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Hernández-Sabaté
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Abstract In this paper, a dual online subspace-based learn-
ing method called Dual Generalized Discriminative Com-
mon Vectors (Dual-GDCV) is presented. The method ex-
tends Incremental GDCV by exploiting simultaneously both
the concepts of incremental and decremental learning for su-
pervised feature extraction and classification. Our method-
ology is able to update the feature representation space with-
out recalculating the full projection or accessing the previ-
ously processed training data. It allows both adding infor-
mation and removing unnecessary data from a knowledge
base in an efficient way, while retaining the previously ac-
quired knowledge. The proposed method has been theoret-
ically proved and empirically validated in six standard face
recognition and classification datasets, under two scenarios:
1) removing and adding samples of existent classes, and 2)
removing and adding new classes to a classification prob-
lem. Results show a considerable computational gain with-
out compromising the accuracy of the model in comparison
with both batch methodologies and other state-of-art adap-
tive methods.
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1 Introduction

Subspace-based learning is a well-known branch of pattern
recognition with multiple applications, such as automatic
feature extraction, feature selection or dimensionality reduc-
tion. Algorithms such as Principal Component Analysis
(PCA) or Linear Discriminant Analysis (LDA) are widely
used in a multitude of learning systems and frameworks.
Among their main advantages, they reduce the computation
time and the memory footprint, they remove irrelevant and
redundant information in order to improve the performance
of a subsequent machine learning model, they are able to
produce discriminative models and spaces with very limited
data, and they facilitate the visualization of the data by re-
ducing the data space to very low dimensions such as 2D or
3D. Due to their success, traditional subspace-based algo-
rithms have evolved into multiple directions to cover a wider
spectrum of applications, including supervised and unsuper-
vised problems, and linear and non-linear spaces.

Adaptive methods are particularly interesting. While con-
ventional algorithms require to work in batch mode, where
all training samples have to be considered at once, adaptive
versions allow evolving an initial model when more data be-
come available. Furthermore, adaptive learning does not re-
quire full access to the initial training data, which may be
lost or under restricted access. Not having to retrain from
scratch leads to convenient trade-offs between computational
and performance. It is common to find applications where
a complete set of training samples is usually not known in
advance but provided little by little, and therefore adaptive
learning is best suited for the task. Examples are found in ob-
ject tracking,28 image classification,5 stream processing,31

and face recognition.25

The most common type of adaptive learning is incre-
mental learning, where new samples or data are added to
the knowledge base of the model. Thus, multiple incremen-
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tal subspace-based learning techniques have been proposed,
such as those based on PCA 6, 10, 16, 22, 27, 31, 33 , LDA13, 24, 30

2, 17, 18, 25, 32, 34 or Discriminative Common Vector (DCV)4, 7

5, 8, 19 methods.

However, these methods only address updating the sys-
tem by adding new information, but they do not consider
the double nature of adaptive learning, where previous in-
formation may need to be removed, if outliers or wrongly-
labeled samples are detected a posteriori, or replaced, if the
distribution of the data changes or drifts. A similar limita-
tion occurs for the ubiquitous learning approaches. While
their performance for feature extraction and classification is
unquestionable regarding other traditional approaches, they
do not easily allow for information removal without a hugely
costly retraining. The deep learning paradigm can cover the
incremental paradigm by using transfer learning and fine-
tuning process if pretrained networks, but it does not allow
for adaptive learning where both incremental and decremen-
tal is considered, as well as that these are not executed in
a reasonable computational complexity since this is one of
the major bottlenecks in deep learning.1 It is in this aspect
where dual learning has scope to be better integrated into
neural networks and/or other methods to complement deep
learning approaches.

Our method combines the advantages of update a model
from an incremental and decremental learning point of view,
with moderate computational complexity. In this sense, we
define dual learning as an online process that allows adding
and removing samples, classes or any initial information
from a previously trained model. We postulate that remov-
ing or replacing information embedded in the model can be
as important as adding information for automatic feature ex-
traction. Several application fields will clearly benefit from
the ability to decrement a learned model. For instance, bio-
metric systems used to manage and identify a large popula-
tion of users in big organizations may require updating the
model when a user leaves the organization as well as replac-
ing all obsolete samples after a major change in the user.
This may be a laborious and long process, even impossi-
ble depending on the scale of the user database and antiq-
uity of the model, which may result on delays and limited
access to the other users, as well as privacy issues. Simi-
larly, being able to remove a single instance from a com-
plex model encompassing thousands of samples and classes,
when this outlier has been introduced by mistake, is a de-
sirable feature that will reduce the computational cost and
the requirement of multiplicity of backed-up models. The
use of dual subspace-based methods as part of hierarchical
classification architecture, such as decision trees or cascade
of classifiers, will also benefit from a decremental methods
where more specific or compact models can be derived from
a global.

Less research has been conducted on methodologies that
allow both incremental and decremental learning. Two ap-
proaches have been proposed on dual versions of PCA.11, 12

The dual approach of12 is based on an eigendecomposition
(EVD) updating and downdating algorithm, referred to as
EVD Dualdating (EVDD). The Merging and Splitting
EigenSpaces (MSES) method, presented in,11 where the sub-
space is extended by combining it with a new learned sub-
space, or reduced by dividing it. Both algorithms permit si-
multaneous arbitrary addition and deletion operations, by
transforming the EVD of the covariance matrix into a Sin-
gular Value Decomposition (SVD) updating problem. How-
ever, since these approaches extend the PCA method, they
are both unsupervised techniques and they may be ill-suited
when applied to supervised classification problems.

