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Abstract—Word-spotting methods based on the Bag-of-
Visual-Words framework have demonstrated a good retrieval
performance even when used in a completely unsupervised
manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring
labeled data, these methods also present some drawbacks.
For instance, having to train a suitable “codebook” for a
certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which
is trained from synthetic data. The aim of the proposed ap-
proach is to generate a codebook where the only information
required is the type of script used in the document. The use
of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed
method is able to determine which set of codewords have
a semantic representation of the descriptor feature space.
Experimental results show that the resulting codebook attains
a state-of-the-art performance while having a more compact
representation.
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I. INTRODUCTION

Handwritten keyword spotting is the document image
retrieval task devoted to obtain a ranked list of words
that are relevant to a user’s cast query. In its most simple
formulation, document images are already pre-processed
and segmented into individual words. The user casts a
query in form of an example of the keyword he wants to
retrieve, to then obtain a ranked list in which desirably
the words having the same transcription are ranked better
than the rest of the words. This paradigm is known as
segmentation-based query-by-example keyword spotting,
which is the scenario in which we are centered in this
paper.

Since the seminal papers of Manmatha et al. [1], [2]
that introduced the problematic of handwritten keyword
spotting more than twenty years ago, many advances have
been proposed. Performances reached on public datasets
have been steadily increasing with the proposal of better
feature representations and retrieval strategies. In addition
to the overall retrieval accuracy, many other advances have
been made as well. Segmentation-free methods have been
proposed [3], [4], [5], [6], [7], query-by-string techniques
have emerged [8], [9], [10], [11], [12], and different
methods have incorporated techniques from the informa-
tion retrieval field such as relevance feedback [13], re-
ranking [4] or query expansion [4].

Although systems which incorporate a learning step to
improve the retrieval accuracy obtain a better performance
than systems purely based on visual information [5], [10],
[14], [9], unsupervised methods are more desirable in cer-
tain scenarios. For example, in large document collection
with hundreds of pages and without any annotation, an un-
supervised method can be used directly without manually
annotate a subset of pages. Also, an unsupervised method
can be used for instance to group similar looking word
snippets into clusters [15]. This word clusters then can be
used to simply accelerate the retrieval system but also to
propagate the annotations provided by the user or to search
consensus to the annotations given by a text recognition
system.

Unsupervised word spotting methods based on the
Bag-of-Visual-Words paradigm can attain a high retrieval
performance when the methods used at each step are
selected carefully [16]. Besides its retrieval accuracy these
methods have the advantage that words are represented by
a fixed-length vector, so standard dimensionality reduction
techniques have been used to efficiently store and index
large collections of documents [3], [17]. However, these
methods require the use of a codebook to encode locally
extracted descriptors into codewords. The performance of
the system is dependent on the quality of the codebook
and the number of codewords which yields a better
trade-off between dimensionality (i.e. memory usage) and
performance has to be found. On small datasets, creating
a codebook does not have a high cost, but, in large
collections, with hundreds of thousands of words written
by multiple writers the computational cost of generating
the codebook might be prohibitive. A straightforward
solution is to randomly sample a subset of word snippets
to generate the codebook. However, this approach has the
drawback that certain characters and writing styles may be
underrepresented by the codebook. Therefore, we propose
a codebook trained from synthetic data which incorporates
semantic information in the generation process to deter-
mine the optimal size and cardinality of the codewords.
The use of synthetic data has several advantages (c.f. [18],
[14], [19]): it ensures that all characters are properly
represented and it allows to simulate the script variability
present in documents written by multiple writers. Since
there are many true-type fonts which replicate the human
handwritten style it is easy to incorporate many different
versions of the same character. Additionally, it also allows
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Figure 1: Two examples of the clusters generated by the codebook. CLUSTER 09 contains descriptors from symbols [0,
8, c, g, b, j, h, p, f, x, u], while CLUSTER 10 is formed by descriptors from [h, b, 4, 6, t, k, u, o, f, d, j, l, p, y, w, a,
q, i, n]. CLUSTER 10 is represented by 5 centroids because it has at least a nested cluster.

to incorporate semantic labels to the information used to
create the codebook. This extra information is used to
obtain an actual measure of the clustering accuracy of the
codebook. Thus, the codebook is able to automatically
determine the amount of codewords needed to properly
represent the feature space. The main contributions of the
paper are threefold. We present a method to generate a
codebook from synthetic data. A new procedure used to
encode descriptors into visual words is proposed. Finally,
we provide the basis of a method to encode descriptors
efficiently.

The rest of the paper is structured as follows: in Section
II we present the method used to to create the codebook
from synthetic data. Then, in Section III, we show how
descriptors are encoded into visual words. Finally, in
Section IV, we present the spotting performance attained
by the proposed codebook and, in Section V, we discuss
the main contributions of the paper.

II. SYNTHETIC CODEBOOK GENERATION

The codebook is trained with HOG descriptors [20]
extracted from characters generated by true-type fonts that
replicate the human handwriting style. Training samples
are then pairs x = (d, c), where d is the HOG descriptor
and c ∈ C is the semantic label of the character. Therefore,

the training set is formed by the training samples extracted
from all the considered characters. Additionally, we also
incorporate training samples that cover multiple characters
(i.e. bigrams). We use the statistical data reported by
Jones and Mewhort to select the bigrams most common
in the English language [21]. Therefore, the training set is
generated from 62 different characters and 1874 character
bigrams, and has 36 different semantic labels as we do not
differentiate between upper and lower case characters.

We generate the codebook by fist grouping the training
samples using agglomerative clustering and then using
the Shannon entropy to partition these tree into multiple
clusters.

A. Agglomerative Clustering

Agglomerative clustering is a bottom-up hierarchical
clustering algorithm that recursively groups the two clos-
est clusters until all samples are grouped together. This
procedure generates a binary tree that later has to be
partitioned into clusters by using some criteria (e.g. fixed
number of clusters, cluster compactness [22], a contrario
approach [23]). The distance between clusters can be
computed in many ways but the most common are the
distance between the closest two elements (i.e. single-
linkage), the distance between the two further away el-



ements (i.e. complete linkage) and the average distance
between all elements of the cluster. The estimation of
these distances though limit the practical usage of the
method as the complexity of the standard algorithms
have a O(N2) complexity both in terms of memory and
runtime. For average distances, Leibe et al. proposed the
average-link clustering with nearest neighbor chains [22]
which reduces the memory complexity to O(N). However,
their algorithm can only be used when the dot-product
or the Euclidean distance are used as similarity measure
between clusters. Therefore, we decide to use the dot-
product as similarity measure as HOG descriptors are L2-
normalized so in this case the dot-product is equivalent
to the Euclidean distance. Furthermore, the dot-product
also allow us to use other distance measures via explicit
feature maps [24]. Hence, we are also able to compare
HOG descriptors using the Histogram intersection and the
χ2 similarity measures.

Finally, we need to reduce the number of samples used
to create the codebook. Although the memory complex-
ity has been reduced to O(N) the temporal complexity
remains O(N2). In order to improve the algorithm run-
time, we reduce the number of samples extracted at each
character. Instead of using random sampling, we apply the
agglomerative clustering at each character independently
and then we generate clusters by selecting the sub-trees
that have at least R samples. These clusters are then fed
to the general agglomerative tree to generate the final
codebook.

B. Shannon Entropy

Once we have generated the binary tree, we need a
method to partition the nodes in order to obtain the clus-
ters. We want that the partitions are created automatically
from data so the user does not need to tweak another
parameter. Since the samples have the character label
besides the descriptor, we can use this information to
partition the tree into semantically meaningful clusters.
Therefore, we calculate at each node the Shannon entropy,
as in [25]:
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where Hc is the class entropy of the samples at the
node, Ht is the entropy of the samples division at the two
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Here, L, Ll and Lr respectively denote the set of
samples at the current node, the left child and the right
child and, n, nl, nr and nc denote the cardinality of these
sets with nc being the number of samples within category
c.

Using this measure, the higher the Shannon entropy
the better are the categories distributed between the two
descending nodes. Then, we compute this measure at
each node and we partition the trees at the nodes where
the Shannon entropy attains a local maxima, i.e. the
nodes where it is higher than its direct ascendants and
descendants. In order to avoid generating small clusters,
nodes which do not have at least 50 samples are not
considered. By following this procedure, we are able to
generate clusters automatically and these clusters have
some semantic significance. In Fig. 1, we see an example
of the descriptors grouped in two different clusters. In
this example, we can see that clusters contain elements
from multiple characters as the features sampled from the
image are too small and do not contain enough information
to perfectly discriminate between the different characters.
Although a perfect semantic separation is more desirable,
it is not possible to achieve without a more complex de-
scriptor or kernels (e.g. χ2-Radial Basis Function kernel).
Finally, applying the measure locally results in clusters
being nested. This means that a cluster can be a sub-
tree from another larger cluster so, we may need multiple
centroids to represent them properly. For example, the
second cluster in Fig. 1 has a nested cluster and thus it is
represented by multiple centroids.

