A Hough-based method for hatched pattern detection in maps and diagrams

Josep Llados, Enric Marti
Computer Vision Center, Dept. Informatica.
Universitat Autonoma de Barcelona,
08193 Bellaterra (Barcelona), Spain
{josep.enric}@cvc.uab.es

Abstract

A hatched area is characterized by a set of parallel
straight lines placed at regular intervals. In this paper, a
Hough-based schema is introduced to recognize hatched
areas in technical documents from attributed graph struc-
tures representing the document once it has been vectorized.
Defining a Hough-based transform from a graph instead of
the raster image allows to drastically reduce the processing
time and, second, to obtain more reliable results because
straight lines have already been detected in the vectoriza-
tion step. A second advantage of the proposed method is
that no assumptions must be made a priori about the slope
and frequency of hatching patterns, but they are computed
in run time for each hatched area.

1 Introduction

The problem of hatched pattern detection is an important
concern in the field of document analysis [1, 2, 4]. Docu-
ments belonging to different domains often contain hatched
regions with particular meanings. An efficient extraction of
hatched areas allows to drastically reduce the information
and to focus further interpretation on the remaining lines.
Two attributes characterize a hatched pattern, namely, the
orientation of the filling straight lines, and the distance be-
tween two consecutive ones. This suggests that an analysis
method able to transform the input image to a parameter
space where these two attributes are outlined would be con-
venient. This is just the Hough idea. Although the Hough
transform was initially designed to detect straight lines, a
lot of interesting extensions have been proposed to detect
parametrized shapes. The key idea of the Hough transform
is that spatially extended patterns are transformed into a pa-
rameter space where they can be represented in a spatially
compact way. Thus, a difficult global detection problem in

*Work partially supported by project TAP98-0618 of Spanish CICYT

*

Jaime Lopez-Krahe
Dép. Informatique, GRAII, Lab. ai/mime.
Universit Paris 8,
Saint Denis, 93526 Paris CEDEX 02, France
lopez@ai.univ-paris8.fr

the image space is reduced to an easier problem of peak
detection in a parameter space. The reader is referred to
references [3] and [5] for a comprehensive review of the
available Hough transform methods.

In a previous work [7] we proposed a graph-based Hough
transform (GBHT) to detect hatched patterns representing
walls in architectural drawings. The GBHT was designed to
detect hatched areas with a particular layout, making an as-
sumption of orthogonality between rectangular hatched re-
gions and also assuming that the orientation and frequency
of hatched patterns were constant in a document. In this
work, we generalize the idea of the GBHT in order to detect
hatched regions of any orientation, frequency and boundary.
The proposed method has been illustrated with its applica-
tion to cadastral city maps (see an example of a French city
map in Fig. 1). The automated conversion of city maps to
CAD has received a strong interest in the literature. Cadas-
tral city maps usually have a standardized notation which
makes suitable the use of an a priori knowledge to analyze
them. One of the major components of city maps is hatched
areas representing buildings. Thus, a central part of the city
map recognition systems is devoted to extract all hatched
areas from the document in order to make easier the recog-
nition of the other elements (streets, parcels, text, etc.).

e
-

o W i

.

£ e,
. e e,
T o,
A ﬂ’\\g
L
b St £

. :“}S/\“

:'. o =

N 3

Figure 1. An example of a cadastral city map.

In the following section we describe a graph-based
Hough transform designed to detect hatched patterns. Af-

ApR

Ap

Ap,

Graph

GBHT

o|eseeee

OIGBHT

Figure 2. An example of the OIGBHT applied to detect hatched patterns.

terwards, in Section 3 some results of the proposed method
are shown. Finally, Section 4 is devoted to the conclusions.

2 Hatched pattern detection by a graph-
based Hough transform

A hatched pattern can be defined as a sequence of I
straight lines in the image space {l; = (0;,p;) : 0; =
Oiv1, pi + Ay = piy1,8 = 1,...,1 — 1} where A, is
a constant value which characterizes the spatial frequency
of the hatched pattern. Since a hatched pattern consists of a
set of parallel straight lines placed at regular intervals, when
the SLHT is applied, a sequence of peaks which are verti-
cally aligned and regularly placed is obtained. Thus, paral-
lel straight lines could be detected by a double SLHT: first
a SLHT applied to the image space, and a second SLHT
from the parameter space in order to detect collinear peaks.
However, a more intelligent processing can be done on the
parameter space by computing the distances between pairs
of points having the same # values. This is what Pao et al.
[8] called signature of the shape. A peak (6, A,) in the sig-
nature space will represent a hatched pattern characterized
by the orientation and increment defined by the peak coor-
dinates. A more detailed study about the effect of transla-
tion, rotation and scaling operations on the Hough space is
reported in reference [6].

One of the drawbacks of the Hough transform is its hight
computational load. Since the document is first vectorized,
we use the information of the vectorial structure instead of
transforming the original image. Thus, after a vectorization
stage, the document is represented by an attributed graph
whose nodes represent characteristic points (junction, in-
flexion and end points), and edges approximate segments
by straight lines or circumference arcs. This graph is trans-
formed to a Hough space where peaks represent hatched ar-
eas. Afterwards, graph edges belonging to the same hatched
area are grouped and the boundary of the region is detected.

Taking into account that straight graph edges are at-
tributed by the parameters # and p that characterize the
equation p = z cosf + ysinf of the straight line passing
through this edge, in [7] we defined the GBHT as follows:

Definition 2.1 Given an attributed graph G = (V, E), we
define its Graph Based Hough Transform as a function
GBHT: E — [0, 7] x R such that, for each straight edge
e € E with attributes values 6, and p., transforms e into a
point (@, pe) in the 6-p parameter space.

If the GBHT is applied to the input graph, vertical align-
ments are obtained at orientations corresponding to hatched
patterns. But we are interested in finding not only the di-
rection of hatching segments, but also the difference in
p between two consecutive ones. Based on the idea of
the signature of a shape defined by Pao et al. [8] we
define the orientation-invariant graph-based Hough trans-
form (OIGBHT) as that which computes the distances be-
tween pairs of points of the parameter space having the
same 6 value. Formally it is defined as follows:

Definition 2.2 Let G = (V, E) and GBHT be an attributed
graph and its corresponding graph-based Hough transform,
respectively. We define its orientation-invariant graph-
based Hough transform (OIGBHT) as a function which
maps each pair of vertically aligned points of the 6-p space
to a point of a new parameter space 6-Ap, i.e OIGBHT:
[0,7] x R x [0,7] x R — [0, 7] x R is defined as

itf; =0,

01,|p1 —
OIHBHT (6, p1, 02, p2) :{ G, o1 2] otherwise

undefined
Since the GBHT produces vertically aligned and regu-
larly placed points in the parameter space when a hatched
pattern is transformed from the image space, the OIGBHT
will produce peaks in the 8-Ap space characterizing these
hatched patterns. The coordinates of a peak in the 6-Ap
space define the orientation and the increment of p between
two consecutive edges of the hatched pattern. An illustra-
tive example of an ideal case is displayed in Fig. 2. The
edge orientation and frequency of each hatched pattern is
detected by computing the OIGBHT from the input graph
representing the document. Notice that hatched patterns can
have different edge orientations and frequencies, it depends
on the number of peaks detected in the 6-Ap space.
Let (A, App) be the coordinates of a peak, in the 6-Ap
space, which defines a hatched area. Those edges having

Figure 3. (a) Extraction of graph edges can-
didate to belong to hatched areas after per-
forming the OIGBHT to the input graph, (b)
boundaries of hatched areas.

a @ value equal to A, with a certain tolerance range, and
another parallel graph edge at distance App, also with a
certain tolerance range, are selected from the input graph.
Figure 3a shows the subgraph G g7 obtained after applying
this filtering procedure.

The final step consists in segment each hatched area, i.e.
detecting its boundary defined as a sequence of graph ver-
tices. First, the edges of the graph Gz of hatching edges
are sorted according to their p value. An overlapping re-
lation between edges is taken into account in the sorting
procedure. Following an idea given in [1], a single-scan al-
gorithm in the direction of the filling edges defines an order
relation for each vertex of each segment:

Definition 2.3 Let 8 be the orientation which defines a set
of hatching edges. Following a scan direction perpendicular
to A, an edge is said to be open when the process reaches
its origin vertex, and it is said to be closed when the process
reaches its end vertex. A vertex which is open, in the scan
direction, between the vertices of another segment is said to
overlap the latter.

Considering this relation, given an edge e, the corre-
sponding following node in the sorted list contains those
edges which have a similar distance in p from e and over-
lap it. See at Fig. 4 for an illustrative example of sorted
edges of a hatched pattern. In this example, two lists are
built starting from the topmost edges, i.e. those edges that
don’t have any overlapped edge before.

The boundary of a hatched region is represented by a se-
quence of graph vertices [v1, . .., v,]; v; € V which outline
the region in a counter-clockwise sense. This boundary can
be computed by a straightforward recursive procedure. Let
L be a sorted list of hatching edges of a graph G = (V, E),
the function boundary(G, L, e) returns the sequence of ver-
tices outlining a sorted list L of hatching edges starting at

input graph hatched edges

scan

8
01305 15,

AN

sorted list

open and closed edges

7

(1 14-16-11-18-9-20-7-5-20-4-18-3-16-2-14-1-11-
ﬁ 2 | (A A A A Y A A B A |
(/ 2 12-1-15-2-17-3-12-13-19-4-9-21-4-5-8-22-8-
(S / ci1ro10 11 011011t

é/ 23-10-13-23-15-22-17-21-19

/ [

M

LN R I S A |

Figure 4. Sorting the edges of a hatched area
according to their overlapping relation.

1,2,3,4,5,6,7,8,9,10,32,31,30,28, 27,26,25,24,23,17,18,19,20,14,13,12,11
X D C B

>

String
merging

1,234, ...,14,13,12,11
1,23,4,5,6,7,...,15.21,...,28, 27,14,13,12,11
1,2,3,4,5,6.7,809.10.32.31116,15,21,22.9.10.32.31]30.28, 27,14,13,12,11 [List 1

Gap g
removal > 1,2,3,4[5.6,7.8.9.10.32.31,30.28. 27}14,13,12,11

A X B

17,18,19.20, ... ,26,25,24,23
G 17,18,19,20,5,6,7,...,15,21,...,28, 27,26,25,24,23
Gap C 17,18,19,20,5,6,7,4.9.10.32.31,16,15,21,22[9.10.32.31,30,28, 27,26,25,24,23 (List 2
removal > 17,18,19,20 26,25,24,23

C X D

Figure 5. The boundary detection procedure.

the edge e € E. The idea is to concatenate at each recur-
sive call e, oboundary(G, L, next(e, L)) o e, , where o is
the concatenation operator, e,,, and e,, are the leftmost and
rightmost vertices of e in the scan direction, respectively,
and next(e, L) returns the following edges to e in the list L.
See Fig. 5 for a trace of the algorithm in an ideal case.

A postprocessing procedure must be applied to the string
of vertices given by the boundary detection algorithm. This
step solves two possible problems: first, a region which
results in two lists of edges and, second, the presence of
gaps inside the hatched region. The first problem is solved
by merging boundary strings having common substring. In
Fig. 5 we can see that two sequences are obtained after
boundary detection, AX B and C'X D, which are merged in
the string AXDCB. The second condition, the presence
of gaps, is detected when the boundary string contains a re-

B .{:‘";-. ":-'T
‘q-\.{' -, g_(-(_"!::.._l"' ;-_,
g fl:lr .. L
g oy,
o A Lo,
3 -‘H'." e
A i E —
L SEL
N
] P _:":_}-_.-
(b)

Figure 6. Example of cadastral city map analysis: (a) Input image, (b) Text-graphics separation, (c)
Graph approximation and hatched areas discrimination.

peated substring (see Fig. 5), i.e. a string AX BXC must
be rewritten as AX C' to remove the gap. A real example of
boundary detection is shown in Fig. 3b.

