|
Katerine Diaz, Jesus Martinez del Rincon, Marçal Rusiñol and Aura Hernandez-Sabate. 2019. Feature Extraction by Using Dual-Generalized Discriminative Common Vectors. JMIV, 61(3), 331–351.
Abstract: In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.
Keywords: Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning
|
|
|
Khanh Nguyen, Ali Furkan Biten, Andres Mafla, Lluis Gomez and Dimosthenis Karatzas. 2023. Show, Interpret and Tell: Entity-Aware Contextualised Image Captioning in Wikipedia. Proceedings of the 37th AAAI Conference on Artificial Intelligence.1940–1948.
Abstract: Humans exploit prior knowledge to describe images, and are able to adapt their explanation to specific contextual information given, even to the extent of inventing plausible explanations when contextual information and images do not match. In this work, we propose the novel task of captioning Wikipedia images by integrating contextual knowledge. Specifically, we produce models that jointly reason over Wikipedia articles, Wikimedia images and their associated descriptions to produce contextualized captions. The same Wikimedia image can be used to illustrate different articles, and the produced caption needs to be adapted to the specific context allowing us to explore the limits of the model to adjust captions to different contextual information. Dealing with out-of-dictionary words and Named Entities is a challenging task in this domain. To address this, we propose a pre-training objective, Masked Named Entity Modeling (MNEM), and show that this pretext task results to significantly improved models. Furthermore, we verify that a model pre-trained in Wikipedia generalizes well to News Captioning datasets. We further define two different test splits according to the difficulty of the captioning task. We offer insights on the role and the importance of each modality and highlight the limitations of our model.
|
|
|
Klara Janousckova, Jiri Matas, Lluis Gomez and Dimosthenis Karatzas. 2020. Text Recognition – Real World Data and Where to Find Them. 25th International Conference on Pattern Recognition.4489–4496.
Abstract: We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.
|
|
|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2013. Plausibility-Graphs for Symbol Spotting in Graphical Documents. 10th IAPR International Workshop on Graphics Recognition.
Abstract: Graph representation of graphical documents often suffers from noise viz. spurious nodes and spurios edges of graph and their discontinuity etc. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance.
But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical
graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2012. Hierarchical graph representation for symbol spotting in graphical document images. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer Berlin Heidelberg, 529–538. (LNCS.)
Abstract: Symbol spotting can be defined as locating given query symbol in a large collection of graphical documents. In this paper we present a hierarchical graph representation for symbols. This representation allows graph matching methods to deal with low-level vectorization errors and, thus, to perform a robust symbol spotting. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2014. Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 25–37. (LNCS.)
Abstract: Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Kunal Biswas, Palaiahnakote Shivakumara, Umapada Pal, Tong Lu, Michel Blumenstein and Josep Llados. 2023. Classification of aesthetic natural scene images using statistical and semantic features. MTAP, 82(9), 13507–13532.
Abstract: Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images.
|
|
|
L. Rothacker, Marçal Rusiñol and G.A. Fink. 2013. Bag-of-Features HMMs for segmentation-free word spotting in handwritten documents. 12th International Conference on Document Analysis and Recognition.1305–1309.
Abstract: Recent HMM-based approaches to handwritten word spotting require large amounts of learning samples and mostly rely on a prior segmentation of the document. We propose to use Bag-of-Features HMMs in a patch-based segmentation-free framework that are estimated by a single sample. Bag-of-Features HMMs use statistics of local image feature representatives. Therefore they can be considered as a variant of discrete HMMs allowing to model the observation of a number of features at a point in time. The discrete nature enables us to estimate a query model with only a single example of the query provided by the user. This makes our method very flexible with respect to the availability of training data. Furthermore, we are able to outperform state-of-the-art results on the George Washington dataset.
|
|
|
L. Rothacker, Marçal Rusiñol, Josep Llados and G.A. Fink. 2014. A Two-stage Approach to Segmentation-Free Query-by-example Word Spotting.
Abstract: With the ongoing progress in digitization, huge document collections and archives have become available to a broad audience. Scanned document images can be transmitted electronically and studied simultaneously throughout the world. While this is very beneficial, it is often impossible to perform automated searches on these document collections. Optical character recognition usually fails when it comes to handwritten or historic documents. In order to address the need for exploring document collections rapidly, researchers are working on word spotting. In query-by-example word spotting scenarios, the user selects an exemplary occurrence of the query word in a document image. The word spotting system then retrieves all regions in the collection that are visually similar to the given example of the query word. The best matching regions are presented to the user and no actual transcription is required.
An important property of a word spotting system is the computational speed with which queries can be executed. In our previous work, we presented a relatively slow but high-precision method. In the present work, we will extend this baseline system to an integrated two-stage approach. In a coarse-grained first stage, we will filter document images efficiently in order to identify regions that are likely to contain the query word. In the fine-grained second stage, these regions will be analyzed with our previously presented high-precision method. Finally, we will report recognition results and query times for the well-known George Washington
benchmark in our evaluation. We achieve state-of-the-art recognition results while the query times can be reduced to 50% in comparison with our baseline.
|
|
|
L.Tarazon and 6 others. 2009. Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text. 15th International Conference on Image Analysis and Processing. Springer Berlin Heidelberg, 567–574. (LNCS.)
Abstract: An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.
|
|