
Leveraging Category-Level Labels For Instance-Level Image Retrieval
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Abstract

In this article, we focus on the problem of large-scale

instance-level image retrieval. For efficiency reasons, it is

common to represent an image by a fixed-length descriptor

which is subsequently encoded into a small number of bits.

We note that most encoding techniques include an unsuper-

vised dimensionality reduction step. Our goal in this work

is to learn a better subspace in a supervised manner. We es-

pecially raise the following question: “can category-level

labels be used to learn such a subspace?”

To answer this question, we experiment with four learn-

ing techniques: the first one is based on a metric learn-

ing framework, the second one on attribute representations,

the third one on Canonical Correlation Analysis (CCA) and

the fourth one on Joint Subspace and Classifier Learning

(JSCL). While the first three approaches have been applied

in the past to the image retrieval problem, we believe we are

the first to show the usefulness of JSCL in this context.

In our experiments, we use ImageNet as a source of

category-level labels and report retrieval results on two

standard datasets: INRIA Holidays and the University of

Kentucky benchmark. Our experimental study shows that

metric learning and attributes do not lead to any significant

improvement in retrieval accuracy, as opposed to CCA and

JSCL. As an example, we report on Holidays an increase in

accuracy from 39.3% to 48.6% with 32-dimensional repre-

sentations. Overall JSCL is shown to yield the best results.

1. Introduction

We consider the problem of query-by-example instance-

level image retrieval: given a query image of an object or a

scene, we want to retrieve within a potentially large dataset

other instances of the exact same object or scene.

Most state-of-the-art large-scale retrieval systems consist

in extracting local descriptors, such as SIFT [24], and ag-
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gregating them into a fixed-length vector. Within this broad

framework, we can distinguish two fairly different lines of

research. The first one is based on the bag-of-visual-words

(BOV) framework [33] and describes an image as a very

high-dimensional and very sparse histogram of visual-word

counts. Retrieval efficiency is achieved through the use of

inverted files. While such an approach can obtain excellent

results [17, 27], it is difficult to scale to more than a couple

of millions of images without dedicated hardware. The sec-

ond one consists in describing images with typically smaller

and denser vectors, such as the GIST [26], the Fisher vec-

tor [28, 30] or the VLAD [20], and then performing some

form of encoding. It has been shown that, even with fairly

small codes consisting of a few hundreds of bits, this ap-

proach could yield excellent results at a very low cost (see

e.g. [38, 31, 29, 20, 12]). In this work, we follow this second

line of research.

We note that most encoding techniques include a pro-

jection step which is generally learned in an unsupervised

manner. Our goal in this paper is to learn a better projection

by leveraging labeled data to improve the retrieval accuracy

for a target compression rate (or the compression rate for

a target accuracy). Note that, since we learn the dimen-

sionality reduction in a manner which is independent of a

particular encoding technique, our work has the potential to

impact a broad range of retrieval algorithms.

An important question is the source of labeled data

which we should use for supervised learning. Since our

goal is to perform instance-level retrieval, it would only

seem natural to use datasets labeled at the instance level.

However, these datasets are typically small and as a conse-

quence insufficient to learn a good subspace (this is shown

experimentally in section 7.2). For instance, the two stan-

dard instance-level datasets we use in our experiments con-

tain only 1,500 and 10,000 images approximately. On the

other hand, there exist very large datasets of images anno-

tated at the category-level such as ImageNet [9] which con-

tains as of today around 14M images of 22,000 categories.

Therefore, we ask in this paper the following question: can

category-level labels be used to improve instance-level im-

age retrieval?.
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Figure 1. Results for four Holiday queries on a dataset of 1M+ images. For each query (left image), we show the top 5 retrieved images

using PQ codes of 128 bits: the top row corresponds to the PCA projection baseline and the bottom row to the semantic projection with the

proposed JSCL. Green frames denote correct results. See section 7 for experimental details.