III. DESCRIPTOR ENCODING

Once we have created the codebook we need to define
how descriptors are going to be represented as visual
words.

A. Codeword Encoding

We are going to represent descriptors using first deriva-
tive encoding [26], [27], i.e. descriptors are represented as
the residual between the encoded descriptor and a selected
codeword. So we need to represent that codewords can be
represented by a centroid, but our agglomerative codebook
can generate nested codewords. Therefore, codewords are
represented by as many centroids as necessary to ensure
that no overlapping exist. In Fig. 2, we can see a simplified
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Figure 2: Schema of the agglomerative tree codewords and
centroids.

representation of an agglomerative tree where codeword
B is nested inside codeword A. Here, codeword A is
represented by two centroids, A0 and A1, instead of the
centroid at the highest level of the sub-tree so there is
no overlapping with centroid B. In Fig.1, we can see a



real example of the centroids representing two different
clusters.

Then, the contribution of each centroid Ci of the
codebook to encode a given descriptor d is given by

wi =W (d,Ci) = exp

(
− (1− sim(d,Ci))

2

2σ2
i

)
where sim(d,Ci) is the similarity measure between the

descriptor and centroid and, σi is the standard deviation of
the similarity of the elements within the centroid. In order
to increase the sparseness of the encoding, we set to zero
the different weights wi that satisfy that wi/wmax < t
where wmax is the maximum weight and t ∈ [0, 1] is a
threshold. When t = 0 we use all centroids to encode a
descriptor while when t = 1 we only use the most similar
centroid. Finally, weights are normalized to ensure that the
sum of all weights is 1.

These weights multiplied by the residuals between the
descriptor and the centroids are the resulting encoding.
Since a codeword may be represented by several centroids,
the contributions of all its centroids are accumulated to-
gether. For instance, in the example at Fig. 2 the codebook
only has 4 codewords thus the histogram of visual words
has 4d dimensions where d is the dimensionality of the
descriptor. Then, the weighted residuals from A0 and A1
are both accumulated in the first d dimensions of the
histogram.

B. Approximate Codebook

The encoding method previously described is com-
putationally intensive as it requires computing multiple
exponential weights to encode a single descriptor. In order
to reduce the computational cost of the descriptor encod-
ing step, we propose the use of an additional codebook
which is used to approximate the descriptors. We use a
Hierarchical k-Means (HKM) similar to the Vocabulary
Tree [28] to approximate the descriptors. The codebook
has degree 10, we limit it at a maximum depth of 8 levels
and one million leafs. It is build using a priority queue
that prioritize nodes which are more populated. In this
codebook, we use the Euclidean distance to compare the
descriptors regardless of the distance measure used by the
agglomerative codebook.

The main idea is to then use the leafs of this codebook
as an approximation of the encoded descriptors. Then,
we pre-compute the encoding of the leaf descriptors since
we know them a priori. Thus, instead of computing the
weight of each centroid of the agglomerative tree for a
given descriptor, we only need to traverse the HKM tree
and use the weights stored at the leaf. Although we are
adding quantization errors when following this procedure,
we are also greatly reducing the encoding computational
cost which may be a desirable trade-off when dealing with
large collections.

IV. RESULTS

We generate the codebook using ten different true type
fonts which generate between 4000 and 7000 descriptors

per character. We group these descriptors in clusters
of at least ten descriptors (i.e. R = 10) reducing the
contribution of each character to 450-800 descriptors.
Therefore, the algorithm only needs to aggregate around
50000 descriptors in each evaluated configuration. In all
experiments, the Bag-of-Visual-Words (BoVW) signature
is generated by densely sampling HOG descriptors each 4
pixels from squared regions of 16, 24, 32 and 40 pixels,
a spatial pyramid with 5 horizontal partitions and power
factorization at 0.5. We have evaluated the codebooks
obtained using different descriptor dimensionality, filter
ratio and similarity measures on the George Washington
dataset [29], [15]. The dataset consist of 20 pages with
4860 segmented words. The performance of the retrieval
system is evaluated computing the mean Average Precision
(mAP) score for any word snippet that appears at least
twice in the dataset and returning the overall performance
of the system as the mean of mAP scores. In Fig. 3,
we plot the results obtained by five different queries. All
results have been obtained on a Linux box with an Intel®

Xeon® E5-1620 CPU running at 3.50GHz and 16 Gb of
RAM.

r ≥ 0% r ≥ 80% r ≥ 90% r ≥ 95%

D
im

.