To the best of our knowledge, only23 have suggested a
supervised dual learning framework, the LDA merging and
LDA splitting (LDA-MS) which updates the scatter matrices
in both ways. However, by relying on LDA, the methodol-
ogy is susceptible to the Small Sample Size (SSS) problem
and it cannot be applied when the dimension of the sample
space is larger than the number of samples in the training set,
since the within-class scatter matrix will be singular. Fur-
thermore, incremental and decremental operations must be
performed sequentially rather than in a single step, leading
to higher computational costs.

In this paper, we propose a dual incremental and decre-
mental subspace-based learning method called Dual Gener-
alized Discriminative Common Vectors method
(Dual-GDCV) suited for supervised feature extraction and
classification. The method makes use of both concepts of in-
cremental and decremental learning in order to allow simul-
taneously adding and/or removing samples, classes or any
new information from a previously trained model or space.
Our methodology is able to update the model without re-
calculating the full projection or accessing the previously
processed training data, while preserving the previously ac-
quired knowledge. In this paper, we aim to generate a model
as accurate as the one calculated by batch processing, pro-
viding a tool for dual learning. The potential downfall of
model updating that leads to model degeneration by provid-
ing bad or non-longer relevant samples is left to the user’s
discretion or as future work.

This paper builds on our previous work in,5 where the
Incremental-only GDCV method (IGDCV) was presented.
The newly proposed method extends IGDCV by allowing
simultaneously both adding and/or removing samples and
classes. Its mathematical derivation and the computational
complexity are described in detail in the current document.
In addition, a more thorough evaluation is performed. Thus,
10-fold cross-validation is constantly applied in all exper-
iments to mitigate the effect of random partitions, as op-
posed to.5 Furthermore, 4 more datasets are used in the val-
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idation, including one with more than 200 classes to bet-
ter show the effect on adding/removing classes. Moreover,
a broader and more up-to-date comparison with the state of
the art is provided under the very same data and experimen-
tal setup, which includes more than 11 methods comprising
incremental-only, decremental-only and dual techniques.

The remainder of the paper is structured as follows. Sec-
tion 2 briefly introduces the IGDCV method as background
information. Section 3 presents the novel Dual-GDCV, the
main contribution of this paper. Section 4 describes the em-
pirical validation and presents the results and the analysis
of the proposed approach as well as its comparison against
the state of the art. Finally, Section 5 summarizes the main
conclusions and results.

2 Background

Let the training set X be composed of samples belonging
to c classes, where every class j has m j samples. The total
number of samples in the training set is m = ∑

c
j=1 m j. Let

xi
j be a d-dimensional column vector which denotes the ith

sample from the jth class.
In order to obtain the optimal projection W of the sam-

ples X to the new subspace, the bases of such subspace U
should be first calculated. These bases are obtained by solv-
ing the eigenproblem of the within-scatter matrix,

SX
w =

c

∑
j=1

m j

∑
i=1

(xi
j− x j)(xi

j− x j)
T = XcXc

T ,

where x j is the average of the samples in the jth class, and
the centered data matrix, Xc consists of column vectors (xi

j−
x j) for all j = 1 . . .c and i = 1 . . .m j.

The eigendecomposition or eigen-value/vector decom-
position (EVD) of SX

w can be written in general as

EV D(SX
w) : XcXc

T =UΛUT = [Ur Uo]

[
Λr

0

][
Ur

T

Uo
T

]
,

where U = [u1 . . .ud ] is a column matrix formed by the eigen-
vectors associated to the eigenvalues, λ1 ≥ . . . ≥ λd , con-
tained in the diagonal matrix Λ . r is the range of matrix SX

w ,
where λi = 0 for all i > r.

2.1 Generalized Discriminative Common Vectors

GDCV method 5 constitutes a way to overcome the SSS sin-
gularity problem in LDA. The singularity is avoided by ex-
tending the null space of SX

w to include not only null direc-
tions or basis vectors, i.e. λi = 0, but also with a set of almost
null directions, λi ≈ 0. This extension of the null space also
implies the corresponding restriction of the range space. The

projection basis Uα of the new restricted range space will be
the basis of the learned subspace.

The scattering added to the null space is measured by the
trace tr(·) as tr(UT

α SX
wUα). This quantity is at most tr(SX

w)

when no directions are removed, Uα = Ur, and decreases
as more and more important directions disappear from Ur.
Consequently, the scattering preserved after a projection, Uα ,
is written as follows

α = 1− tr(UT
α SX

wUα)

tr(SX
w)

(1)

The parameter α takes values within the interval [0,1].
When α = 0, then Uα =Ur. For individual values of 0<α <

1, different projections are obtained with dissimilar levels of
preserved variability. Figure 1 presents the main subspaces
involved in the GDCV method.

 

 

null space range space 

restricted range extended null 

Fig. 1: Main subspaces involved in the GDCV method. Ur
and Uo span the range and null space of SX

w linked to the
eigenvalues λ1 > .. . > λr and λi = 0, i≥ (r+1), respec-
tively. Uα spans the restricted range of SX

w according to α .

The generalized common vector are defined as: x j
gcv =

x j −UαUT
α x j, and the projection matrix is given by W =

orth(Xcom
c )∈Rd×(c−1), where Xcom = [x1

gcv . . .x
c
gcv] and Xcom

c
be its centered version with regard to the mean
xcom = (1/c)∑

c
j=1 x j

gcv Finally, the generalized discrimina-
tive common vectors are defined by W T x j.