This actually calls for another question: why should

category-level labels help instance-level retrieval in the first

place? We note that typical instance-level retrieval systems

sometimes make gross mistakes, i.e. return among the top

ranked results images which are visually similar but seman-

tically unrelated. Injecting category-level information in the

dimensionality reduction step should guide the retrieval sys-

tem towards more semantically consistent results as shown

for instance in Figure 1.

We propose to experiment with four algorithms which

learn a set of projections from labeled data. The first one

is based on metric learning and casts the problem of di-

mensionality reduction as that of learning a low-rank Ma-

halanobis metric [1, 6]. Using a large margin framework,

similar images are enforced to be closer in the subspace than

dissimilar ones. The second one proposes to learn a set of

classifiers and to represent an image as a vector of attribute

scores [35, 34, 11]. The similarity between two images is

then computed in this attribute space. The third one is based

on Canonical Correlation Analysis (CCA) [14] and per-

forms an embedding of labels and images in a common sub-

space in which the similarity can be computed [2, 12]. The

fourth one consists in learning jointly a subspace and classi-

fiers (JSCL). The classifiers are subsequently discarded and

only the subspace information is used for retrieval.

Our experiments show that the joint classifier and sub-

space learning approach performs best. For instance, in

large-scale experiments on the Holidays dataset, we im-

prove the PCA baseline from 39.3% to 48.6% for a target

of 32 dimensions. Hence our two main contributions in this

paper are to show (i) that category-level labeled data can

be leveraged to improve instance-level retrieval and (ii) that

jointly learning a set of classifiers and a dimensionality re-

duction using a large margin framework achieves this goal.

The remainder of this article is organized as follows. In

the next section we review the related work. In sections 3

to 6, we describe the subspace learning approaches we ex-

perimented with: metric learning, attributes, CCA and joint

classifier and subspace learning. In section 7 we compare

these four algorithms on two public benchmarks.

2. Related Work

We now review related work in the fields which are clos-

est to our large-scale retrieval problem – data encoding,

metric learning and attribute-based retrieval – while empha-

sizing the differences with our own work.

Data encoding. Many works have proposed to trans-

form high-dimensional vectorial representations into com-

pact codes. This includes Locality Sensitive Hashing (LSH)

[15, 5], Spectral Hashing (SH) [38], Hamming Embedding

(HE) [17], Locality Sensitive Binary Coding (LSBC) [31],

Packing [18], Semi-Supervised Hashing (SSH) [36], Trans-

form Coding (TC) [4], PCA Embedding (PCAE) [13], Iter-

ative Quantization (ITQ) [12] or Product Quantization (PQ)

[19, 20]. Despite the significant differences between these

algorithms, all of them include a projection of the origi-

nal image signatures into an intermediate real-valued space,

as noted for instance in [13]. The projections are either

random (as in LSH, LSBC, HE or Packing) or learned in

an unsupervised manner, for instance with PCA (as in SH,

TC, SSH, PCAE, PQ) or with an algorithm which reduces

the quantization error (as in ITQ). The only work we are

aware of which leverages labeled data to learn better embed-

dings for large-scale retrieval is that of Gong and Lazebnik



[12]. For this purpose, they propose to use CCA. This is

one of the approaches we will experiment with (c.f . section

5). Note however that [12] uses category-level labels to im-

prove category-level retrieval (also referred to as “semantic”

retrieval) while we are interested in leveraging category-

level labels to improve instance-level retrieval.

Metric learning1. Several works have proposed to lever-

age category-level labels to learn a similarity measure (or a

distance) between two image descriptors. Note that there

is a significant body of work in the machine learning com-

munity on how to “learn to retrieve” [21, 37, 1, 6, 7]. Met-

ric learning has application to category-level image retrieval

[6] but also to problems such as domain adaptation [22].

Attributes. An alternative to metric learning which

has recently become popular consists in learning a set of

attributes and in describing an image by a vector of at-

tribute scores (see [23, 35, 34, 11, 8, 10, 32] among others).

