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Abstract—We present a method for exploiting weakly anno-
tated images to improve text extraction pipelines. The approach
uses an arbitrary end-to-end text recognition system to obtain text
region proposals and their, possibly erroneous, transcriptions.
The proposed method includes matching of imprecise transcrip-
tion to weak annotations and edit distance guided neighbourhood
search. It produces nearly error-free, localised instances of scene
text, which we treat as “pseudo ground truth” (PGT).

We apply the method to two weakly-annotated datasets. Train-
ing with the extracted PGT consistently improves the accuracy of
a state of the art recognition model, by 3.7 % on average, across
different benchmark datasets (image domains) and 24.5 % on
one of the weakly annotated datasets.

I. INTRODUCTION

Written text is an important source of information for
humans and plays an important role in everyday life, being
frequently present in scenes with man-made structures. It is
one of the most common classes in general object detection
datasets like CoCo [1]. Research in end-to-end reading systems
is a very active research field in academia and industry alike.
It is an essential part of many applications ranging from
translation systems and autonomous driving to image retrieval
or visual question answering.

In recent years, with the introduction of deep neural network
models, the field has advanced substantially. At the same time,
state of the art performance comes at the cost of the require-
ment of large-scale annotated data for training. Such data need
to be rich in geometry, style and content. Typical ground truth
data is defined at the granularity of words as polygonal regions
in the image along with the corresponding text transcriptions.
The acquisition of such data requires substantial human effort
and is very costly.

The lack of data is usually approached in two different ways,
either by generating synthetic data as in [2], [3], [4], [5], [6],
[7] or with different forms of weakly, semi or unsupervised
learning on real data as in [8], [9], [10].

While fully annotated real world data are expensive and
sparse, weakly annotated data in the form of images along
with a set of words likely to appear in them are common.
An example of a source for such weakly annotated data are
product databases where we can readily obtain the name of
the product and other meta-data. A weakly annotated dataset,
based on a product database, used in our experiments is shown
in Figure 1, other sources in Figure 2. Images from mapping
services like Google Maps are another potential source where

(a) (b) (c) (d) (e)
Fig. 1: The ABC Dataset images are diverse, some have (a)
both a simple layout and font, (b) a very artistic, almost
illegible font and (c) a font that resembles handwriting. Other
have (d) both dense background and hand-written text or (e)
the background varies significantly even at the word level. The
dataset includes weak annotations - the name of the author and
the title. Not all text is annotated, location of the annotated
text is not provided.

(a) Searching for ‘Cafe London’ photos in the Flickr application.

(b) Artist and album name in Amazon Music product database.

Fig. 2: Potential sources of weakly annotated data; the avail-
ability of such data for research purposes changes over time.

street names and numbers or business names are words very
likely to appear in an image and easily obtainable through
location-based search. For example, given images from the
location where a restaurant is supposed to be, it is expected
that the name of the restaurant will be visible in some of them

In this paper, we present a new method for automatically
generating pseudo ground truth (PGT) in the form of text
regions and their transcription from weakly annotated data
consisting of text transcriptions only with no information
about the text location. The weak annotations may be noisy
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- incomplete (not all the text in the image is there) and
with distractor words (text that is not in the image). The
method requires an end-to-end text recognition system (E2E)
pre-trained with annotated data. In contrary to our method
which uses automatically obtained weak annotations, previous
methods used weak labels which alleviate but do not eliminate
human participation, such as annotating the areas of interest.

The core idea of our method is that the OCR output of the
recognition model can be used to identify the most probable
text match from the weak annotations by finding the one
with the lowest edit distance. The detections that produce an
exact match with the weak label are assumed to be correct.
Furthermore, the recognition output can be used to find the
modifications of the detected regions that minimize the edit
distance to the matched text. For example, if we have predicted
the word ‘car’ and the best match was ‘cartoon’, running the
recognition again on the detected region extended to the right
may decrease the distance between the matched and predicted
text, possibly leading to the prediction of the matched word
‘cartoon’. We have experimentally verified that he probability
of the recognition model giving the same output as the weak
label for a wrong text region is very low, thus it is safe to use
such regions as PGT for further training.

In summary, given an image and a dictionary of words as an
input, the method outputs a subset of the dictionary words with
their corresponding text regions in the image. The method is
independent of the underlying implementation of the models.

Possible applications of our method are improving the
performance of an existing general E2E system or domain
adaptation, where the source domain has full ground truth data
whereas only weak labels are available for the target domain.

We apply our method to data from two different sources - a
database of images of book-covers downloaded from Amazon
books, using the title and the author of the book as weak
annotations, and the Uber-Text dataset [11], which is very
similar to the kind of data that could be obtained using a
mapping system. We train a recognition model with the PGT
generated from both sources on various benchmarks, showing
that it consistently improves the recognition accuracy across
a wide range of datasets. We chose Uber-Text, a dataset
with region-level annotations available, to evaluate how our
approach compares to fully supervised training in ablation
studies. Otherwise, the full annotations are not used.