2.2 Incremental Generalized Discriminative Common
Vectors

The Incremental Generalized Discriminant Common Vec-
tor (IGDCV) method5 allows the update of a given model
by considering the addition of new examples even from un-
seen classes. IGDCV is based on the update of the projec-
tion matrices corresponding to the extended null space of the
within-class scatter matrix, by relaxing the null space con-
dition, such that the new projection matrix W̃ and Ũα are
obtained without fully recalculating the eigenproblem.

Let I ∈ Rd×mI the new training samples to be added,
and X̃ = [X I] ∈ Rd×(m+mI) the resulting training set. mI =
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∑
cI
j=1 mI j , where mI j is the number of samples in the j-class.

uX j and uI j are the average of each class into the X and I,
respectively. By using the previous notation, the updated av-
erage uX̃ j

of each class is defined by

uX̃ j
=

mX j uX j +mI j uI j

(mX j +mI j)
.

The within-class scatter matrix of the new training set
SX̃

w is calculated as:

SX̃
w = SX

w +SI
w +AX AT

X +AIAT
I

where SI
w = IcIT

c , and Ic is the centered data matrix con-
sists of column vectors (xi

j − uI j) for i = 1 . . .mI j , for all
j = 1 . . .c.

AX and AI are matrices containing the differences on the
average of each class between the updated training set and
the initial one, respectively. Specifically, these matrices are
given by AX = [aX1 . . .aXc ], aX j =

√mX j(uX j−uX̃ j
) and AI =

[aI1 . . .aIc ], aI j =
√mI j(uI j −uX̃ j

).

The eigendecomposition of matrix SX̃
w is approximated

as:

EV D(SX̃
w) : SX̃

w = Ũr Λ̃rŨr
T

≈UαΛαUT
α + IcIT

c +AX AT
X +AIAT

I .

3 Dual formulation of extended null space methods

3.1 Problem Setting

Our aim is to investigate the role of dual learning on an ini-
tially calculated projection W and the corresponding sub-
space basis Uα so that the new projection W̃ and subspace
Ũα are obtained without fully recalculating the eigenprob-
lem. In order to keep a consistent notation throughout the
document, for any variable X , its updated version after adding
and removing samples is denoted by X̃ . For example, the
data matrix A is changed to Ã after updating.

Given an initial model X = [C D] ∈ Rd×m, and new
training samples to be added, mI = ∑

cI
j=1 mI j , I ∈ Rd×mI , as

well as obsolete training ones to be removed, mD =∑
cD
j=1 mD j ,

D ∈ Rd×mD , the resulting training set should be effectively
composed of X̃ = [C I] ∈Rd×(m−mD+mI), these sets are rep-
resented in Figure 2. mI j and mD j are the number of samples
in the j-class, and uX j , uI j , and uD j are the average of each
class into the X , I, and D training sets, respectively. By using
the previous notation, the updated average uX̃ j

of each class
is defined by

uX̃ j
=

mX j uX j +mI j uI j −mD j uD j

(mX j +mI j −mD j)
. (2)

 

Initial training set

C D

Incremental set

I

C I

Resulting training set

Fig. 2: Main sets involved in the Dual-GDCV method. X is
the initial training set. C is the results from removing D of
X . I is the incremental training set.

Similarly to Xc in the previous section, the centered data
matrices Ic and Dc of the incremental and removed train-
ing sets, consist of column vectors (xi

j−uI j) for i = 1 . . .mI j

and (xi
j − uD j) for i = 1 . . .mD j , for all j = 1 . . .c, respec-

tively. Their computation allows us to obtain their within-
class scatter matrices as SI

w = IcIT
c and SD

w = DcDT
c , for the

incremental and removed training set respectively.
As stated before, in order to calculate Ũα , the EV D(SX̃

w)

problem should be solved. Assuming a common adaptive
scenario, where the size of the update set is small in com-
parison with the initial training set, i.e. mI ,mD < m, it is
extremely inefficient from a computational complexity per-
spective to recalculate EV D(SX̃

w) from scratch every time
knowing that the solution of EV D(SX

w) is already known and
their computational costs are comparable. Furthermore, to
make this update possible, the full set X should be acces-
sible at any time, which leads to large memory and spatial
complexity. The challenge then is to obtain the subspace,
Ũα , associated to X̃ without explicitly having X̃ , SX̃

w , X or
SX

w .

3.2 Dual-Generalized Discriminative Common Vectors

By assuming the decomposition of the within-class scatter
matrix as the sum of its components,5, 11 the within-class
scatter matrix of the new training set SX̃

w is calculated as1:

SX̃
w = SX

w +SI
w +AX AT

X +AIAT
I −SD

w −ADAT
D (3)

where AX , AI , and AD are matrices containing the differences
on the average of each class between the updated training

1 For more details see the Appendix
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set and the initial, incremental, and removed training set,
respectively. Specifically, these matrices are given by:

AX = [aX1 . . .aXc ] aX j =
√

mX j(uX j −uX̃ j
)

AI = [aI1 . . .aIc ] aI j =
√

mI j(uI j −uX̃ j
)

AD = [aD1 . . .aDc ] aD j =
√

mD j(uD j −uX̃ j
).

The eigendecomposition of matrix SX̃
w is approximated

as:

EV D(SX̃
w) : SX̃

w = Ũr Λ̃rŨr
T

≈ UαΛαUT
α + IcIT

c +AX AT
X +AIAT

I

−DcDT
c −ADAT

D, (4)

so that the basis that generates the range space of the new
training set, SX̃

w , is obtained by:

Ũr ≈ [Uα V ]R, (5)

Like in IGDCV,5 R is a rotation matrix that controls the
dimensionality of the range of SX̃

w . V contains the new or-
thogonal directions of both the added and removed centered
data sets and the average differences in A. The orthogonal
directions in V are obtained by projecting the corresponding
vectors using Y = [Ic AX AI Dc AD]:

V = orth(Y −UαUT
α Y ). (6)

This construction constitutes a dual characterization of the
range of SX̃

w . As both Ũr and [Uα V ] generate the same sub-
space, they are in general related by a rotation R.

