|
Albert Gordo, Florent Perronnin and Ernest Valveny. 2012. Document classification using multiple views. 10th IAPR International Workshop on Document Analysis Systems. IEEE Computer Society Washington, 33–37.
Abstract: The combination of multiple features or views when representing documents or other kinds of objects usually leads to improved results in classification (and retrieval) tasks. Most systems assume that those views will be available both at training and test time. However, some views may be too `expensive' to be available at test time. In this paper, we consider the use of Canonical Correlation Analysis to leverage `expensive' views that are available only at training time. Experimental results show that this information may significantly improve the results in a classification task.
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez and Horst Bunke. 2012. Writer Identification in Old Handwritten Music Scores. In Copnstantin Papaodysseus, ed. Pattern Recognition and Signal Processing in Archaeometry: Mathematical and Computational Solutions for Archaeology. IGI-Global, 27–63.
Abstract: The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores. Even though an important amount of compositions contains handwritten text in the music scores, the aim of our work is to use only music notation to determine the author. The steps of the system proposed are the following. First of all, the music sheet is preprocessed and normalized for obtaining a single binarized music line, without the staff lines. Afterwards, 100 features are extracted for every music line, which are subsequently used in a k-NN classifier that compares every feature vector with prototypes stored in a database. By applying feature selection and extraction methods on the original feature set, the performance is increased. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving a recognition rate of about 95%.
|
|
|
Dena Bazazian, Dimosthenis Karatzas and Andrew Bagdanov. 2018. Word Spotting in Scene Images based on Character Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.1872–1874.
Abstract: In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.
|
|
|
Ilke Demir, Dena Bazazian, Adriana Romero, Viktoriia Sharmanska and Lyne P. Tchapmi. 2018. WiCV 2018: The Fourth Women In Computer Vision Workshop. 4th Women in Computer Vision Workshop.1941–19412.
Abstract: We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
Keywords: Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning
|
|
|
Albert Gordo, Jose Antonio Rodriguez, Florent Perronnin and Ernest Valveny. 2012. Leveraging category-level labels for instance-level image retrieval. 25th IEEE Conference on Computer Vision and Pattern Recognition. IEEE Xplore, 3045–3052.
Abstract: In this article, we focus on the problem of large-scale instance-level image retrieval. For efficiency reasons, it is common to represent an image by a fixed-length descriptor which is subsequently encoded into a small number of bits. We note that most encoding techniques include an unsupervised dimensionality reduction step. Our goal in this work is to learn a better subspace in a supervised manner. We especially raise the following question: “can category-level labels be used to learn such a subspace?” To answer this question, we experiment with four learning techniques: the first one is based on a metric learning framework, the second one on attribute representations, the third one on Canonical Correlation Analysis (CCA) and the fourth one on Joint Subspace and Classifier Learning (JSCL). While the first three approaches have been applied in the past to the image retrieval problem, we believe we are the first to show the usefulness of JSCL in this context. In our experiments, we use ImageNet as a source of category-level labels and report retrieval results on two standard dataseis: INRIA Holidays and the University of Kentucky benchmark. Our experimental study shows that metric learning and attributes do not lead to any significant improvement in retrieval accuracy, as opposed to CCA and JSCL. As an example, we report on Holidays an increase in accuracy from 39.3% to 48.6% with 32-dimensional representations. Overall JSCL is shown to yield the best results.
|
|
|
Albert Gordo and Florent Perronnin. 2011. Asymmetric Distances for Binary Embeddings. IEEE Conference on Computer Vision and Pattern Recognition.729–736.
Abstract: In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH) and Semi-Supervised Hashing (SSH). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques. We also propose a novel simple binary embedding technique – PCA Embedding (PCAE) – which is shown to yield competitive results with respect to more complex algorithms such as SH and SSH.
|
|
|
Josep Llados, Enric Marti and Juan J.Villanueva. 2001. Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1137–1143.
Abstract: The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.
|
|
|
Ernest Valveny, Robert Benavente, Agata Lapedriza, Miquel Ferrer, Jaume Garcia and Gemma Sanchez. 2012. Adaptation of a computer programming course to the EXHE requirements: evaluation five years later.
|
|
|
Ernest Valveny and Enric Marti. 2003. A model for image generation and symbol recognition through the deformation of lineal shapes. PRL, 24(15), 2857–2867.
Abstract: We describe a general framework for the recognition of distorted images of lineal shapes, which relies on three items: a model to represent lineal shapes and their deformations, a model for the generation of distorted binary images and the combination of both models in a common probabilistic framework, where the generation of deformations is related to an internal energy, and the generation of binary images to an external energy. Then, recognition consists in the minimization of a global energy function, performed by using the EM algorithm. This general framework has been applied to the recognition of hand-drawn lineal symbols in graphic documents.
|
|
|
Gemma Sanchez, Josep Llados and K. Tombre. 2002. A mean string algorithm to compute the average among a set of 2D shapes. PRL, 23(1-3), 203–214.
|
|