The contributions of the paper are:

• We present a novel method for automatic generation
of pseudo ground truth data from images with weak
annotations.

• The accuracy of the best-performing open-source model
is improved significantly (3.7 % on average) on a wide
range of benchmark datasets by training with the PGT
generated from two datasets.

• The PGT data significantly improve recognition perfor-
mance in weakly-supervised domain adaptation (24.5 %).

• The PGT annotations in the Amazon Book Covers dataset
will be published.

II. RELATED WORK

We first give a short introduction of scene text detection and
recognition methods, and an overview of methods for gen-
erating synthetic data. Then we focus on weakly-supervised
learning for text detection and recognition.

A. Text Detection and Recognition

Before the deep learning era, methods based on SWT or
MSERs were used for text detection, for example [12], [13].
Subsequent models were mostly based on region proposal
approaches like [14]. Recently, methods have rather turned
to segmentation-based approaches like [15] and focused on
representing arbitrarily shaped text, for example [8], [16].

Recent approaches for text recognition rely on deep learn-
ing. Most methods can be described by 4 stages. Transfor-
mation - a Spatial Transformer Network [17] normalizing the
input image. Feature extraction - a CNN such as VGG [18] or
ResNet [19] maps the input image to feature maps. Sequence
modelling - BiLSTMs are used to provide contextual infor-
mation to the feature maps. Prediction - either CTC [20] or
attention-based prediction [21] is used to convert the encoded
features into a character sequence. Some methods treat the
two tasks jointly, sharing features for both detection and
recognition, for example [22], [23], [24].

B. Synthetic data for text detection and recognition

The work of [5] and [14] had a great influence on the per-
formance of text detection and recognition systems. Synthetic
data have proven to be very effective for training generic text
localisation systems. Still, the lack of realism (both in terms of
positioning, and blending with the scene), diversity (in terms
of text styles and scene backgrounds) and contextualisation of
the text in the scene, have been limiting factors. More recent
works aim to improve some of these aspects [2], [4], [6], [7],
or exploit instead real scene text data to do augmentation [3],
still, cannot replace the quality of real-world data.

C. Weakly supervised learning

The proposed method builds on top of pseudo-labelling
techniques [25], a simple strategy for semi-supervised learning
where part of the data is fully labelled and Pseudo-Labels are
created for unlabelled data as the class with the maximum
predicted probability and further treated as true labels.

Focusing on Chinese street view images, [26] have rough
location and transcription of some text instances annotated. An
online proposal matching module is incorporated in the whole
model. The main difference from our method is that they do
not do any modification of the proposed regions.

In [24], an existing OCR engine different from the one
being trained is used to provide partial labels for one million
unlabelled images. The partially labelled data is then used
to train the recognition part of an E2E model, improving
the results significantly. The method relies on a confidence
threshold to filter out noisy labels while our method relies on
weak annotations to minimize the risk of incorrect labelling.



Focusing on text detection, [10] propose multiple ap-
proaches for unsupervised and weakly supervised learning.
Their unsupervised approach simply relies on filtering out
predictions with low confidence score. An improved approach
requires weak annotations, where regions containing text are
annotated and it is known that regions distant from the
annotated ones do not contain any text, allowing for more
accurate false positives filtering. Their last approach relies on
rectangular bounding boxes as weak labels.

III. DATASETS

We introduce the datasets used in our experiments.
Amazon Book Covers (ABC) is a dataset created from

more than 200,000 images downloaded from Amazon Books.
The author and the title of each book serve as weak annota-
tions. The same data were already used for genre prediction
in [27]. Some illustration images are shown in Figure 1.

Uber-Text dataset (UT) is one of the biggest datasets for
text detection and recognition. It contains 117,969 images with
571,534 labelled text instances split into training, validation
and test sets. Each set is divided into two subsets according
to the image resolution - either 1K or 4K. The images were
obtained through the Bing Maps Streetside program and come
from 6 different cities in the US. The annotations are line-level.
Most of the text regions form semantic units such as business
names, street signs or street numbers. The datasets contains a
lot of not annotated text, some text regions are not annotated
at all, while some readable text is labeled as unreadable [11].

MJSynth (MJ) contains almost 9M synthetically gener-
ated images of English words for text recognition. The text
generation process performs the following steps: Font render-
ing, border/shadow rendering, coloring, projective distortion,
natural data blending and noise introduction [14]. SynthText
(ST) is a synthetic dataset designed for scene-text detection,
widely used for recognition, too. It has over 7M text instances
in 8,000 images [5]. Synthetic Multi-Language in Natural
Scene Dataset (MLT) contains 245,000 images in total with
text instances in multiple scripts: Arabic, Bangla, Chinese,
Japanese, Korean and Latin. The dataset was published in [23]
and the authors have adapted the framework of [5]. A non-latin
dictionary was used and it contains special, non-alpha-numeric
characters. We only use the Latin script subset of the dataset,
which contains 288,917 text instances in total [23].