By substituting Eq. 5 in the decomposition of Eq. 4 and
projecting these matrices onto the range of SX̃

w as
[Uα V ]T (·)[Uα V ], we obtain that:

M =

[
Λα 0
0 0

]
+[Uα V ]T IcIT

c [Uα V ]

+ [Uα V ]T AX AT
X [Uα V ]+ [Uα V ]T AIAT

I [Uα V ]

− [Uα V ]T DcDT
c [Uα V ]− [Uα V ]T ADAT

D[Uα V ]. (7)

Note that M is a square matrix of size at most (m−mD+mI),
and that both the rotation R and the new eigenvalues Λ̃ are
obtained by eigendecomposing M.

From the eigendecomposition of M, we extract the first
eigenvectors, Rβ , as the column vectors in R corresponding
to the largest eigenvalues, Λ̃ , such that tr(Λβ ) = β · tr(Λ̃).
Consequently, final accurate approximations for the dual ex-
tended null space projection with parameter α are written
as:

Ũα ≈ [Uα V ]Rβ

Λ̃α ≈ Λβ .

Note that the factor β is defined with regard to M, while
α refers to SX̃

w . By considering the proposed approximation,
the directions that are removed (depending on the α value),

are compensated by adding directions from the remaining
data (according to β ).

Let tα = tr(M)= tr(Λ̃), tX = tr(SX
w)= tr(Λ), tD = tr(SD

w),
tI = tr(SI

w), and tX̃ = tC + tI = tX − tD + tI . The appropriate
value for β is obtained by tr(Λβ ) = β · tα , and this scatter
should ideally be equal to α · tX̃ , such that:

β · tα = α · [tC + tI ]

= α · tX −α · tD +α · tI .

The final expression for β , written in terms of the ratio be-
tween the traces of the diagonal matrices is:

β =
tr(Λα)

tr(Λ̃)
−α

tr(ΛD)

tr(Λ̃)
+α

tr(ΛI)

tr(Λ̃)
, (8)

using the facts that tr(Λα) =α · tX , SD
w =UDΛDUT

D and SI
w =

UIΛIUT
I .

The Dual-GDCV approach is presented in Algorithm 1
along with the asymptotic cost corresponding to each of its
steps.

If some of the data vectors in I correspond to new classes
which are not present in X , the expressions of the Dual-
GDCV algorithm are valid by increasing the value of c and
setting m j,mD j = 0 in X and D for all new classes. If either
m j or mD j ,mI j are zero for any class j, the corresponding av-
erage is undefined and the corresponding columns in AD,AI ,
aD j ,aI j , should be set to zero. If all data vectors in I corre-
spond to new classes, then the whole matrix AI is the zero
matrix and is removed from all expressions.

3.3 Computational and space complexity

The asymptotic cost of the Dual-GDCV is dominated by
O(d(mD+mI +c)2+(mD+mI +c+r)3+dr(mD+mI +c)).
In the case of the batch algorithm the complexity is domi-
nated by O(dm2 +m3 + dmr), when d � m, and O(d2m+

d3), when d ≤ m. We can seen that the Dual-GDCV ap-
proach is more efficient than the batch algorithm in both
cases since (mD +mI + c)� m, and (mD +mI + c+ r) ≤
min(d,m). Table 1 shows this comparison between the Dual-
GDCV approach and the batch method.

Dual-GDCV Batch GDCV

d� (mD,mI) d� m d < m
d(mD +mI + c)2 dm2 d2m
(mD +mI + c+ r)3 m3 d3

dr(mD +mI + c) drm

Table 1: Comparison between the main computational com-
plexities of the Dual-GDCV and the batch GDCV.
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Algorithm 1 Dual-GDCV Algorithm

Parameter: α, 0≤ α < 1
Input: D ∈ Rd×mD , I ∈ Rd×mI

From previous iteration: Uα ∈ Rd×r , Λα ∈ Rr×r , X ∈ Rd×c

Output: Ũα ∈ Rd×r̃ , Λ̃α ∈ Rr̃×r̃ , X ∈ Rd×c

Method:
1. Compute:

D and I
regarding its average to obtain Dc and Ic // O(dmD +dmI)

2. Compute:
AX , AI , AD // O(dc)

3. Compute:
EV D(DcDT

c ) : UDΛDUT
D // O(d2mD +d3)

if d > mD use:
EV D(DT

c Dc) : UDΛDUT
D // O(dmD

2 +mD
3)

4. Compute:
EV D(IcIT

c ) : UIΛIUT
I // O(d2mI +d3)

if d > mI use:
EV D(IT

c Ic) : UIΛIUT
I // O(dmI

2 +mI
3)

5. Compute:
V = orth(Y −UαUT

α Y ), and // O(d(mD +mI + c)r+d(mD +mI + c)2)
Y = [UI AX AI UD AD]

6. Build M using Eq. 7 // O(d(mD +mI + c)(r+mD +mI + c))
7. Eigendecompose M in RΛ̃RT // O((r+mD +mI + c)3)

to obtain the eigenvalues Λ̃α = Λβ within Λ̃ according to β Eq. 8
8. Compute the generalized common vector as:

x j
gcv = uX̃ j

−ŨαŨα

T
uX̃ j

// O(dr̃c)
9. Compute the generalized common vector as:

x j
gcv = uX̃ j

−ŨαŨα

T
uX̃ j

10. Define:
Xcom = [x1

gcv . . .x
c
gcv], and

Xcom
c its centered version with regard to the mean xcom = (1/c)∑

c
j=1 x j

gcv.
11. Compute the projection matrix such that:

W̃ = orth(Xcom
c ) ∈ Rd×(c−1)

12. Obtain the generalized discriminative common vectors as:
W̃ T uX̃ j

13. To test a new sample, xtest , project it as W̃ T xtest .
The label is allocated from the minimum distance between the projected sample and the discriminative common vectors.