3 Results

An additional example is presented in Fig. 6. Figure
6b illustrates a text-graphics separation step which has been
applied to the original image: the connected components of
the image of Fig. 6a have been labeled and separated in
two classes accorting to their size. Thus, the small com-
ponents (text and annotations) have been removed. The
hatched pattern detection procedure has been applied to the
image containing the large components. Figure 6¢ shows
the graph approximation of the image and the boundaries
of the hatched areas. Notice that the algorithm is able to
discriminate hatched areas with different orientations. This
illustrates that the orientation of the filling edges is not re-
quired to be previously known, but it is inferred in run time.

4 Conclusions

In this paper we have described a method to detect
hatched patterns, one of the most extended graphical enti-
ties in maps and technical drawings. Instead of performing
the recognition from the input raster image, hatched pat-
terns are searched in an attributed graph that represents the
document after being it vectorized. Considering that a set
of parallel straight lines produce a set of vertically aligned
points in the 8 — p Hough space, we have defined a transform
inspired in the Hough idea from the input graphtoa 8 — Ap
parameter space where peaks represent hatched patterns.

Two advantages arise from the use of a graph-based
transform instead of a raster image based transform. First,
the processing time of the Hough transform is drastically
reduced. Second, since straight lines have already been de-
tected, and their attributes stored in the graph structure, the

results are more reliable because potential distorsions due
to isolated pixels are avoided. Moreover, the hatching de-
tection module is a part of a map-to-CAD conversion sys-
tem where raster-to-graph conversion is performed anyway.
On the other hand, hatching detection algorithms make of-
ten some a priori assumptions about slope and frequency
of hatching lines. In our case, these two attributes are com-
puted from the Hough space, allowing to detect areas with
different hatching values in the same document.

References

[1] D. Antoine, S. Collin, and K. Tombre. Analysis of technical
documents: The REDRAW system. In H. Baird, H. Bunke,
and K. Yamamoto, editors, Structured document image anal-

ysis, pages 385-402. Springer Verlag, 1992.

L. Boatto, V. Consorti, M. Del Buono, S. Di Zenzo, V. Eramo,
A. Espossito, F. Melcarne, M. Meucci, A. Morelli, M. Mos-
ciatti, S. Scarci, and M. Tucci. An interpretation system for
land register maps. Computer, 25(7):25-33, July 1992.

J. Illingworth and J. Kittler. A survey of the Hough transform.
CVGIP: Image Understanding, 44:87-116, 1988.

R. Kasturi, S. Bow, W. El-Masri, J. Shah, G. JR., and
M. UB. A system for interpretation of line drawings. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
12(10):978-992, october 1990.

V. Leavers. Which Hough transform? CVGIP: Image Under-
standing, 58(2):250-264, Sep 1993.

J. Llad6s. Combining Graph Matching and Hough Transform
for Hand-Drawn Graphical Document Analysis. Application
to Architectural Drawings. PhD thesis, Universitat Autbnoma
de Barcelona and Université de Paris 8, 1997.

J. Lladés, J. Lopez-Krahe, and E. Marti. A system to un-
derstand hand-drawn floor plans using subgraph isomorphism
and Hough transform. Machine Vision and Applications,
10(3):150-158, 1997.

D. Pao, H. Li, and R. Jayakumar. Shapes recognition using
the straight line Hough transform: Theory and generalization.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14(11):1076-1089, Nov 1992.

(2]

(3]
(4]

(5]
(6]

(7]

(8]