IIIT 5K-word (IIIT) is a collection of 5,000 cropped
words from Google image search using queries which are
likely to contain text [28]. The training set consists of 2,000
images, the remaining 3,000 form the test set.Street View Text
(SVT) was collected from the Google Street View, providing
annotators with a lexicon for each image, containing texts such
as business names. Only the words from the lexicon were
localised and provided with transcription, the rest of the text
is ignored. There are 257 and 647 images of cropped words in
the training and test sets [29]. Street View Text - Perspective
(SVT-P) is a dataset of 645 images collected from Google
Street View focused on perspective projections [30].

ICDAR2003 (IC03), collected for the ICDAR 2003 Robust
Reading competitions [31], has 258 training and 251 testing
images with 1,156 and 1,110 annotated words respectively.
ICDAR2013 (IC13) is a dataset with ’focused text’, the text
being the main content of the image. It consists of a training set
of 229 images with 848 words and a test set of 233 images with
1095 words. [32]. In contrast, ICDAR2015 (IC15), focuses on
incidental scene-text - the images were not taken with text in
mind. The training set contains 1,000 images (4,468 words)
and the test contains 500 images (2,077 words) [33].

Total-Text (TT) is a dataset of 1,555 scene images with
9,330 annotated words. The images were collected with curved
text in mind and the images often contain texts of different
orientations [34]. CUTE80 (CT) contains 80 images with 288
words, focusing on curved text [35].

IV. PGT GENERATION

This section describes the pseudo ground truth (PGT)
generation algorithm (PGT-GEN). The algorithm uses weakly
annotated images and an existing end-to-end reading system
(E2E). All the steps are executed independently for each
image. First, we define the E2E output and the structure of
the weak annotations. Then we describe the algorithm and its
components in detail.

Given an image I , the output O = {(bb1, tt1), . . . (bbt, ttt)}
of the end-to-end reading system is a set of t text bounding
box predictions and the corresponding text transcriptions. The
transcriptions T = (tt1, . . . , ttt) are strings (possibly contain-
ing spaces) and the bounding boxes are oriented rectangles. It
is necessary that the recognition output from a bounding box
bb can be obtained independently: REC(I, bb) = tt.

Each image is associated with a list of texts
A = (t1, t2 . . . tn) where each text ti = (w1, w2, . . . , wm)
is a non-empty ordered sequence of words. The set of weak
labels G =

⋃n
i=1 gi is obtained as a union of sets of k-grams,

k ∈ {1, ..5}. Each set of k-grams gi is formed by strings
(consecutive words from ti), sub-sequences of ti of length
k joined into a single string by the space character. In the
simplest of cases, each text ti only consists of a single
word but because the texts are assumed to be extracted
automatically as metadata accompanying the images, it may
even be multiple words that form a semantic unit — a
name of a product, its description, a business’ name, contact
information. These words are likely to appear in the image
close to each other and get merged by the detector.

For example, the texts could be “Sherlock Holmes” and
“221B Baker Street”. A and G would then be

A = ((“Sherlock”, “Holmes”), (“221B”, “Baker”, “Street”))

G = {“Sherlock”, “Holmes”, “Sherlock Holmes”, “221B”,
“Baker”, “Street”, “221B Baker”, “Baker Street”,

“221B Baker Streeet”}.



A. PGT-GEN algorithm

The PGT-GEN algorithm takes the image I , E2E output O
and the set of weak labels represented as k-grams G as an
input and outputs the PGT - a localized subset of G.

Algorithm 1: PGT-GEN
Input: I,O,G
Output: PGT
P := AssignWeak(O, G);
PGT = {};
foreach ((bb, tt), g) ∈ P do

(bbf , ttf ) = FindOptimalBox(I, bb, tt, g);
if IsPGT(ttf , g) then

PGT = PGT ∪{(bbf , g)};
end

end
return PGT

AssignWeak - Weak annotation assignment. Each ele-
ment from O is assigned at most one weak annotation from G.
We construct a directed bipartite graph BG = (V,E) between
O and G, thus V = O∪G. For each output o ∈ O, o = (bb, tt)
and weak annotation g ∈ G it holds that

(o, g) ∈ E ⇐⇒ dist(tt, g) =
|G|

min
i=1

dist(tt, gi) (1)

(g, o) ∈ E ⇐⇒ dist(tt, g) =
|T |

min
i=1

dist(tti, g) (2)

where dist is the Levenshtein distance.
Then, a set of proposals P is created:

P =

|O|⋃
i=1

Assign(oi, E) (3)

Assign(o,E) =

{
∅ for W (o,E) = ∅
[W (o,E)]R otherwise

(4)

W (o,E) = {(o, g) : (o, g) ∈ E ∧ (g, o) ∈ E ∧match(o, g)}.
(5)

We define match((bb, tt), g) = dist(tt,g)
max(len(tt),len(g)) < 1 to filter

out completely irrelevant proposals and [.]R selects an element
from a set randomly. In most cases, |W (o,E)| ∈ {0, 1}.