As expected, the closer the value between the number
of samples added and/or deleted and the size of the initial
training set, the smaller the computational gain by using a
dual approach, since previous disparities are not fulfilled.
Thus, if most samples/classes of the initial training set are
to be deleted, it is simpler to train the system from scratch.
However, this scenario will only be possible for very small
and simple problems and toy examples, not in real life prob-
lems and big sets. Regarding space complexity, the batch
method exhibits a O(min(d,m)2) while the dual algorithm
has a O((mD +mI + c+ r)2).

4 Experiments and Results

4.1 Experimental setup

To observe the advantages of the Dual-GDCV approach to
add and delete samples into the initial training data of a clas-
sification problem, we select six datasets of images as test
bench. As classifier, a simple 1-Nearest Neighbors classi-
fier is employed, using the Euclidean distance between the
trained discriminative common vectors and the test samples
projected into the discriminant subspace. The simplicity of
the classifier is justified for our aim to demonstrate the accu-
racy and approximation of our method to obtain a projection
into another space where the relevant information is easily
separable into the different classes. Table 2 shows the main
characteristics of the datasets Coil-20,21 CMU-PIE,29 AR,20

BANCA,14 Altkom14 and FERET,26 where the size of im-
age has been normalized to 40×40.
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Coil-20 CMU-PIE AR BANCA Altkom FERET

c 20 68 50 52 80 200
m j 72 56 14 10 15 4

Table 2: Datasets used in validation along with their corresponding details. c is the number of classes. m j is the number of
samples per class.

The proposed Dual-GDCV algorithm is empirical vali-
dated in both cases, when d≤M and d >M, both in terms of
the accuracy and computational time and compared against
both the batch GDCV algorithm, and state-of-art dual12, 23

and incremental approaches.5, 14, 25, 32 In this validation, two
main scenarios are considered using raw pixel images as in-
put. In the first one, the number of classes in the training set
is fixed over the updates, with samples of each class being
added and/or removed. In the second scenario, the number
of classes is allowed to change over the updates. In all ex-
periments, an initial model is obtained using the correspond-
ing batch algorithm. For each scenario, the proposed algo-
rithm is evaluated in dual-learning, decremental-only and
incremental-only experiments. Afterwards, DGDCV is ap-
plied using input features derived from a Convolutional Neu-
ral Network (CNN), in order to evaluate the potential of our
approach to allow dual learning in a Deep Learning frame-
work. Finally, a large scale experiment is presented to show
the limitations of our methodology.

Cross validation is applied as evaluation protocol to avoid
bias to a particular training/testing split. Each experiment
is run 10 times with different random training/testing sam-
ple choices. Graphs show the average result over the itera-
tions as well as dispersion bars. All algorithms have been
run on a computer with a Intel(R) Core(TM) i7-4790 CPU
@ 3.60GHz, 3601 Mhz, and 32-GB RAM.

4.2 First scenario: Constant number of classes

In this first scenario, new samples are added and old sam-
ples are deleted to and from the initial training set. Since
the number of classes is not allowed to change during the
updates, samples for every class should be in the initial set.

We validate our approach using Coil-2021 and CMU-
PIE,29 since they contain a big enough number of samples
per class to perform a healthy number of update iterations.
Note that we are evaluating the Dual-GDCV into both cases,
d ≤ M and d > M, since the ratio (M/d) in Coil-20 and
CMU-PIE is 0.4875 and 1.275, respectively. For each dataset,
three subsets are generated: the initial training set contain-
ing 52% of the samples, a incremental set with 18% and
the test set with the remaining 30%. In those experiments
where decremental learning is applied, 18% of the samples
are deleted, such that only the (34%) of the initial training

set is preserved. Subspace-based learning parameters were
empirically optimized to give the best possible accuracy in
the batch version of each method under comparison. In our
GDCV framework, resulting scattering parameter is set to
α = 0.99 in Coil-20 and α = 0.96 in CMU-PIE. For PCA
and LDA, the energy parameter ranged from 0.99 to 1.

Dual learning experiment. In this experiment samples
from each class are added and deleted in each updating step.
Specifically, 2 samples per class are added and another 2
samples are deleted simultaneously. Our approach is com-
pared against the dual approaches in the literature EVVD-
PCA12 -unsupervised-, the LDA-MS23 -supervised-, and their
batch versions.