Again, almost all these works have considered the prob-

lem of leveraging category-level labeled data to improve

category-level retrieval. A noticeable exception is the work

of Douze et al. who proposed to use category-level labels

to improve instance-level retrieval by fusing Fisher vectors

and attributes [11]. Therefore, we will experiment with at-

tributes in our study (c.f . section 4). However, while [11]

reports a significant accuracy improvement with respect to

a PCA baseline, our results are somewhat different (c.f . sec-

tion 7.3).

3. Metric Learning

In an image retrieval task, let q, d ∈ R
D denote the

D-dimensional feature vectors representing a query and a

database image, respectively. We consider parametric im-

age similarities given by the bilinear form

s(q, d) = qT Wd, (1)

where W ∈ R
D×D. When W = I , s(q, d) reduces to the

dot-product. Instead of optimizing W directly, we consider

the decomposition W = UT U , as proposed for instance in

[1], where U ∈ R
R×D (with R < D). Then Eq. (1) can be

re-written as

s(q, d) = qT UT Ud = (Uq)T (Ud). (2)

Eq. (2) is interesting from the point of view of data com-

pression, since it expresses the similarity as a dot-product in

a low dimensional space given by the projection matrix U .

Optimizing U thus amounts to finding the linear sub-space

in which the dot-product is an optimal similarity measure.

A natural framework to learn U is the large margin rank-

ing framework [1]. Given a query q, a relevant image d+

1In what follows, we abuse the language and use the term “metric learn-

ing” to refer to the body of work which includes both distance and similar-

ity learning

and an irrelevant image d−, a good similarity measure sat-

isfies the property: s(q, d+) > s(q, d−), i.e. matching pairs

should have a higher similarity than non-matching pairs.

Given a set of triplets (q, d+, d−), the goal is to minimize

an upper-bound on the ranking loss:

∑

(q,d+,d−)

max{0, 1− s(q, d+) + s(q, d−)}. (3)

Since it is typically infeasible to scan all possible triplets,

this loss function can be optimized using Stochastic Gradi-

ent Descent (SGD) [3]. Following straightforward deriva-

tions, it is possible to show that the training procedure con-

sists in repeating the two following steps: (i) sample a triplet

(q, d+, d−) randomly, and (ii) perform the gradient update

U ← U + ηU(q∆T + ∆qT ) (4)

if the lossmax{0, 1−s(q, d+)+s(q, d−)} is positive, where
∆ = d+ − d− and η is the learning rate. Although the ob-

jective function (3) is not convex after the low-rank decom-

position, it was shown in [1] that good results are obtained

in practice by initializing the values of U randomly (from

a zero-mean Normal distribution). We also experimented

with an initialization from the PCA solution but this did not

make a major difference. Also, following [1] we do not reg-

ularize U explicitly (e.g. by penalizing the Frobenius norm

of U ) but implicitly with early stopping.

4. Attributes

The principle of attribute-based representations is to de-

scribe an image with respect to a set of K “discriminative”

concepts A = {a1, . . . aK} referred to as attributes. The

relevance s(q, ak) of the image q with respect to each at-

tribute ak is measured and the final representation is a K-

dimensional vector of attribute scores:

[s(q, a1), . . . , s(q, aK)] . (5)

In the vast majority of cases, the attributes are learned us-

ing a large margin framework2, e.g. by training one binary

Support Vector Machine (SVM) classifier for each attribute

[23, 35, 34, 11, 8, 32]. If the number of attributes is smaller

than the number of dimensions in the original space (a de-

sirable property in general), then this representation can be

understood as the projection of a high-dimensional repre-

sentation onto a “semantic subspace”. Simple metrics, such

as the dot-product of the Euclidean distance are typically

used to measure the similarity within the attribute space.

2An exception is [10] which uses k-NN classification to measure the

relevance of an image with respect to an attribute. While this approach was

reported to yield excellent results for category-level retrieval, we found it

to yield poor results in our instance-level retrieval scenario.