At this point, we could apply some simple filtering to
the set of proposals P instead of the edit distance guided
neighbourhood search, for example, select

P ′ = {p ∈ P, p = ((bb, tt), g)|dist(tt, g) = 0} (6)

and then output

PGT =
⋃

((bb,tt),g)∈P ′
(bb, tt). (7)

This would be equivalent to selecting proposals where the
predicted transcription was equivalent to the weak label text

Fig. 3: Improved localization of weak labels by the neigh-
bourhood search - the detected bounding boxes (blue) and the
transformed ones (green).

for PGT - we implement this version and compare it to the
proposed one, showing the superiority of the proposed method.

FindOptimalBox - Edit distance guided neighbourhood
search. For each proposal ((bb, tt), g) ∈ P , we search for an
optimal bounding box bbf which minimizes the Levenshtein
distance between the recognized text ttf and g.

If dist(tt, g) = 0, we assume that bb is already optimal and
assign bbf = bb. If not, we predefine a set of new boxes in
the neighbourhood of bb and run the recognition on those in
parallel, selecting one with minimal distance from g for bbf .
The generation of the set of predefined boxes is explained in
detail in Appendix A.

We compute ttf = REC(I, bbf ) and the normalized edit
distance between ttf and g as d =

dist(ttf ,g)
max(len(ttf ),len(g)) .

Finally, we find out whether (bbf , ttf ) satisfies our require-
ments for being a PGT (IsPGT) as:

IsPGT(ttf , g) =

{
True for d = 0 ∨ isClose(d, ttf , g)

False otherwise
(8)

where isClose(d, ttf , g) = (d < θ ∧ |ttf | > λ ∧ tt0f = g0 ∧
tt−1f = g−1), s0, s−1 are the first and the last characters of
a string s. The thresholds θ, λ are set to θ = 0.35, λ = 4.
The intuition behind the IsClose function is that even if the
recognized text ttf and the assigned text g are not identical,
it is possible that there was simply an error in the recognition
step. If the relative edit distance between two longer texts is
low and the first and the last characters are the same, it is
likely that ttf should actually be g.

Examples of how the neighbourhood search aids the PGT
generation process can be seen in Figure 3.

V. END-TO-END READING SYSTEM

In this section, the end-to-end reading system (E2E) used
in our experiments is described. Separate models for detection
and recognition are used.

A. Detection

For text detection, we adopt TextSnake [16]. It is based
on a fully convolutional network – U-net with VGG-16 [18]
backbone – which estimates the geometry attributes of text in-
stances. A text instance is described as a sequence of ordered,
overlapping disks centered at symmetric axes. Each disk is
associated with a potentially variable radius and orientation.

The following values are predicted for each pixel: tcl, tr, r
and α, corresponding to the text center line, text region, radius
and angle. Thresholds varying on different datasets are applied
to tcl and tr to obtain binary masks tclb and trb. Focusing



on straight text, we replace the proposed subsequent post-
processing steps for text instance reconstruction with a method
based on least squares fitting of the text center line points,
which improves the orientation of the final bounding box.

First we obtain the connected components CC from trb∗tclb.
For each component cc ∈ CC, where cc are all the component
points, we estimate the bounding box (cx, cy, w, h, α) directly.

The angle α is estimated by total least squares fitting of
a line to the points of cc shifted by the mean value of the
coordinates m = (mx,my) to the origin, using the slope of
the best fitting line as the bounding box angle.

The height h is determined via the biggest radius predicted
within the component: h = max(r[cc]) ∗ 2. To determine the
width w, we project the shifted points onto the line with slope
α passing through the origin and find the projected vectors
with maximum norm in both directions, ppos and pneg . The
width is calculated as w = |ppos − pneg| + h. The extra h is
added to the width because during training, the tcl is shrank
by h

2 (assuming the radius is constant, h
2 , for straight text

with rectangular ground truth). Afterwards, we shift ppos, pneg
back by m and calculate the center of the bounding box as
the middle point: (cx, cy) = m+

ppos+pneg

2 .

B. Recognition

We adopt the best performing architecture from [36], similar
to STAR-net [37] but with a different prediction mechanism.

1) Transformation: An input image I is transformed into
a rectified image Ĩ . It predicts the parameters of a thin-plate
spline (TPS) transformation, a variant of spatial transformer
network (STN) [17]. The whole module consists of a local-
ization network, a grid generator and a grid sampler.

We use grayscale images as the input and both the input
and output dimension are fixed to 32 × 150 pixels. For more
details, we refer the reader to [38], [36], [37].