Figure 3 shows the accuracy, computational training time
and the rank of SX̃

w . Table 3 shows the accuracy rate, the
computational time and the rank, as well as their standard
deviations, for the last iteration of each method. We can
see that the Dual-GDCV shows the same discriminant prop-
erties than its batch version GDCV but exhibits a signif-
icant saving in its computational time. The computational
time in Coil-20 reduced by 53%, and in CMU-PIE by 79%.
In comparison to other dual methods, Dual-GDCV outper-
forms both supervised and unsupervised methods in both
accuracy and cost overall. Dual-GDCV shows almost the
same performance that PCA and EVVD-PCA12 in Coil-20,
where the difference is not significative, and superior per-
formance in CMU-PIE. In both sets, Dual-GDCV has a sig-
nificant computational advantage, specially when compared
with the dual version EVVD-PCA, which has to extend the
range during the updates to preserve the same discriminant
properties than its batch version, leading to a higher compu-
tational cost than the batch PCA. Dual-GDCV also shows
better performance and less computational time than LDA-
MS23 in both sets, whose accuracy degrades over time due
to cumulative errors in the adaptive approximation. As ad-
ditional advantage, while EVVD-PCA and Dual-GDCV are
fully dual, that is, samples can be added and deleted in the
same operation, LDA-MS needs to do two different merging
and splitting operations for each dual step, leading to higher
computational cost.

Incremental-only experiment. In this experiment sam-
ples from each class are added in each updating step. Our
approach is compared against the dual approaches in the
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Fig. 3: Comparison between the Dual-GDCV and the EVVD-PCA,12 the LDA-MS,23 and their batch versions for dual-
training at sample level. Accuracy, CPU computational training time and the rank of SX̃

w are in first, second and third row,
respectively, and datasets Coil-20 (left) and CMU-PIE (right) in the columns.
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Method
Coil-20

Acc Std TR time Std Rank Std

PCA12 1.0000 0 0.1114 0.0026 325.6 2.1705
EVDD-PCA12 1.0000 0 0.7594 0.1715 918.7 1.2517
LDA23 1.0000 0 0.1721 0.0121 288.6 0.9661
LDA-MS23 0.7974 0.0383 0.1189 0.0056 387.8 2.2509
GDCV5 0.9988 0.0013 0.1074 0.0030 306.0 1.2472
Dual-GDCV 0.9986 0.0012 0.0506 0.0021 325.6 2.1705

CMU-PIE

PCA12 0.7655 0.0073 0.4619 0.0156 60.9 2.8460
EVDD-PCA12 0.7655 0.0073 5.6462 1.4572 1540.3 1.3374
LDA23 0.8102 0.0038 2.8502 0.0400 523.2 1.8737
LDA-MS23 0.7607 0.0086 0.2606 0.0149 815.0 3.8586
GDCV5 0.8105 0.0033 0.4853 0.0253 59.5 0.8498
Dual-GDCV 0.8104 0.0033 0.1027 0.0030 60.9 2.8460

Table 3: Performance at the last update step for dual-training at sample level.

literature EVVD-PCA12 -unsupervised-, the LDA-MS23 -
supervised-, and other common incremental only state-of-art
approaches, namely IncLDA,14 GSVD-ILDA,32 cQR-ILDA25

and IGDCV,5 as well as their batch versions.

Tables 4 show the accuracy, computational training time
and the rank of SX̃

w when only new samples are added into
the initial training set to each method. Accuracy results for
DGCV and IGCV in this incremental-only experiment are
exactly the same since, in our formulation, the latter is a
particular case of the former. Their computational costs are
also equivalent, with small differences due to implementa-
tion that are not significative. Regarding its comparison to
others incremental-only methods, only QR-LDA’s perfor-
mance is better that the Dual-GDCV, in both the accuracy
rate and the CPU time and in both sets. IncLDA14 shows
a similar performance to our approach in CMU-PIE its cost
multiplies by 4. These incremental-only subspace-based meth-
ods are, however, not able to remove samples from the train-
ing set.

Decremental-only experiment. In this experiment sam-
ples from each class are deleted in each updating step. Since
no decremental-only learning methodology exists, our ap-
proach is compared against the dual approaches in the liter-
ature EVVD-PCA12 - unsupervised -, the LDA-MS23 - su-
pervised -, and their batch versions.

Table 5 shows the accuracy, computational training time
and the rank of SX̃

w when only samples are deleted from the
initial training set. Similarly to previous experiments, we
can see that in both datasets the Dual-GDCV presents better
performance both in accuracy rate and computational time.
Regarding methods with comparable accuracy rate, Dual-

GDCV exhibits computational gains of 67% over PCA, 94%
over PCA-EVVD, 80% over LDA, and 65% over GDCV in
Coil-20, and 98% over LDA, and 90% over GDCV in CMU-
Pie.

4.3 Second scenario: Variable number of classes

In this second scenario, new classes are added to the initial
training set by adding all samples belonging to classes that
did not exist initially. Similarly, old classes are deleted from
the initial training set by removing all samples belonging to
a existing class at once.

We validated our approach using the remaining datasets
AR,20 BANCA,14 Altkom14 and FERET.26 Scattering pa-
rameter is set to α = 0.98 in AR, α = 0.80 in BANCA and
α = 0.99 in Altkom and FERET. For each dataset, train-
ing and testing are generated randomly containing 70% and
30% of the samples of each class respectively. 30% of the
classes (the last ones) are using as incremental set and an-
other 30% of the classes (the first ones) are using as decre-
mental set. At each iteration one class is added and/or deleted
from the model. Our method is compared in this second sce-
nario against the same baseline methods for each of the set-
tings than the first scenario, but only including the super-
vised methods among them. Comparison against unsuper-
vised methods is not performed due to the importance of
adding classes in the reshaping of the subspace.

