toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Albert Gordo; Florent Perronnin edit  doi
isbn  openurl
  Title Asymmetric Distances for Binary Embeddings Type Conference Article
  Year 2011 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 729 - 736  
  Keywords  
  Abstract In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH) and Semi-Supervised Hashing (SSH). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques. We also propose a novel simple binary embedding technique – PCA Embedding (PCAE) – which is shown to yield competitive results with respect to more complex algorithms such as SH and SSH.  
  Address Providence, RI  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4577-0394-2 Medium  
  Area Expedition Conference CVPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GoP2011; IAM @ iam @ GoP2011 Serial 1817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: