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Abstract

We describe a general framework for the recognition of distorted images of lineal shapes, which relies on three items:

a model to represent lineal shapes and their deformations, a model for the generation of distorted binary images and the

combination of both models in a common probabilistic framework, where the generation of deformations is related to

an internal energy, and the generation of binary images to an external energy. Then, recognition consists in the min-

imization of a global energy function, performed by using the EM algorithm. This general framework has been applied

to the recognition of hand-drawn lineal symbols in graphic documents.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Symbol recognition plays an important role in

many graphics recognition systems. For many

years, one of the main interests in graphics recog-

nition has been the automatic conversion of the

huge amount of existing paper documents, such as

maps, architectural plans, engineering drawings,
any kind of diagrams, etc. In such systems, iden-
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tifying and recognizing structured entities other

than lines and points is essential in order to achieve

intelligent and complete interpretation of the doc-

ument. This has been the motivation of much re-

search in graphic symbol recognition until now.

Another potential set of applications of symbol

recognition is the development of user-friendly in-

terfaces based on recognizing hand-drawn input
from the user. Recently, thanks to the expansion of

pen-based interfaces, this kind of applications are

receiving increasing attention (Landay and Myers,

2001; Pimentel et al., 2001; Valois et al., 2001;

Wenyin et al., 2001). Robustness to shape vari-

ability and distortion is one of the challenging

points to achieve good performance.

Several reviews of the state of the art on symbol
recognition have been published in the last editions
ed.
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of the International Workshop on Graphics Recog-

nition (Chhabra, 1998; Cordella and Vento, 2000;

Llad�oos et al., 2002). Both structural and statistical

pattern recognition methods have been used when

dealing with shape variability and noise. Structural

pattern recognition has been widely used in sym-
bol recognition since symbols are easily described

with structural representations, such as graphs

(Lee, 1992; Llad�oos et al., 2001; Messmer and

Bunke, 1998) or grammars (S�aanchez et al., 2001).

Distortion can be handled using error-tolerant

matching between the image and the model. Other

structural approaches are based on the propa-

gation of geometric and topological constraints
(Ah-Soon and Tombre, 2001). Statistical pattern

recognition approaches for symbol recognition are

usually based on extracting geometric features

from the image and applying some classifier such

as the NN-neighbours rule, Bayes� classifiers or

decision trees (Pimentel et al., 2001; Samet and

Soffer, 1996). However, its performance when

shape variability increases depends very much on
selecting a good set of features, which is not always

possible.

In this work, we will address the problem of

symbol recognition under conditions of noise and

unrestricted shape variability describing a method

based on deformable models and a probabilistic

framework, similar to the approach described in

(Revow et al., 1996) for character recognition. In
our approach, however, we will take advantage of

lineal structure of graphic symbols to define the

representation of symbols and the generation of

deformations. We argue that deformable template

matching is flexible enough to handle the kind of

distortions produced by hand-drawing. Deform-

able models have been successfully applied to a

wide range of computer vision applications (Jain
et al., 1998). However, only few applications of

elastic matching can be found (Burr, 1981; Pavlidis

et al., 1998) for graphics recognition. In deform-

able template matching a model of the object is

deformed in order to fit the input image, finding

the deformation which minimizes a global energy

function, composed of internal energy––a measure

of the distortion from original shape––and exter-
nal energy––a measure of similarity to input

image.
The paper is organized as follows. In Section 2,

we define the probability of generation for an

input image. Section 3 describes symbol represen-

tation and how to get symbol deformations and

their probability. Then, in Section 4 both proba-

bilities are combined to define a global framework
for symbol recognition. In Section 5, some results

of the application of this framework are presented

and finally, in Section 6, we draw conclusions from

this work.
2. Image generation

This section is concerned with the generation of

binary images corresponding to hand-drawn lineal

symbols. We will describe a framework which as-

sociates a probability of generation to every pixel

from the lineal model of a symbol and thus, an

overall probability for the whole image, which can

be used to define the similarity between the image

and the symbol.
Graphic symbols are composed of straight lines.

However, hand-drawing, scanning and thinning to

one-pixel width introduces noise and distortion in

the shape of lines. Therefore, image pixels will not

follow a perfect lineal path along the expected line

location. All around every line, we can define an

uncertainty area where pixels can be generated.

We will describe this area by a gaussian distribu-
tion, where the probability of generation associ-

ated to every pixel depends on the distance

between the pixel and the line, noted as dp, but also
on the angle difference between them, noted as da.