Dual learning experiment. In this experiment a class is
added and another class is deleted in each updating step.
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Method
Coil-20

Acc Std TR time Std Rank Std

PCA12 1.0000 0 0.1925 0.0151 373.8 1.6865
EVDD-PCA12 1.0000 0 0.6240 0.2369 918.9 1.1972
LDA23 1.0000 0 0.3426 0.0300 329.0 0
LDA-MS23 0.6710 0.0512 0.3426 0.0300 524.8 0.9189
IncLDA14 1.0000 0 0.0403 0.0034 294.9 1.5951
GSVD-LDA32 0.9905 0 0.7400 0.0566 336.0 0
GSVD-ILDA32 0.9905 0.0032 0.2335 0.0091 72.0 0.4714
QR-LDA25 1.0000 0 0.0206 0.0012 20.0 0
cQR-ILDA25 1.0000 0 0.1544 0.0075 20.0 0
GDCV5 1.0000 0 0.1820 0.0099 347.0 0
IGDCV5 0.9981 0.0015 0.1134 0.0081 373.8 1.6865
Dual-GDCV 0.9981 0.0015 0.0433 0.0027 373.8 1.6865

CMU-PIE

PCA12 0,8097 1,17e-16 0,4929 0,0107 63,3 2,2136
EVDD-PCA12 0,8097 1,17e-16 2,6278 0,0379 1600 0
LDA23 0,8254 1,17e-16 6,7477 0,0738 573 0
LDA-MS23 0,5097 0,0249 6,7477 0,0738 1186 2,2608
IncLDA14 0,8199 0,0019 0,1625 0,0087 506 2,2608
GSVD-LDA32 0,8199 2,34e-16 2,4807 0,0377 550 0
GSVD-ILDA32 0,8197 0,0022 0,1567 0,0047 144,4 2,1187
QR-LDA25 0,8254 1,17e-16 0,0709 0,0025 68 0
cQR-ILDA25 0,8202 0,0020 0,4494 0,0079 68 0
GDCV5 0,8125 0 0,6051 0,0154 60 0
IGDCV5 0,8115 0,0015 0,0753 0,0044 63,3 2,2136
Dual-GDCV 0,8115 0,0015 0,0481 0,0014 63,3 2,2136

Table 4: Performance at the last update step for incremental-training at sample level

Method
Coil-20

Acc Std TR time Std Rank Std

PCA12 1.0000 0 0.1141 0.0055 309.2 1.1353
EVDD-PCA12 1.0000 0 0.6712 0.0205 831.0 0
LDA23 0.9998 0.0008 0.1876 0.0109 293.7 1.7029
LDA-MS23 0.8186 0.0258 0.0765 0.0039 334.3 1.0593
GDCV5 0.9998 0.0008 0.1083 0.0039 305.8 1.2293
Dual-GDCV 0.9995 0.0010 0.0378 0.0023 309.2 1.1353

CMU-PIE

PCA12 0,7666 0,0085 0,5186 0,02468 55,3 0,6749
EVDD-PCA12 0,7666 0,0085 3,9214 0,07640 1378 0
LDA23 0,8098 0,0041 3,0180 0,06854 522 1,9436
LDA-MS23 0,7942 0,0049 0,1143 0,01007 590 0
GDCV5 0,8075 0,0048 0,5352 0,02245 59,2 0,42163
Dual-GDCV 0,8070 0,0039 0,0523 0,00127 55,3 0,67494

Table 5: Performance at the last update step for decremental-training at sample level
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Fig. 4: Accuracy comparison for dual training at class level on AR, BANCA, Altkom and FERET datasets

Figures 4, 5 and 6 show the accucary, computational
training time and the rank of SX̃

w , respectively, when new
classes are added and old classes are deleted into the ini-
tial training set. Table 6 shows the accuracy rate, computa-
tional time and the rank in the last iteration for each dataset
and method. The advantages of Dual-GDCV regarding its
batch version and other dual methods are more evident in
this scenario, since more samples are added/deleted at each
step. Dual-GDCV shows the same discriminant properties
than its batch version but with a reduction in computational
cost of 54% in AR, 76% in BANCA, 27% in Altkom and
58% in FERET. Moreover, it clearly outperforms the other
dual-learning methodology LDA-MS in all datasets, both in
time and accuracy.

Incremental-only experiment. In this experiment a class
is added in each updating step. Tables 7 and 8 show the
accuracy, computational training time and the rank of SX̃

w
when only new classes are added. Dual-GDCV outperforms
any other method, batch, incremental or dual in all datasets,
both in time and accuracy. Similarly to the previous sce-
nario, IGDCV provides the same accuracy results since it
is a particular case of DGDCV.

Decremental-only experiment. In this experiment a class
is deleted in each updating step. Table 9 shows the accuracy,
computational training time and the rank of SX̃

w when only
old classes are deleted. Again, Dual-GDCV outperforms any
other method, batch, incremental or dual in all datasets, both
in time and accuracy.
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Fig. 5: CPU training time comparison for dual training at class level on AR, BANCA, Altkom and FERET datasets

4.4 Application to state-of-art feature vectors

This section aims to explore the potential of our approach
to be used in a Deep Learning framework and enable dual
learning in such feature space. Thus, this experiment pro-
poses the use of DGDCV where the input comes from the
pretrained AlexNet convolutional neural network.15 The
Alexnet model has been trained on a subset of the ImageNet
database3 with more than a million images, so that a rich
feature representation has been learned for a wide range of
images. A feature space of 4096 dimensions is generated by
cropping the last classfifcation layer of Alexnet. Evaluation
of GDCV is done under a dual-learning setting for both new
samples and new classes as in sections 4.2 and 4.3.

Figure 7 shows the accuracy and the computational train-
ing time on the dual-learning at sample level, and figures 8
and 9 presents the accuracy and computational time at class
level. Results shows similar conclusions and trends to the
raw pixel experiment, with our approach surpassing all other
state of the art dual-methods, but with a small overall im-
prove in performance.