2) Feature Extraction: Given the rectified image Ĩ , the
feature extractor outputs a feature map

V = CNN(Ĩ) = {vi}, i = 1, . . .K (9)

where K = 38 is the number of columns in the output feature
map (512× 38).

3) Sequence modeling: a BiLSTM network [39] creates
contextual features from the visual features vi and outputs
H = Seq(V ). We use a 2-layer BiLSTM. An ith layer
identifies two hidden states: forward h

(t),f
i and backward

h
(t),b
i ∀t. A fully-connected layer between the two BiLSTM

layers determines one hidden state, ĥ(i)t , from h
(t),f
i and h(t),bi .

The dimension of the hidden states and the FC layer is 256.
4) Prediction: Finally, a single layer LSTM [40] atten-

tion decoder produces the output sequence of characters
Y = y1, y2, . . . yn, yt = softmax(Wost + bo), where Wo

and b0 are trainable parameters, and st is the decoder LSTM
hidden state at time t. The decoding stops when the (EOS)
symbol is emitted. The model is trained with the cross entropy
loss function. For more details on the attention mechanism,
please see [8], [21], [24].

This recognition model is used in all of our experiments
and we will refer to it simply as OCR.

VI. EXPERIMENTS

The pseudo ground truth (PGT) generation method was
tested with two different sources of weakly annotated data,
the Amazon book covers dataset (ABC) and the Uber-Text
(UT) training set where we ignored localization information.

The detection part of E2E (TextSnake) was trained on a mix
of SynthText, ICDAR2015 and Total-Text datasets. The post-
processing thresholds of TextSnake were set to tr = 0.4 and
tcl = 0.7, which lead to the best PGT generation performance
on a small subset of UT and ABC images. We do not filter out
the text marked as unreadable or don’t care during
training to maximize the use of available data. Detection
recall is more important than precision for PGT generation –
the more words detected, the more potential pseudo-labelled
examples are available. On the other hand, false positives are
very unlikely to be matched against weak annotations, thus
they have minimal impact, besides slowing down the process.

The recognition part (OCR), which also serves as a base-
line model (OCRb) in our experiments, was trained on the
ST (Synth-text), MJ (MjSynth) and MLT (Synthetic Multi-
Language in Natural Scene) datasets. The OCRb recognizes
70 characters – letters, not distinguishing lower and upper
case, digits and frequent special characters like punctuation,
brackets, the (EOS) symbol and the space.

Most recognition datasets provide word-level annotations,
and thus space is never part of the transcription. We included
space in the character set for three different reasons. First,
if the model is capable of predicting spaces, it helps to
guide the PGT generation process - a bounding box that is
too wide leads to a space being predicted at the beginning
or end of the transcription. Second, if the detector merges
horizontally adjacent words, the recognizer often splits the text
by recognizing a space between the merged words. Third, it
allows exploiting annotations that contain multiple words.

Synthetic datasets used for training have word-level anno-
tations and thus provide no training data for the space char-
acter. We therefore extended some of the bounding-boxes and
included spaces at the beginning and end of the ground truth
annotations. This produced a model with a limited ability to
recognize the space. It was further improved during training
on PGT, since it contains multi-word texts. During evaluation,
we strip any leading/trailing spaces from the predictions.

The OCR processes images with a fixed resolution of
32× 150. Input images are first resized isotropically to height
32. If the width of the resized image is less than 150, the
image is extended to the left and padded with zeros. If the
width exceeds 150, it is horizontally shrunk to 150 - only in
this case the aspect ratio of the input images is not preserved.
The procedure of training with PGT is explained in Figure 4.

A. PGT from the Uber-Text dataset
The experiment evaluates the PGT method as an adaptation

technique to the Uber-Text dataset domain. The performance
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Fig. 4: Training procedure. In the i-th iteration, i > 1, the
outputs of the OCRDi−1

and TextSnake models are used to
generate a pseudo ground truth (PGT) dataset Di from a
weakly annotated dataset D. A new model OCRDi is trained
on the union of Di and fully annotated data F. In the first
iteration, OCRb and TextSnake are pretrained on F.

is also compared to fully-supervised and semi-supervised
training in the UT domain.

A reference method, OCRUTF , is obtained by fully super-
vised training on UTF, the set of 138,437 transcriptions and
corresponding rectangular crops from the UT training set that
contain no unreadable characters in transcription. The crops
are the minimum area enclosing rectangles of the ground truth
polygons. Appendix B contains details of a semi-supervised
learning via pseudo-labelling experiment. The best performing
model from this experiment is referred to as OCRUTPL . OCRUTF

and OCRUTPL , as well as other OCRs described in this section,
are validated on a set of 5,000 random transcriptions from the
UT validation set.