Thus, pixels generated by a line are supposed to be

close to it and to have similar orientation.

Position distance dp between a pixel p and a

segment s is computed, depending on the projec-
tion of the pixel onto the line defining the segment,

as the minimum distance between the pixel and the

line (Fig. 1a) or as the distance between the pixel

and the closest end-point (Fig. 1b).

Angle difference da is computed taking the sin of

the difference in orientation between the pixel and

the segment. The use of sin makes da independent

of periodic differences. The orientation of a pixel is
the tangent angle of the image skeleton at that

point, computed from its neighbor pixels (Fig. 1c).



Fig. 1. Distance between a point and a line.
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Then, position distance and angle difference are

combined to define a global distance measure

dðp; sÞ. We have decided to take dp as the basis for
global distance, and to weigh it by a factor de-

pending on da and ka, a constant parameter which
allows to control the influence of angle difference

in the distance (Fig. 2). Two reasons support this

decision: on the one hand, visual evidence of major

relevance of position distance; on the other hand,

pixel orientation cannot be an exact measure due

to its local computation and image discretization.

Thus, the definition of dðp; sÞ is:
dðp; sÞ ¼ ð1þ ka � daðp; sÞÞ � dpðp; sÞ ð1Þ
As explained before, the probability of generation

of a pixel from a given segment, noted as P ðpjsÞ, is
defined as a gaussian distribution based on dðp; sÞ:

P ðpjsÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
� e�

d2ðp;sÞ
2r2 ð2Þ

where r is the standard deviation of distribution. It
allows to control the size of the area of influence

for every line and therefore, the degree of accepted

distortion when hand-drawing a line.
Fig. 2. Analysis of influence of angle difference in the distance.
Every segment acts as a pixel generator. Any

pixel can be generated from any of the symbol

segments. Then, any pixel has a global probability

of generation from the whole symbol, computed

by summing up the probabilities of generation
from every segment. Moreover, assuming that all

pixels of an image have independent probabilities

of generation, the probability of generation of a

whole image from a given symbol, P ðI jSÞ, can be

computed by multiplying the probabilities of gen-

eration for all pixels. Then, given an image I
composed of n pixels, I ¼ ðp1; . . . ; pnÞ, and a sym-

bol S composed of m segments, S ¼ ðs1; . . . ; smÞ,
PðI jSÞ, can be expressed as:

PðI jSÞ ¼
Yn
i¼1

P ðpijSÞ ¼
Yn
i¼1

Xm
j¼1

P ðpijsjÞ ð3Þ

The probability of generation of an image gives a

measure of how well it fits the lineal representation

of the symbol. In Section 4 it will be used to define

a similarity measure between the image and the

symbol for matching.
3. Deformation of lineal models

As we are concerned with the recognition of

lineal symbols, we can represent the ideal shape of

a symbol with a set of straight lines, not necessarily

connected. At the same time, we want to recognize

hand-drawn symbols. Then, we need some model

to generate, from the ideal shape of a symbol,

deformations resembling those produced by hand-
drawing. In this section we will introduce such a

model, based on a probabilistic explanation of

deformations, which allows to handle uncertainty

in hand-drawing.

A symbol S will then be represented as a set

of independent straight segments, S 	 fs1; . . . ; smg.
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Each segment s is defined with four parameters:

mid-point coordinates, orientation and length,

s 	 ðx; y; a; kÞ.
With this representation, shape deformations D

of the symbol can easily be generated by modifi-

cation of segment parameters. In fact, any segment
can be transformed into any other segment (Fig.

3). However, transformations resulting in not valid

shapes of the symbol must be forbidden. As the

border between valid and not valid shapes is not

clear, we will use a probabilistic model to measure

the ‘‘validity’’ of a shape.

Deformations will be generated through the

application of independent transformations to
every segment. As segments, a transformation w is

defined by four parameters: the translation of mid-

point position Dx and Dy, the change in orienta-

tion Da and a scaling factor applied to the segment

length Dk. In this way we can translate, rotate and

scale a segment in any desired way. Then, if

W 	 fw1; . . . ;wng, is a set of transformations to be

applied to every segment, a new deformation D of
a symbol S can be generated in the following way:

D ¼ WðSÞ ¼ fw1ðs1Þ; . . . ;wnðsnÞg
¼ fs01; . . . ; s0ng ð4Þ

s0 ¼ wðsÞ ¼ ðxþ Dx; y þ Dy; a þ Da; k � DkÞ ð5Þ
To avoid free symbol deformation, we will asso-

ciate a probability value to each deformation. This

value will measure the certainty for the deforma-

tion, of being a valid representation of the symbol.