Simil. EUC HIS EUC HIS EUC HIS EUC HIS

32

CHI 61.6 61.6 68.7 65.1 68.5 65.0 68.2 64.4
EUC 40.1 41.9 52.3 55.8 52.7 54.4 54.6 56.6
HIS 50.1 52.3 67.3 65.9 68.2 66.5 68.2 66.0

12
8

CHI 47.7 50.6 69.7 67.4 70.9 68.0 71.0 68.1
EUC 40.5 42.2 54.1 58.2 57.7 62.1 59.8 63.3
HIS 43.0 45.3 68.1 66.3 70.5 67.7 70.7 67.5

Table I: mAP scores at the Washington dataset.

In Table I, we show the mAP score obtained when
generating the codebook with different configurations. The
dimensionality column (Dim.) specifies the dimensionality
of the HOG descriptors. In this experiment, we have tested
them using 2 × 2 and 4 × 4 spatial bins resulting in de-
scriptors of 32 and 128 dimensions. The similarity column
(Simil.) indicates which similarity measure has been used
to compare the descriptors when creating the agglomera-
tive tree. The abbreviations CHI, EUC and HIS correspond
to χ2, Euclidean and Histogram intersection respectively.
The mAP scores are divided into the ratio used to filter
weights wi/wmax ≥ t where t ∈ {0%, 80%, 90%, 95%}.
When r ≥ 0% we accept all weights while we filter
all weights which are smaller than 0.95 of the maxi-
mum weight in when r ≥ 95%. The similarity between
the histograms of visual words is calculated using both
Euclidean distance and Histogram Intersection similarity
measures. The obtained results show that creating a more
sparse encoding by filtering out small weights improves
the performance of the algorithm. It also shows that
using χ2 or Histogram intersection to compare descriptors
consistently gives a better codebook while the Euclidean
distance is better when comparing the histograms of visual
words. Comparing both descriptors, we see that the higher
dimensional descriptor provides a better accuracy. How-
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Figure 3: Some qualitative results obtained in the George Washington dataset.

Dim. 32 128
Sim. CHI EUC HIS CHI EUC HIS

823 741 788 852 787 849

Table II: Sizes of the evaluated codebooks.

ever, the performance increase is modest so depending on
the application a smaller descriptor may be more suitable.
Comparing these results with other word spotting methods,
we can observe that proposed algorithm outperforms most
unsupervised spotting methods [16]. We can also see that
the proposed codebook shows a similar performance to a
carefully crafted BoVW. For example, we reach a 71.0%
mAP score while standard BoVW reaches 72, 35% mAP.
However, our BoVW signature is more compact as we
use less spatial bins (5 vs. 24 spatial divisions) and the
codebook is much smaller. The codebooks generated by
our method have between 750 and 850 codewords (see
tableII) while a standard k-means codebook uses 4096
codewords (i.e. the k-means codebook is between 4,8 and
5,4 larger).

Finally, the codebooks using HOG-32 descriptors need
on average 7 minutes to be created while HOG-128
require around 40 minutes on average. The encoding
runtime for HOG-128 descriptors takes around 490 ms
on average to encode a word snippets. This runtime can
be reduced by more than an order of magnitude when the

descriptors are approximated by a HKM codebook. In this
case, encoding takes around 9.2 ms an average per word
snippet. However, approximating the descriptors have the
drawback that the mAP score consistently drops a 3-5%
in all configurations.

V. CONCLUSIONS

In this paper, we have proposed a method to auto-
matically generate a codebook from synthetic data. The
main idea is to create a codebook which is database
agnostic, i.e. a codebook which has a good performance
independently from the data which is used to create
it. This is important when processing large collections
of documents as creating a codebook can be extremely
time consuming. Thus, our algorithm is able automat-
ically determine the amount and size of the clusters
by incorporating semantic information into the codebook
generation process. Besides, we have proposed the use of
an additional codebook to approximate the descriptors and
greatly reduce the descriptor encoding computational cost.
The experimental results show that the codebook attains a
similar performance to other unsupervised bag-of-visual-
words spotting algorithms.
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