|
Abstract |
The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores. Even though an important amount of compositions contains handwritten text in the music scores, the aim of our work is to use only music notation to determine the author. The steps of the system proposed are the following. First of all, the music sheet is preprocessed and normalized for obtaining a single binarized music line, without the staff lines. Afterwards, 100 features are extracted for every music line, which are subsequently used in a k-NN classifier that compares every feature vector with prototypes stored in a database. By applying feature selection and extraction methods on the original feature set, the performance is increased. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving a recognition rate of about 95%. |
|