An issue with the attribute-based approach is that the di-

mensionality of the subspace is fixed given the number of

attribute classes. However, in practice, one would like to be

able to tune the dimensionality of the subspace based, for

instance on a target compression factor. Douze et al. ex-

plored two simple approaches to circumvent this problem

[11]. The first one consists in selecting a subset of attribute

classes while the second one simply consists in applying

PCA on the vector of attribute scores. Since the later ap-

proach was found to yield better results, this is the one we

used in our own experiments. Note that Douze et al. also

proposed to merge Fisher vectors and attribute vectors by

concatenating these representations. This is an approach we

will also evaluate in section 7.3.

5. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [14] is a well-

known tool for multi-view dimensionality reduction. In a

nutshell, the goal of CCA is to project the multiple views

into a common subspace where the correlation is maximal.

Let us consider a set of N samples, and let A ∈ R
Da×N

and B ∈ R
Db×N be two views of the data represented by

mean-centered column feature vectors. In general, the di-

mensionality of the vectors in A and B are different, i.e.

Da 6= Db. Let us also define the matricesCaa = AAT +ρI ,
Cbb = BBT + ρI , Cab = ABT , and Cba = CT

ab, where

ρ is a small regularization factor usually added to avoid nu-

merically ill-conditioned situations.

The goal of CCA is to find a projection of each view that

maximizes the correlation between the projected represen-

tations. This can be expressed as:

argmax
u∈RDa ,v∈R

D
b

uT Cabv (6)

s.t. uT Caau = 1 and vT Cbbv = 1. (7)

u and v are respectively the projections that embed the

data from A and B into a one-dimensional common sub-

space where the correlation is maximal. To obtain a sub-

space of R dimensions we need to solve equation (6) R
times to obtain the set of projections {u1, u2, . . . , uR} and
{v1, v2, . . . , vR}, subject to them being uncorrelated. This

can be casted as a symmetric eigenvalue problem:

C−1
aa CabC

−1
bb CbauR = λ2

RuR. (8)

The R leading eigenvectors of equation (8) constitute the

projection matrix U ∈ R
R×Da used to embed A into the

R-dimensional subspace. The embedding of B, if needed,

can be solved analogously.

In [12], CCA was used to perform supervised dimen-

sionality reduction using respectively the image descriptors

and labels as the two views. The labels were encoded as a

matrix B ∈ {0, 1}K×N , where K is the number of classes,

and where Bk,n = 1 if image n belongs to category k, and
0 otherwise. In such a case, CCA can be understood as an

embedding of images and labels in a common subspace.

6. Joint Subspace and Classifier Learning

As is the case of CCA, we seek to embed labels and im-

ages in a common subspace. However, we wish to do so in

a large margin framework. Given an image and a set of rel-

evant and irrelevant labels, we want to enforce the relevant

labels to be closer to the image in the subspace than the

irrelevant ones. This process can be understood as jointly

learning a set of classifiers and a dimensionality reduction.

This is more optimal than learning a set of attribute classi-

fiers and then a dimensionality reduction as in [11].

We now describe the mathematical framework. Let q
be an image descriptor and let y be a category. We as-

sume that q ∈ R
D and that there are K categories, i.e.

y ∈ {1, . . . , K}. Let us measure the relevance of y with

respect to q (i.e. the score of class y on q) as follows:

s(q, y) = (Uq)T wy (9)

where U ∈ R
R×D matrix which projects q in a R dimen-

sional subspace (with R < D and R ≤ K) and wy is the

classifier of class y in the low-dimensional space. Hence,

the projection matrix U is shared across all classes. Given a

set of triplets (q, y+, y−) where y+ is relevant to q and y−

is irrelevant to q (i.e. q is labeled with y+ but not with y−),

we minimize an upper-bound on the label ranking loss:

∑

(q,y+,y−)

max
{

0, 1− s(q, y+) + s(q, y−)
}

(10)

Weston et al. proposed a similar objective function in [16]

for annotation purposes. In what follows, we choose to op-

timize equation (10) because it is more similar to the met-

ric learning framework of [1] that we use as a baseline and

therefore, it offers a fairer comparison. Note that we also

ran experiments with the objective function proposed by

Weston et al. and we found it to yield very similar results.