For PGT generation, the whole UT training set is used.
To facilitate GPU computations, we split large (about 4K)
images into 16 blocks ensuring no text instance is split and
discard those with no text. Such empty blocks are common
since text instances are sparse in many images. Each of the
original ground truth transcriptions is a weak label in our
experiment, the ground truth polygons are discarded. The weak
labels are transformed into a set of n-grams, as explained in
the PGT generation section. N-grams containing the * symbol
(unreadable or unknown characters) are discarded.

PGT generation and OCR training. In the first iteration,
92,909 PGT text instances were obtained. The number of
PGT text instances increased in all iterations, reaching 113,810
texts after six iterations when the OCR performance stopped
improving – a summary is shown in Figure 5. The recognition
rate, calculated on 20,000 randomly selected transcriptions
from the UT test set, increased in each iteration from the
baseline 41.6 % to 66.1 % in the sixth iteration. The accuracy
of the fully supervised OCRUTF and semi-supervised OCRUTF

is 78 % and 45.7 %, respectively. The PGT has reduced the
gap between the baseline model and the fully-supervised one
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Fig. 5: Number of PGT text instances on the UT and the ABC
datasets. On UT, the text location information is ignored.
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trained in iteration i is denoted as OCRUTi . UT′1 is a subset
of UT1 obtained without the neighbourhood search. UT paper
is the model of [11].

by 67 %. The performance of PGT training is limited by the
detector which was not trained on the new domain. Improving
the detector may help to reduce the gap further.

To test the contribution of the neighbourhood search and
of allowing imperfect matches, a dataset, denoted UT′1, is
created. It contains only the detections that matched with 0
edit distance with some of the weak labels. The accuracy
of the model trained with UT′1 is 2.7 % lower, showing the
importance of the additional retrieved PGT text.

Figure 6 compares the accuracy of different models and
Tables III and IV summarize the different experiments.

B. PGT from book covers

The PGT is generated from the whole ABC dataset - over
200,000 images, using the author and the title of each book
as weak label. The title often includes a subtitle - while the
author and title are almost always present in the image, the
subtitle is less common, or there may only be a part of it.

We performed three iterations, again increasing the number
of PGT generated in each of them. In the last one, ABC3,
a dataset of 1,594,333 cropped images of text is generated.
Figure 5 contains a summary of the PGT generation results
and Table III contains a more detailed results.



C. PGT accuracy

We have analyzed the accuracy of the PGT method on
UT6 and ABC3, 500 text instance crops from each. We have
found 21 and 10 images with a wrong PGT in the ABC and
the UT datasets, respectively. Those are images that do not
contain text or images where some characters/punctuation in
the PGT are wrong. The majority of these errors are due to
false positives/very blurred texts, leading to a prediction of a
common word such as ‘the’, ‘on’ with low confidence and
thus can be filtered out. For more details, see Appendix C.

D. Results on benchmark datasets

A recognition model trained with the PGT data from the
previous experiments is evaluated on different domains us-
ing various commonly used recognition datasets - IIIT 5K-
word (IIIT), Street View Text (SVT), ICDAR2003 (IC03),
ICDAR2013 (IC13), ICDAR2015 (IC15), Street View Text -
Perspective (SVT-P) and CUTE80 (CT). We evaluate on test
set subsets commonly used by researches as identified in [36].
All the models were validated on a union of the training sets
of all the previously mentioned datasets. The reported metric
is the percentage of correctly recognized words.

To evaluate models trained on word-level data only, a test
set of 20,000 images where each image only contains a single
word, referred to as UTW, is also created.

We also evaluate on the UTW subset of the UT dataset but it
was not included in the validation set. We remove any spaces
from all the predictions and when evaluating on datasets with
images that contain punctuation but the ground truth does not,
we filter any non-alphanumeric characters out.

Training with either UT1 or ABC1 generated in the first
iterations of the PGT generation consistently improves the
performance. On some datasets, UT boosts the accuracy more
than ABC and vice versa. Training with both leads to a supe-
rior performance on all evaluated datasets. The data from the
last iterations, UT6 and ABC3, further improve the accuracy
with an average improvement of 3.7 % relative to OCRb.

The model trained with the UT′1 and ABC′1 datasets is also
evaluated. Those datasets are subsets of the UT1 and ABC1
datasets that would have been obtained if no neighbourhood
search or edit distance filtering was used. With the exception
of IC03 dataset, this model’s performance is always inferior
to the model trained with all the data.

The results also show that while the baseline model, trained
on synthetic data only, performs well over a wide range of
datasets, the performance on UT is rather poor - only 52.8
% accuracy. This shows the challenging nature of the dataset,
partially due to the presence of heavily blurred images and
the high frequency of vertical/diagonal text direction. The
summary of the experiments can be seen in Table I.