To define this probability we will make two as-

sumptions: first, all transformations applied to
every segment and to every parameter are inde-

pendent from each other; secondly, transforma-

tions follow gaussian distributions based on the

parameter of the transformation. This way, as the

amount of deformation increases, its probability

decreases to zero. But at the same time, slight de-

formations due to hand-drawing can be given high

probabilities depending on the value of standard
Fig. 3. Example of unrestricted symbol deformation.
deviation. With these assumptions, the probability

associated to a deformation D, denoted P ðDjSÞ is
expressed in the following way:

P ðDjSÞ ¼ P ðWjSÞ ¼
Yn
i¼1

P ðwijsiÞ ¼ P ðwjsÞ

¼ K � e
�Dx2

2r2x � e
�Dy2

2r2y � e
�sinDh2

2r2
h � e

�Dk2

2r2
k ð6Þ

where rx, ry , rh and rk are standard deviations for

every parameter of local transformation and K
is the product of gaussian normalizing factors.

Standard deviations can be fixed using the learning

procedure described in (Valveny and Mart�ıı, 2001)
which permits to derive the ideal shape of every

symbol and the main variation modes for each
line.

We will call this kind of deformations local de-

formations, because they are achieved through in-

dependent transformations locally applied to every

segment. They do change the global shape of the

symbol. On the other hand, we also need to rep-

resent another kind of deformations of a symbol,

which we will call global deformations. These de-
formations will allow to represent global transla-

tion, rotation and scaling of the symbol (Fig. 4).

They are equally applied to all the lines of the

symbol. Therefore, they do not change its global

shape. All of them will generate valid representa-

tions of the symbol and it is not necessary to as-

sociate them any probability measure of ‘‘validity’’.

Global deformations are generated by the
application of global transformations. A global

transformation U is defined by five parameters:

translation in x and y, tx and ty , angle of rotation, h
and scaling in x and y, sx and sy . The application of

a transformation U to a symbol S, denoted by

UðSÞ produces a deformation D through the suc-

cessive application of global scaling, rotation and

translation to every segment:

D ¼ UðSÞ ¼ fUðs1Þ; . . . ;UðsnÞg ¼ fs01; . . . ; s0ng ð7Þ
Fig. 4. Example of global deformations.
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4. Symbol recognition

Combining the schemes defined in previous

sections, the matching of an input image I with a

given symbol S will consist in finding the defor-
mation D of the symbol with higher probability of

generation for the input image. As deformations

are not equally probable, the probability of de-

formations must also be taken into account. This

approach leads to a Bayesian framework where

probability of image generation P ðI jDÞ stands for
likelihood and probability of deformations P ðDjSÞ
stands for prior information. Bayes� rule is used to
combine both probabilities getting the posterior

probability of a deformation:

P ðDjI ; SÞ ¼ P ðI jD; SÞP ðDjSÞ
P ðI jSÞ ð8Þ

Then, matching consists in finding the deforma-

tion bDD maximizing P ðDjI ; SÞ. As we assume that all

input images have the same probability P ðI jSÞ,

bDD ¼ argmax
D

P ðDjI ; SÞ

¼ argmax
D

P ðI jD; SÞP ðDjSÞ ð9Þ

Taking the negative log of the previous expression,

matching can also be viewed as the minimization
of an energy function E composed of two terms:

internal energy Eint and external energy, Eext, which

are respectively related to prior probability and

likelihood through the following equivalences:

EintðDÞ ¼ � log P ðDjSÞ ð10Þ

EextðDÞ ¼ � log P ðI jD; SÞ ð11Þ

bDD ¼ argmin
D

EðDÞ ð12Þ

With this interpretation, bDD can be viewed as the
equilibrium point reached after the application of

two opposite forces: one trying to keep the shape

of the symbol close to the original shape (internal

energy), and the other one trying to push it to the

shape of the input image (external energy). It will

correspond to the deformation which best fits the

input image with the lowest degree of distortion

from the ideal shape.
Given an input image and a set of predefined

symbols fS1; . . . ; Sng, we can match the input

image with every symbol resulting in a set of op-

timal deformations fbDD1; . . . ; bDDng, one for every

symbol. As the final energy value of deformations

is related to its posterior probability through
equations (9)–(11), input image I will be recog-

nized as symbol Si where i ¼ argminjEðbDDjÞ.
4.1. Energy minimization

Finding bDD according to expression (12) re-

quires the minimization of a complex energy

function. Generally, this is not a straightforward

task because this function has many local min-

ima. However, we can take advantage of the

following observation: if we could know which

image points have been generated by each line,
optimal line parameters could be easily computed

by finding the best fitting of a line to this set of

points.