As was the case for metric learning, this objective func-

tion can be optimized with SGD by sampling a triplet

(q, y+, y−). If the loss max {0, 1− s(q, y+) + s(q, y−)}
is positive, then the following update rules are applied:

U ← U + η(wy+ − wy−)qT (11)

wy+ ← wy+ + ηUq (12)

wy− ← wy− − ηUq (13)

where η is again the learning step size. As was the case for

metric learning, we initial the matrix U randomly (from a

zero-mean Normal distribution). and use early stopping for

regularization. After learning, we discard the classifiers wy

and keep only the projection matrix U .



7. Experimental validation

We first describe the datasets and features we used in our

experiments. We then provide results for the metric learning

and attribute-based approaches. Finally, we present results

for the two label-image embedding techniques: CCA and

joint classifier and subspace learning.

7.1. Datasets and features

Datasets. We use the two following public benchmarks

for evaluation. INRIA Holidays3 [17] contains 1,491 im-

ages of 500 scenes and objects. One image per scene / ob-

ject is used as query to search within the remaining 1,490

images and accuracy is measured as the Average Precision

(AP) averaged over the 500 queries (mAP). The University

of Kentucky Benchmark (UKB)4 [25] contains 10,200 im-

ages of 2,550 objects. Each image is used in turn as query to

search within the 10,200 images and accuracy is measured

as 4×recall@4 averaged over the 10,200 queries. Hence,

the maximum achievable score is 4 on this dataset.

We use the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) 2010 dataset5 for learning purposes.

We use it both for unsupervised learning (e.g. to learn a

PCA) and for supervised learning (e.g. to learn a metric,

attributes, CCA, etc.) This dataset contains 1,000 classes

and consists of 3 sets: a training, a validation and a test set.

In our experiments, we only make use of the training set

which contains 1.2M images.

For the large-scale experiments reported in Section 7.4,

we also use a subset of 1M ImageNet images to serve as

distractors. They were randomly sampled from the full Im-

ageNet dataset [9] (excluding the ILSVRC 2010 categories)

Features. We extract 128-dimensional SIFT descrip-

tors [24] and 96-dimensional color descriptors [30] on reg-

ular grids at multiple scales. Contrarily to most previ-

ous instance-level retrieval works, we do not make use of

interest-point detectors. We found dense extraction to yield

somewhat better (resp. worse) results on Holidays (resp.

UKB). Note however that this saves the interest-point de-

tection time which is substantial in our large-scale experi-

ments. These features are reduced to 64 dimensions with

PCA. We compute separately for each descriptor a 2,048-

dimensional Fisher Vector (FV) which is power- and L2-

normalized [29, 30]. The SIFT and color FVs are subse-

quently concatenated, thus yielding a 4,096-dim image de-

scriptor. The distance between two FVs is computed with

a dot-product [29]. This provides a baseline of 77.4% on

Holidays and 3.19 on UKB.

3http://lear.inrialpes.fr/˜jegou/data.php
4http://www.vis.uky.edu/˜stewe/ukbench/
5http://www.image-net.org/challenges/LSVRC/2010

Figure 2. First row: random images from the ImageNet category

n02930766 (“cab, hack, taxi, taxicab”). Second row: n03786901

(“mortar”). Third row: n04147183 (“Schooner”).

R = 16 32 64 128 256 512

PCA 53.1 61.3 68.0 72.3 75.0 76.8

IL 52.1 62.9 67.1 73.2 75.8 77.1

CL 36.8 54.2 65.1 68.9 75.4 78.6

Table 1. Subspace learning as metric learning. Results on Holidays

(mAP, in %) when learning with Instance Level (IL) and Category

Level (CL) labels.