For comparison with other methods, we trained and evalu-
ated our best performing model on alpha-numeric characters
only. The baseline model is pretrained with MJ and ST and
fine-tuned with the the UT6 and ABC3. During evaluation, all
images with unknown characters are filtered out. The boost
in performance here is slightly lower, 3.3 % on average.

dopert chantronn jow
→ expert → chinetown → join

sireapost brioffoole underving
→ singaport → barbeque → lundekvui

Fig. 7: Images with improved results after PGT training. The
original OCRb and OCRUT6+ABC3

(→) predictions.

tape arlboro tqbu
→ tapl → arljoro → tqlu

mink topshop indiana
→ mark → forshop → ludiana

Fig. 8: Images with worse results after PGT training. The
original OCRb and OCRUT6+ABC3

(→) predictions.

This single model achieves second-best performance on three
different datasets with respect to the most recent state-of-the-
art models. Note that state-of-the-art performance is achieved
by different architectures trained on different data across the
benchmarks, furthermore, the model of [41] uses multiple
different model configurations.

The results of our work show that training with automat-
ically generated PGT from very different domains, such as
born-digital documents, can significantly improve the perfor-
mance of a recognition model over a wide range of scene-
text datasets. Also, adding only a relatively small number
of those images helps significantly, implying the variety of
data is important. Some common characteristics of the images
where the PGT data has improved the model’s performance
are blurred images, perspective distortions, artistic/handwritten
fonts or occluded/cropped characters. Examples are shown in
Figure 7 while images where the performance has deteriorated
are shown in Figure 8.

VII. CONCLUSION

We proposed a PGT generation method and applied it to
two different sources of weak annotations. As our baseline
model, we chose the best-performing architecture with pub-
licly available code-base [36]. Training with PGT without
any architecture changes consistently improved the recognition
accuracy both on images from the same domain and across
different benchmark datasets and thus different domains. Our
method is architecture-agnostic and thus can be applied to
improve the performance of other architectures as well.
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APPENDIX A
BOUNDING BOX TRANSFORMATIONS

We define the following transformations to generate a
set of bounding boxes in the neighbourhood of an in-
put bounding box: Extending/shrinking the bounding box
on the left/right/top. Angle modification and bottom exten-
sion/shrinkage were also considered but the benefits were
insignificant. To keep the computational cost reasonable, we
also assume that changes to the left side of the bounding box
do not influence the recognition of the characters on the right
side and vice versa, the optimization on each side is done
independently. Horizontally, we extend/shrink the box with
width w and height h in each direction by up to c characters,
the character length being estimated as the average character
length chavg = w

|text| . On the top, we extend by up to h
β and

shrink by up to h
γ .

Each of the transformed bounding boxes can be char-
acterized by three integer parameters relative to the origi-
nal bounding box - (t, l, r) - defining the extension/shrink
(distinguished by the sign) by t, l, r units on top/left/right,
where the horizontal unit is chavg

δ and the vertical unit is h
κ .

Consequently, l, r ∈ [−c · δ; c · δ] and t ∈ [−κγ ; 2κβ ]. The
transformed bounding boxes that exceed the image or do not
overlap with the original one are immediately discarded.

To obtain the final bounding box bbf characterized by
(tf , lf , rf ), we find an optimal bounding box in both directions
(left and right). For each direction, we find the set of boxes
B = {(ti, li, ri)}i=1...n that result in the lowest edit distance
from g. The sets T =

⋃
(ti,li,ri)∈B ti, L =

⋃
(ti,li,ri)∈B li and

R =
⋃

(ti,li,ri)∈B ri are created.
From the boxes transformed in the left direction, we obtain

tl = minT (10)

and
lf =

minL+ min(maxL, o+ minL)

2
(11)

Analogously, for the right direction, we obtain

tr = minT (12)

and
rf =

minR+ min(maxR, o+ minR)

2
(13)

We set
tf = max(tr, tl) (14)

In our experiments, the constants were assigned as follows:
c = 7, β = 2, γ = 4, δ = 4, κ = 4, o = 8. All of these but
o control how many bounding boxes will be generated and
the trade-off between precision of the box and computation
time. They were selected ensuring all the generated boxes for
one PGT proposal can be run in a single batch on GPU and
by observing qualitative results. The o = 8 means that ttf
won’t be more than one average character length wider on the
right/left than the smallest bounding box that gives the correct
recognition output.

Iteration / Mined: with neigh. s. w/o neigh. s. ∆

U
T

1 92,909 72,990 19,919
2 105,126 86,295 18,831
3 109,557 90,480 19,077
4 111,663 92,660 19,003
5 113,046 93,994 19,052
6 113,810 94,890 18,920

A
B

C 1 1,536,583 1,234,219 302,364
2 1,581,109 1,354,219 226,890
3 1,594,333 1,375,571 218,762

TABLE III: PGT generation on the Uber-Text training dataset
where text location information is ignored. The number of
captions generated in iterations 1 to 6, with and without the
neighbourhood search, and the difference ∆.