This fact leads to the use of the EM algorithm

to find the minimum of energy. EM algorithm is

well suited in problems with missing or incomplete

information. It works by applying iteratively two

steps, until convergence is reached. In the expec-
tation step, missing information is estimated. In

the maximization step, a partial solution is found

assuming that the information estimated in the

expectation step is true. In our case, the missing

information is the association between lines and

points, which can be estimated using the prob-

ability of generation, P ðpjsÞ, defined in expression

(2). In the maximization step, it will be used as a
weighting factor to measure the influence of every

point when computing the optimal parameters

of a line.

Then, in the expectation step, the probability of

generation pij between every point pi and every line

sj is estimated. It is normalized so that, for each

point, it sums up 1 for all lines:

pij ¼
P ðpijsjÞPm
k¼1 P ðpijskÞ

i6 n; j6m ð13Þ

In the maximization step, as we have assumed

that all parameters of segments are independent,

computation of optimal parameters can be done
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separately for every parameter of every segment.

Influence of internal energy can also be split up in

independent components for every parameter by

combining expressions (10) and (6). The contri-

bution of constant factor K can be ignored in the
minimization process:

Eint ¼
Xn
i¼1

Dx2i
2r2

Dxi

þ Dy2i
2r2

Dyi

þ sinDh2
i

2r2
Dhi

þ Dk2
i

2r2
Dki

¼
Xn
i¼1

Exi
int þ Eyi

int þ Ehi
int þ Eki

int ð14Þ

Combination of internal and external energy re-

quires a weighting factor a which normalizes the

values of both functions to the same range of
values. It permits to control the influence of in-

ternal energy and thus, the degree of deformation

allowed. Empirically, we have set the value of a to

0.001. Then, the global energy function to be

minimized is E ¼ a � Eint þ Eext.

To find the new representation of the symbol,

we have to find the optimal representation of every

line which best fits the pixels of the image. In the
expectation step we have computed the probability

of generation of every pixel by each of the lines.

Then, we can take for every line, all pixels having a

probability of generation greater than zero, and

compute the parameters of the line which best fits

this set of points. Every point is weighted by its

probability of generation. This way more probable

points have greater influence.
The optimal parameters which best fits a seg-

ment to a set of points can be computed in three

stages: first, we find the orientation of the line

minimizing the squared sum of distances; sec-

ondly, we compute the center of the segment as the

point minimizing the distance to the set of points;

and finally, we estimate the optimal length of the

segment.
First, optimal orientation will be computed as

the orientation of the line minimizing the sum of

distances (dp) from it to the set of points. We have

to take into account that each point will contribute

to the distance with a weighting factor accord-

ing to pij––expression (13)––and the influence of

internal energy. Then, the expression to minimize

is:
Eh
j ¼ a � Ehj

int þ
Xn
i¼1

�ppij � d2
p ðpi; ljÞ ð15Þ

where �ppij is the probability of generation pij, nor-
malized by the sum of probabilities between all

points and segment lj to sum up 1 for all points.

Analytical minimization of this expression per-

mits an easy computation of optimal orientation,

which is used in the following stages of the maxi-

mization step. The next stage consists in comput-

ing optimal mid-point coordinates of every

segment. They can be computed by minimizing the
distance of mid-point to the set of points. As be-

fore, weighting factors for every point and influ-

ence of internal energy must be taken into account,

leading to the following expression which is again

analytically minimized to get x and y values.

Ex;y
j ¼ a � Exj

int þ a � Eyj
int

þ
Xn
i¼1

�ppijððxi � xjÞ2 þ ðyi � yjÞ2Þ ð16Þ

The final stage of the maximization step is com-

putation of optimal segment length, where we

must take some approximations. We observe that

the sum of the distances from all points to the mid-
point of the segment is an approximation of half of

the segment length. Then, adding to this fact the

influence of internal energy, the global energy

function to minimize is the following:

Ek
j ¼ a � Eki

int þ
Xn
i¼1

�ppijjdðpi; pjÞj
 

� k
2

!2

ð17Þ

Once orientation, mid-point coordinates and

length have been computed for all segments, we
have got a new representation of the symbol which

fits the input image better. Then, expectation and

maximization steps are iterated until convergence

is reached. At each iteration standard deviation

used in computing pij is decreased in order to

achieve better approximations. Criteria for con-

vergence and standard deviation decreasing are

discussed in Section 5.1.
5. Results and discussion

The origin of this work was the study of new

man–machine interfaces for input of graphic



Fig. 5. One sample image of every symbol.

