|
Ernest Valveny and Enric Marti. 2001. Learning of structural descriptions of graphic symbols using deformable template matching. Proc. Sixth Int Document Analysis and Recognition Conf.455–459.
Abstract: Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching.
|
|
|
Josep Llados, Enric Marti and Jaime Lopez-Krahe. 1999. A Hough-based method for hatched pattern detection in maps and diagrams. Proceeding of the Fifth Int. Conf. Document Analysis and Recognition ICDAR ’99.479–482.
Abstract: A hatched area is characterized by a set of parallel straight lines placed at regular intervals. In this paper, a Hough-based schema is introduced to recognize hatched areas in technical documents from attributed graph structures representing the document once it has been vectorized. Defining a Hough-based transform from a graph instead of the raster image allows to drastically reduce the processing time and, second, to obtain more reliable results because straight lines have already been detected in the vectorization step. A second advantage of the proposed method is that no assumptions must be made a priori about the slope and frequency of hatching patterns, but they are computed in run time for each hatched area.
|
|
|
Leonardo Galteri and 7 others. 2017. Reading Text in the Wild from Compressed Images. 1st International workshop on Egocentric Perception, Interaction and Computing.
Abstract: Reading text in the wild is gaining attention in the computer vision community. Images captured in the wild are almost always compressed to varying degrees, depending on application context, and this compression introduces artifacts
that distort image content into the captured images. In this paper we investigate the impact these compression artifacts have on text localization and recognition in the wild. We also propose a deep Convolutional Neural Network (CNN) that can eliminate text-specific compression artifacts and which leads to an improvement in text recognition. Experimental results on the ICDAR-Challenge4 dataset demonstrate that compression artifacts have a significant
impact on text localization and recognition and that our approach yields an improvement in both – especially at high compression rates.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2013. Handwritten Word Spotting with Corrected Attributes. 15th IEEE International Conference on Computer Vision.1017–1024.
Abstract: We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.
|
|
|
V. Poulain d'Andecy, Emmanuel Hartmann and Marçal Rusiñol. 2018. Field Extraction by hybrid incremental and a-priori structural templates. 13th IAPR International Workshop on Document Analysis Systems.251–256.
Abstract: In this paper, we present an incremental framework for extracting information fields from administrative documents. First, we demonstrate some limits of the existing state-of-the-art methods such as the delay of the system efficiency. This is a concern in industrial context when we have only few samples of each document class. Based on this analysis, we propose a hybrid system combining incremental learning by means of itf-df statistics and a-priori generic
models. We report in the experimental section our results obtained with a dataset of real invoices.
Keywords: Layout Analysis; information extraction; incremental learning
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Synthetically generated semantic codebook for Bag-of-Visual-Words based word spotting. 13th IAPR International Workshop on Document Analysis Systems.223–228.
Abstract: Word-spotting methods based on the Bag-ofVisual-Words framework have demonstrated a good retrieval performance even when used in a completely unsupervised manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring labeled data, these methods also present some drawbacks. For instance, having to train a suitable “codebook” for a certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which is trained from synthetic data. The aim of the proposed approach is to generate a codebook where the only information required is the type of script used in the document. The use of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed method is able to determine which set of codewords have a semantic representation of the descriptor feature space. Experimental results show that the resulting codebook attains a state-of-the-art performance while having a more compact representation.
Keywords: Word Spotting; Bag of Visual Words; Synthetic Codebook; Semantic Information
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Manuscript text line detection and segmentation using second-order derivatives analysis. 13th IAPR International Workshop on Document Analysis Systems.293–298.
Abstract: In this paper, we explore the use of second-order derivatives to detect text lines on handwritten document images. Taking advantage that the second derivative gives a minimum response when a dark linear element over a
bright background has the same orientation as the filter, we use this operator to create a map with the local orientation and strength of putative text lines in the document. Then, we detect line segments by selecting and merging the filter responses that have a similar orientation and scale. Finally, text lines are found by merging the segments that are within the same text region. The proposed segmentation algorithm, is learning-free while showing a performance similar to the state of the art methods in publicly available datasets.
Keywords: text line detection; text line segmentation; text region detection; second-order derivatives
|
|
|
Q. Bao, Marçal Rusiñol, M.Coustaty, Muhammad Muzzamil Luqman, C.D. Tran and Jean-Marc Ogier. 2016. Delaunay triangulation-based features for Camera-based document image retrieval system. 12th IAPR Workshop on Document Analysis Systems.1–6.
Abstract: In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.
Keywords: Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing
|
|
|
Dimosthenis Karatzas, V. Poulain d'Andecy and Marçal Rusiñol. 2016. Human-Document Interaction – a new frontier for document image analysis. 12th IAPR Workshop on Document Analysis Systems.369–374.
Abstract: All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper
presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document
image analysis techniques with a range of complementary tech-nologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational application
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2016. A fine-grained approach to scene text script identification. 12th IAPR Workshop on Document Analysis Systems.192–197.
Abstract: This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online.
|
|