Training dataset - % in batch
Full Weak

MJ ST MLT UTF UT (30) Acc. NED
[11] 56.4
OCRb 45 45 10 0 - 41.6 35.2
OCRUT′1

30 30 10 0 UT′
1 55.2 28.0

OCRUT1 30 30 10 0 UT1 57.9 26.2
OCRUT2 30 30 10 0 UT2 62.7 23.3
OCRUT3 30 30 10 0 UT3 64.4 22.5
OCRUT4 30 30 10 0 UT4 65.4 21.5
OCRUT5 30 30 10 0 UT5 66.0 21.1
OCRUT6 30 30 10 0 UT6 66.1 21.2
OCRUTF 30 30 10 30 - 78.0 10.0
OCRUTPL99 30 30 10 30 UTPL99 44.5 33.5
OCRUTPL90 30 30 10 30 UTPL90 45.7 31.7
OCRUTPL80 30 30 10 30 UTPL80 44.8 32.1
OCRUTPL50 30 30 10 30 UTPL50 44.4 33.1

TABLE IV: Recognition rates and normalized edit distance
(acc., NED) on the Uber-Text test set. The data obtained from
the ith iteration of the PGT generation is denoted as UTi. UTF
and UTPLt are the fully annotated and pseudo-labelled (with
a threshold t) datasets, respectively. UT′1 is a subset of UT1

obtained without the neighbourhood search.

APPENDIX B
ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results
in detail.

The number of text instances located in each iterations of the
PGT generation on both the UT and ABC datasets is reported
in Table III.

The results of different models, tested and validated on
the UT dataset, are reported in Table IV. For each model,
we provide the per-batch percentage of examples from each
dataset during training,the accuracy and the normalized edit
distance.

A. Semi-supervised learning via pseudo-labelling

For comparison with prior work [10], [24], we implement
the pseudo-labelling [25] approach to semi-supervised learning
with confidence-tresholding of the pseudo-labels. Pre-trained
models, in our case, OCRb and TextSnake, are used to generate
predictions on a set of unlabelled data - the UT training set
(ignoring the existing ground truth). Only the predictions with
a recognition confidence above a thresholds t are kept to
retrain the recognition model.



Confidence threshold Mined
0.99 100,242
0.90 137,005
0.80 154,560
0.50 204,549

TABLE V: The number of PGt data generated in the semi-
supervised setup with different confidence thresholds. There
were 365,200 detections in total.

We implement the method with different thresholds,
t ∈ {99, 90, 80, 50}, the results are reported in Table IV.
The best performing model is also included in Figure 6. The
accuracy of this model is 12.2 % lower then the accuracy in
the first iteration using our proposed method, OCRUT1

.

APPENDIX C
PGT ACCURACY

Different kind of errors and ambiguities can occur in the
resulting PGT data. We report their numbers in Table VII,
computed on 500 sample crops from the UT dataset and 500
samples from the ABC dataset.

The wrong text and not text errors are the most harmful
ones. However, employing recognition confidence based filter-
ing, these can be reduced significantly. This is because these
errors mostly occur for very blurred texts or images with no
text, where the network predicts a short, common word such
as ‘the’, ‘in’, ‘on’, ‘at’ with low confidence.

The error classification is not always clear, some may
overlap.



Training dataset - % in batch Evaluation on Summary
Full Weak IIIT SVT IC03 IC13 IC15 SP CT ∆ UTw ∆

MJ ST MLT UT ABC 3000 647 867 1015 2077 645 288 avg min max 20 000
OCRb 45 45 10 0 0 89.8 86.7 94.3 91.2 68.5 77.2 72.3 0.0 0.0 0.0 52.8 0.0
OCRUT1 30 30 10 30 0 91.6 88.7 94.7 94.0 71.3 79.4 74.7 2.1 0.4 2.8 62.5 9.7
OCRUTPL99 30 30 10 30 0 91.0 87.5 94.1 93.6 68.7 76.4 71.2 0.4 -1.1 2.4 55.9 3.1
OCRUTPL90 30 30 10 30 0 90.6 87.2 94.0 92.5 68.5 77.8 71.2 0.3 -1.1 1.3 57.5 4.7
OCRUTPL80 30 30 10 30 0 90.4 87.0 94.2 93.2 68.5 77.2 73.3 0.5 -0.1 2.0 56.7 3.9
OCRUTPL50 30 30 10 30 0 90.9 88.4 94.3 93.4 69.1 76.9 72.9 0.8 -0.3 2.2 56.1 3.3

TABLE VI: Results of OCRUT1
are slightly different than the previous table because the models here were validated on

uber-text.

Counted on 500 sample crops: ABC UT PGT Crop

wrong text 19 6 cancer

not text 1 2 the

ambiguous GT 14 14 java,

unclear GT 5 20 the

wrong weak label - punctuation 1 2 1:15,000

wrong weak label - other 0 7 hilling services

TABLE VII: PGT errors and ambiguities in the ABC3 and UT6 datasets. Counted on 500 sample crops from each.
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