R = 16 32 64 128 256 512

PCA 2.56 2.82 3.01 3.08 3.15 3.18

IL 1.09 1.99 2.55 2.90 3.07 3.16

CL 1.80 2.37 2.78 2.95 3.09 3.16

Table 2. Subspace learning as metric learning. Results on UKB

(4× recall@4) when learning with Instance Level (IL) and Cate-

gory Level (CL) labels.

7.2. Results with metric learning

When learning a metric for a target subspace dimension

R, two parameters need to be tuned: the step size η as well

as the number of iterations niter. We performed two sets of

experiments. In the first set of experimentswe learn the sub-

space from ILSVRC 2010. To avoid tuning η and niter on

the test data, we validated our Holidays results on UKB and

vice versa, i.e. we report results on Holidays (resp. UKB)

with the parameters that lead to the best results on UKB

(resp. Holidays). This shows the ability of the learning

algorithm to generalize to new data. In the second set of ex-

periments, we learn the subspace from instance-level labels.

For the Holidays experiments, we therefore trained the sub-

space on UKB and vice-versa. In this set of experiments,

η and niter were tuned directly to maximize test accuracy

which gives an unfair advantage to this approach.

The metric learning results are reported in Tables 1 and

http://lear.inrialpes.fr/~jegou/data.php
http://www.vis.uky.edu/~stewe/ukbench/
http://www.image-net.org/challenges/LSVRC/2010


Holidays UKB

FV (4,096 dim) 77.4% 3.19

Attr (1,000 dim) 76.2% 3.27

FV + Attr (5,096 dim) 78.1% 3.27

Table 3. Combining FVs and attributes. Results on Holidays

(mAP, in %) and UKB (4× recall@4).

2 and compared to the PCA baseline. We can draw the two

following conclusions. First, metric learning with instance-

level labels (IL) does not significantly improve accuracy on

Holidays or UKB. It is actually significantly worse than the

PCA baseline on UKB. We believe this is because the train-

ing datasets (UKB for Holidays and Holidays for UKB) are

too small to learn a meaningful subspace. Note that we are

not aware of any significantly larger dataset with instance-

level labels. Second, metric learning on category-level la-

bels (CL) yields poor results, especially for a small number

of dimensionsR. We observe a small improvement with re-

spect to the PCA baseline on Holidays for a larger R (e.g.

R = 512). Our intuition to explain these poor results is

the following one: although images within the same cate-

gory might be visually dissimilar (c.f . Fig 2), metric learn-

ing tries to enforce them explicitly to be closer to each other

than to images in other categories.

7.3. Results with attributes

To learn the attribute classifiers, we first extract from

the 1.2M ILSVRC 2010 training images the same 4,096-

dimensional FV features we use for retrieval (c.f . section

7.1). We then learn 1,000 one-vs-all binary linear SVMs

using SGD6. Note that learning classifiers on FVs makes

sense as shown for instance in [30]. Given an image, we

construct its attribute vector by concatenating the 1,000

classifier scores, which yields a 1,000-dimensional vector.

Hence, the computation of the attribute scores can be un-

derstood as a linear projection in a 1,000-dimensional sub-

space. The attribute vector is subsequently L2-normalized

and we use the dot-product as a measure of similarity. Fol-

lowing [11], we also report results combining the FV and

the attributes. As suggested by [11], we apply a weighting

factor to increase the contribution of the FV. To avoid tun-

ing this parameter on the test data, the optimal weight for

Holidays (resp. UKB) was cross-validated on UKB (resp.

Holidays). Results are reported in Table 3. We observe that

attributes perform slightly worse than FVs on Holidays and

slightly better on UKB. We also note that there seems to be

little complementarity between FVs and attributes.