Fig. 6. (a) Matching without initialization. (b) Matching with

initialization using global transformations.
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information in architectural environments based

on hand-drawn user input. Then, we have used a

set of usual symbols in architectural drawings to

test our approach. These symbols describe furni-

ture elements in a building, such as tables, chairs,

windows, etc. We have selected eight different

symbols, taking fifty images of each of them,
drawn by ten different people in a totally uncon-

strained way. These images are representative of a

great number of symbol distortions. Several ex-

amples are shown in Fig. 5.

We will analyze two different issues of the ap-

plication of the general framework described in

previous sections to this set of sample images.

First, we will discuss the criteria for convergence
of energy minimization procedure. Secondly, we

will focus our attention on experiments about

performance measures in terms of recognition

rates and computational complexity.

5.1. Convergence criteria

As described in Section 4.1, matching relies on
the minimization of an energy function. This

function depends on many parameters and thus,

its minimization is not straightforward. To avoid

local minima, good initialization and convergence

criteria must be chosen.

Initialization is required in order to reduce the

distance between initial and minimal models, so

that EM algorithm could find the path between
them. We can do that thanks to global transfor-

mations introduced in Section 3, which let the

model change without any cost, applying global

rotations, scaling and translation to all the lines.

Then, we can find the global transformation which

minimizes the distance from the model to the input

image using the initialization step described in

(Valveny and Mart�ıı, 2000). Fig. 6 shows the dif-
ference in approximation for a given image, with-

out and with a previous initialization step.
Convergence of the EM algorithm to the global

minimum depends basically on how we update, at

each iteration, the standard deviation used in the
expectation step. This standard deviation controls

the area of influence for each line in the model.

The higher its value, the greater will the line be

attracted by farther pixels. Thus, it is clear that, at

the beginning, when the model is slightly or not

deformed, standard deviation must be high in

order to let the lines move towards the most ap-

propriate pixels, which can be far away from the
line. However, as the minimization process goes

forward and deformations are closer to the image,

standard deviation must be low in order to reduce

the area of influence for each line only to those

pixels corresponding to it.

The problem lies in the decreasing rate of

standard deviation. If it decreases too fast, we lose

ability to fit lines which are initially far away from
their corresponding pixels. On the other hand, if

decreasing rate is too slow, some lines may be

confused by neighboring wrong pixels and may fail

to converge. Fig. 7 shows this fact. First, we have

used a variable decreasing criterion. Standard de-

viation is updated, at each iteration, taking the

value of the distance between every pixel and every

line of the current deformation, as defined in Eq.
(1). This results in a quick decrease of standard

deviation. Secondly, we have used a fixed updating

criterion, setting standard deviation to half its last

value. This results in a smoother decreasing curve,

which permits the recovery of some wrong ad-

justed line in the first symbol. However, in the

second symbol, lines are confused during the first

iteration by nearby pixels, and the final result is
worse than with the first criterion.

Analyzing these experimental results, we have

decided to use the first decreasing criterion, be-

cause, with similar matching results, it has lower



Fig. 7. Evolution of standard deviation in e-step. (a) Variable updating criterion. (b) Fixed updating criterion.

Fig. 8. (a) Matching before learning. (b) Matching after

learning.
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computation time, as it usually converges more

quickly. We let the minimization process run until

the difference between two successive standard

deviations is small enough, or until we reach a

fixed number of iterations. Table 1 shows the aver-

age number of iterations needed when matching
every symbol. Symbols with more lines are sym-

bols with greater average number of iterations.

5.2. Performance evaluation

In this section we will discuss the performance

of our approach in terms of recognition rates and

computational complexity. The first issue to con-
sider is the definition of a model for every symbol.

In (Valveny and Mart�ıı, 2001) we have described a

procedure to learn the representation of a symbol
Table 1

Average number of iterations for every symbol

Shelf File Sofa Window Bed

5.4 5.7 6.26 5.22 5.56
and the parameters for internal energy from a set

of sample images. We have applied this procedure

and we can see in Fig. 8, how matching improves

with new symbol representation.

