hangzhou 1000 88.64 91.24 86.78 92.04 83.81 91.00
2000 83.80  85.50 81.30 87.06 83.28 85.50

Best 9536 9745 95.19 97.57 -

(e, 30q) (200)  (100) (200) (100)
50 51.50  95.29 51.00 95.67 92.93 91.07
200 95.81  96.00 95.35 96.59 91.93 94.23
500 7743  92.00 94.04 | 7894 91.79 94.80 87.79 93.60
Guangzhou 1000 87.58 90.35 87.50 91.91 85.67 90.14
2000 83.31 85.59 83.27 87.75 82.82 85.22

Best 95.81 96.42 95.35 96.93

(e, 30q) (200)  (100) (200) (100)

CX: only context (no visual), SL: shortlist, PR: probabilistic.



Table IV
LOCATION REFINEMENT ERROR.

Radius Average error (meters)
Dataset € (SL) All (> 0O restaurants)

304 (PR) LC CX SL PR

50 34.86 34.28

200 4.75 6.51

500 50.14 8.53 1593 4.78

Beijing 1000 58.01 4.53
2000 170.23 4.47

Best 4.75 4.47
(e, 30¢) (200) (2000)

50 34.58 24.09

200 6.65 6.06

500 50.27 9.58 25.17 4.33

Shanghai 1000 68.51 4.07
2000 227.28 4.01

Best 6.65 4.01
(e, 304) (200) (2000)

Tianjin 50 34.83 23.78
200 4.75 5.70

500 50.21 10.24 21.47 3.98

1000 51.70 3.72

2000 157.23 3.66

Best 4.75 3.66
(e, 30¢) (200) (2000)

Nanjing 50 34.16 23.65
200 3.25 4.89

500 50.21 6.85 23.54 3.03

1000 95.39 2.74

2000 180.91 2.69

Best 3.25 2.69
(e, 30¢) (200) (2000)

50 34.60 24.65

200 4.80 7.40

500 50.15  10.11 17.40 5.74

Hangzhou 1000 51.48 5.49
2000 143.10 5.43

Best 4.80 5.43
(e, 30¢) (200) (2000)

Guangzhou 50 34.25 23.34
200 3.48 4.64

500 50.16 8.11 17.26 2.89

1000 57.92 2.62

2000 137.09 2.58

Best 3.48 2.58
(e, 30¢) (200) (2000)

LC: initial Tocation, i.e. [T SL: shortlist, PR: probabilistic.

The restaurant scenario poses many challenges in practice
that can be addressed in future works. Current datasets and
recognition methods still have some limitations. While the
Dishes dataset is an important step towards evaluate food
recognition in a realistic restaurant context, we currently face
two limitations. First, photos still lack real location and other
useful contextual information, which are desirable for more
realistic experiments. One possible direction is designing more
accurate models for neighborhoods and restaurants. New types
of information can be also incorporated in the framework
(e.g. time). In addition, the proposed approach requires train-
ing discriminative classifiers, which limits its applicability
to those restaurants with enough training images (10 in our
experiments). Future works can address this limitation and
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Figure 9. Location refinement error (Beijing dataset).

propose solutions that can deal with fewer training samples
or leveraging other type of information could increase the
coverage in practice.
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