Since our focus is on subspace learning, we also per-

form dimensionality reduction by applying PCA to the FV

and the attributes independently and by concatenating the

resulting vectors, as suggested in [11]. To produce a sig-

6http://leon.bottou.org/projects/sgd

R = 16 32 64 128 256 512

FV 53.1 61.3 68.0 72.3 75.0 76.8

FV + Attr 49.3 60.3 66.4 71.2 75.2 76.8

Table 4. Combining FVs and attributes after PCA. Results on Hol-

idays (mAP, in %).

nature of R dimensions, FVs and attributes are reduced to

R/2 dimensions and concatenated. Again, we tune the rel-

ative weight of the FV part with respect to the attribute part.

Table 4 compares this approach with the PCA baseline on

the Holidays dataset and we observe no improvement.

These results somewhat contradict those of [11] who re-

ported a significant improvement on Holidays when merg-

ing FVs and attributes. We believe this is because the fea-

tures used by [11] to learn the attributes contained informa-

tion not available in the FV. For instance, their attributes

used, among others, color information, while their FVs

were computed fromSIFT descriptors only. To test this con-

jecture, we computed 2,048-dimensional FVs using only

SIFT descriptors as well as 1,000-dimensional attribute vec-

tors computed from color-only descriptors. Combining the

FV and attributes in this case makes a significant difference

on Holidays: from 68.5.% using SIFT FVs (2,048 dimen-

sions) to 76.2% when concatenating SIFT FVs and color

attributes (3,048 dimensions). We believe this experiment

validates our point. Note that we can obtain a similar accu-

racy of 76.8% in a simple manner, by reducing the dimen-

sionality of the 4,096-dimensional SIFT+color FV to 512

dimensions.

Our conclusion is therefore that attributes do not seem

to improve instance-level retrieval significantly on these

datasets.

7.4. Results with label­image embedding

We now report results for those two approaches which

perform an embedding of images and labels in a common

subspace: CCA and the proposed Joint Subspace and Clas-

sifier Learning (JSCL).

For both the CCA and JSCL, we use again ILSVRC 2010

for learning. For CCA, there is a single parameter to tune:

the regularization parameter ρ (c.f . section 5). As for JSCL,

there are two parameters to tune (as was the case for metric

learning): the step size η and the number of iterations niter.
As was the case in our previews experiments, to avoid tun-

ing the parameters on the test data, we validate the Holidays

(resp. UKB) parameters on UKB (resp. Holidays). We re-

port results on Holidays in Table 5 and UKB in Table 6.

We can make the two following observations. First, both

label-image embedding methods improve over the PCA

baseline, especially for a small number of dimensions R of

the subspace (e.g. R = 32). Second, JSCL generally yields

better results than CCA. This seems to indicate that using a

http://leon.bottou.org/projects/sgd


R = 16 32 64 128 256 512

PCA 53.1 61.3 68.0 72.3 75.0 76.8

CCA 54.5 62.9 71.0 74.7 77.6 79.0

JSCL 56.7 67.7 73.6 76.4 78.3 78.9

Table 5. Results of CCA and the proposed JSCL as compared to

the PCA baseline on Holidays (mAP, in %).

R = 16 32 64 128 256 512

PCA 2.56 2.82 3.01 3.08 3.15 3.18

CCA 2.52 2.90 3.11 3.22 3.29 3.32

JSCL 2.67 3.04 3.23 3.31 3.36 3.36

Table 6. Results of CCA and the proposed JSCL as compared to

the PCA baseline on UKB (4× recall@4).

large margin framework enables to uncover a more discrim-

inative subspace. On UKB, we point out that we can both

reduce the dimensionality of the initial 4,096-dimensional

FV representation down to 256 dimensions and increase the

retrieval accuracy from 3.19 to 3.36.

Since our focus is on large-scale retrieval, we also per-

formed an evaluation with a large set of distractor images

as is common practice (see e.g. [17, 27, 20, 11]). In our ex-

periments, we use 1M ImageNet images (c.f . section 7.1).