Table 2 shows global recognition rates for im-

ages of each symbol. We get an overall recognition
rate of 97.75% for all images. To test the signifi-
Chair Table Desk tab. Total

5.82 6.3 6.1 5.795



Table 2

Recognition rates

Shelf File Sofa Window Bed Chair Table Desk tab. Total

100% 98% 100% 86% 100% 98% 100% 100% 97.75%

Fig. 9. (a) Matching with the symbol table. (b) Matching with

the symbol shelf.

Fig. 10. Final energy value for best two matchings for images

of symbol table.

E. Valveny, E. Mart�ıı / Pattern Recognition Letters 24 (2003) 2857–2867 2865
cance of this recognition rate with this set of

deformed images we have compared it with the

recognition rate achieved by a classification

method based on a set of standard and usual

geometric features (area, major and minor axis

length, eccentricity, euler number, etc.) provided
by the Matlab package. With this method, we only

get an overall recognition rate of 50.25%, due to

the variability of images.

As explained in Section 4, recognition is carried

out by matching an image with all symbols and

taking the symbol with the lowest final energy.

Exact visual matching between an image and the

symbol is not needed in order to get correct rec-
ognition. What is important is final energy value in

relation with other symbols. We can see, in Fig. 9,

how matching for images of the symbol table is not

always very precise because of the great amount of

lines in the symbol and the proximity among them.

However it is better than matching with any other

symbol, yielding 100% of recognition. In Fig. 10,

final energy values for the matching of all images
of the symbol table with their model with the

model resulting in the second best matching for

every image are displayed.

The symbol with lowest recognition rates is the

symbol window. Confusions come from the simi-

larity of this symbol with the symbol chair. Thus,
Fig. 11. Matching of not recognized images of symbol window. Abov

chair.
deformations of the symbol chair can be gener-

ated, which match images of the symbol window.

Fig. 11 illustrates this fact. In it, we can see for

each image of the symbol window, the final
e: matching with symbol window. Below: matching with symbol



Fig. 12. Analysis of computation time as the number of lines

in the symbol increases.

2866 E. Valveny, E. Mart�ıı / Pattern Recognition Letters 24 (2003) 2857–2867
matching with the symbol window and with the

symbol chair with their respective energy values.

Although external energy values are similar in
most cases, more variability is allowed in the

symbol chair and therefore, internal energy values

are lower for it.

Finally, in Fig. 12 we analyze the computation

time of the algorithm. It shows the average time of

matching all sample images with each symbol. We

can see how computational complexity is approx-

imately linear in the number of lines of the symbol.
6. Conclusions and future work

Tolerance to shape variability is a central issue

in symbol recognition for the purpose of designing

user interfaces taking advantage of hand-drawing,

such as in pen-based systems. In this work we
have introduced a general probabilistic framework

based on deformable template matching which has

shown itself to be well-suited to handle uncertainty

in the shape of hand-drawn symbols. We have

taken advantage of the lineal shape of the symbols

to define a deformation model based on a lineal

representation and the application of transforma-

tions to the lines. Similarity of an input image to a
model has also been described in a probabilistic

way, defining a probability of generation of the

whole image from a given lineal shape, which

permits the representation of the lack of preci-

sion in hand-drawing. The combination of both

models, the deformation and the generation model

leads to the definition of an energy function which

has to be minimized to match the input image with
the symbol. The use of a probabilistic framework
permits the carrying out of the minimization of the

energy function with the EM algorithm, which

simplifies the problem.

We have applied the method to the recognition

of unconstrained hand-drawn architectural sym-

bols, with an overall recognition rate of 97.75%.
Only similar symbols get confused, due to different

variance in deformation parameters. Computation

time is approximately linear with the number of

lines in the symbol. Although linear, computation

time is one of the issues to be improved in order to

be able to use the method in applications where the

number of different symbols is significant, as the

input image has to be matched with the model of
all symbols. Approaches reducing the number of

points needed to match the image with the symbol

or reducing the number of matches through some

kind of hierarchical matching of symbol could be

explored.

Confusions between similar symbols require

better estimation of deformation parameters. In

this way, covariance between different parameters
could be introduced to better describe interrela-

tions among different lines. Applying geometric or

topological restrictions to deformations could also

be an alternative to avoid excessive deformations

of symbols.
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