Hence, when running a search on Holidays (resp. UKB),

the system compares the query to the 1,490 (resp. 10,200)

database images + 1M distractors. We ran two sets of ex-

periments. In the first set of experiments, the dimension-

ality of the FV is reduced (through PCA, CCA or JSCL)

but no further compression is applied. In the second set of

experiments, the dimensionality of the FV is reduced and a

Product Quantization (PQ) [19] is further applied to encode

the descriptors. We chose PQ since it yields state-of-the-art

codes when combined with dimensionality reduction [20]

but other encoding techniques could have been applied too.

In a nutshell, PQ splits the large FV into small sub-vectors

and applies a separate Vector Quantizer (VQ) to each sub-

vector independently (see [19] for more details). In our ex-

periments we use sub-vectors of 8 dimensions and each sub-

vector is encoded on 8 bits. Hence, with such a configura-

tion, if PQ takes as input a K-dimensional vector, it outputs

a K bits code.

Results for Holidays and UKB are presented in Fig. 3.

We can draw the following conclusions. As in the case

of small-scale experiments, CCA and JSCL improve over

PCA. Moreover, JSCL seems to have an edge over CCA.

These observations are valid whether PQ encoding is ap-

plied or not. The differences with the PCA baseline seem

more acute in large-scale experiments than in small-scale

experiments. For instance, the retrieval accuracy is im-

proved from 39.3% with PCA to 48.6% with JSCL with

R = 32 (without compression) on Holidays. This seems to

indicate that learning good projections has a larger impact
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Figure 3. Large-scale results of CCA and the proposed JSCL as

compared to the PCA baseline. Top: Holidays + 1M distractors

(mAP in %). Bottom: UKB + 1M distractors (4× recall@4).

for more complex problems, e.g. when the relevant images

are lost in a sea of irrelevant ones.

Finally, Figure 1 shows qualitative results on Holi-

days+1M using PQ codes of 128 bits. We show the top

5 results on 4 queries and compare the PCA and JSCL em-

beddings. The queries have been chosen such as that there is

no intersection between the top PCA and JSCL results. We

observe how the JSCL results are semantically more consis-

tent than those of PCA, even if sometimes PCA finds true

positives that JSCL misses, such as that of 1d.

8. Conclusion

At the beginning of this article, we raised the follow-

ing question: can category-level labels be used to improve

instance-level image retrieval? We can now answer this

question positively. To reach this conclusion, we experi-

mented with four learning techniques: the first one is based

on a metric learning framework, the second one on at-

tribute representations, the third one on Canonical Corre-

lation Analysis (CCA) and the fourth one on Joint Sub-



space and Classifier Learning (JSCL). While the first three

approaches had been applied to some extent to the image

retrieval problem in the past, we believe we are the first to

show the usefulness of JSCL in this context.

Our experimental evaluation showed that metric-

learning and attributes do not improve significantly over the

baseline system. In some cases, it can even lead to a de-

crease in accuracy. We also showed that CCA and JSCL,

which both consist in embedding labels and images in a

common subspace, can lead to substantial improvements,

especially in large-scale experiments. Overall, JSCL yields

the best results and we believe that it superiority with re-

spect to the simpler CCA approach comes from the use of a

large margin formulation.

Thus, a key conclusion of our work is that one might get

a superior performance with a method such as JSCL which

optimizes a categorization objective function (which is con-

sistent with the category-level labels we use for training but

which is only loosely consistent with our retrieval objec-

tive) than with a method such as metric learning which op-

timizes a retrieval objective function (which is consistent

with our instance-level retrieval problem but which is in-

consistent with our category-level labels).

We finally note that those methods which jointly embed

labels and images in a common subspace, such as CCA

and JSCL, have an additional advantage which we have not

exploited in this work. Indeed, since labels and images

have a common representation, one could easily perform

query-by-example and query-by-text searches within a uni-

fied framework. We will explore the advantages of such an

approach in future work.
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