4.5 On the ordering of updating steps

In this section, an experiment was designed to validate our
approach for applications where temporal or order informa-
tion is relevant to the updating steps. Object classification
is used as target problem in the Coil-2021 dataset but using
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Fig. 6: Rank comparison for dual training at class level on AR, BANCA, Altkom and FERET datasets

the camera angle as ordering and the potential drift on the
object’s distribution.

Coil-2021 was captured on a motorized turntable, where
the turntable was rotated from 0 to 360 degrees, at inter-
vals of 5 degrees, to vary object pose with respect to a fixed
camera. This resulted on 72 images per object. Two exper-
imental settings are used: incremental and dual learning as
depicted in Figure 10. For incremental learning, samples of
all objects viewed between 165 and 180 degrees are used
as training set, while images between 0 and 110 degrees
are in the initial training. Images viewed from 110 to 165
degrees are used as ascending-ordered updating set. In the
dual setup, the same process is followed but using the initial
angels between 0 and 45 degrees as decremental set to be
remove at the same time than an incremental set is added.

As reference to evaluate the importance of this ordering, the
same experiments are reverted (decreasing ordering), where
the less relevant samples (0 to 45) are added and the more
relevant ones are decremented (dual setting).

Figure 11 shows the accuracy on the incremental-learning
and dual learning with ordered samples on the updating train-
ing set. For the incremental setup (Fig. 11a), when the incre-
mental learning is provided with increasingly relevant sam-
ples, the classification performance improves significantly
from 0.75 up to 1, suggesting that the distribution adapts to
the end target. On the contrary, if the added samples are the
less relevant ones, the performance, which starts in a higher
baseline since the most relevant information is already in
the initial training, barely improves from 0.95 up to 1. This
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Method
AR

Acc Std TR time Std Rank Std

LDA23 0.9643 0.0126 0.0442 0.0018 265.5 3.4400
LDA-MS23 0.9450 0.0199 0.0557 0.0032 302.1 3.8427
GDCV5 0.9829 0.0131 0.0373 0.0021 118.9 1.9692
Dual-GDCV 0.9779 0.0141 0.0171 0.0007 104.2 1.6193

BANCA

LDA23 0.8288 0.0244 0.0303 0.0017 223.8 1.7512
LDA-MS23 0.7775 0.0551 0.0508 0.0017 244.5 1.7159
GDCV5 0.8658 0.0376 0.0270 0.0012 27.8 0.6325
Dual-GDCV 0.8586 0.0458 0.0065 0.0002 27.0 0.9428

Altkom

LDA23 0.8857 0.0219 0.1301 0.0086 480.0 1.9437
LDA-MS23 0.8237 0.0234 0.0902 0.0053 539.6 1.6465
GDCV5 0.9603 0.0140 0.0835 0.0016 271.3 1.5670
Dual-GDCV 0.9585 0.0181 0.0611 0.0051 250.7 3.6225

FERET

LDA23 0.7493 0.0298 0.0720 0.0036 286.4 2.1187
LDA-MS23 0.6814 0.0456 0.0762 0.0063 322.0 2.5820
GDCV5 0.8357 0.0221 0.0891 0.0022 200.8 1.0328
Dual-GDCV 0.8371 0.0291 0.0374 0.0009 148.9 2.7264

Table 6: Performance at the last update step for dual-training at class level.

Method
AR

Acc Std TR time Std Rank Std
LDA23 0.9560 0.0133 0.0786 0.0022 337.7 1.6364
LDA-MS23 0.9565 0.0149 0.0686 0.0011 402.6 0.6992
GSVD-LDA32 0.9580 0.0130 0.1693 0.0041 457.0 0
GSVD-ILDA32 0.7280 0.0178 0.1887 0.0072 459.0 0
QR-LDA25 0.8820 0.0272 0.0231 0.0020 50.00 0
cQR-ILDA25 0.9080 0.0190 0.1834 0.0038 50.0 0
GDCV5 0.9770 0.0111 0.0592 0.0024 142.4 1.1738
IGDCV5 0.9790 0.0127 0.0173 0.0013 155.1 1.7288
Dual-GDCV 0.9790 0.0127 0.0162 0.0012 155.1 1.7288

BANCA

LDA23 0.8186 0.0432 0.0471 0.0009 279.1 0.9944
LDA-MS23 0.8019 0.0317 0.0082 0.0005 307.9 1.6633
GSVD-LDA32 0.8327 0.0292 0.1204 0.0011 341.0 0
GSVD-ILDA32 0.3006 0.0509 0.1274 0.0013 334.0 0
QR-LDA25 0.7301 0.0323 0.0220 0.0002 52.0 0
cQR-ILDA25 0.7006 0.0306 0.1887 0.0007 52.0 0
GDCV5 0.8724 0.0255 0.0413 0.0018 29.7 0.4830
IGDCV5 0.8750 0.0226 0.0098 0.0010 30.1 1.6633
Dual-GDCV 0.8750 0.0226 0.0072 0.0009 30.1 1.6633

Table 7: Performance at the last update step for incremental-training at class level.
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Method
Altkom

Acc Std TR time Std Rank Std

LDA23 0.8409 0.0265 0.2922 0.0171 591.7 1.3375
LDA-MS23 0.8000 0.0113 0.1998 0.0101 721.8 1.3984
GSVD-LDA32 0.8153 0.0243 0.4980 0.0206 784.1 0.3162
GSVD-ILDA32 0.4309 0.0284 0.5244 0.0161 804.6 0.5164
QR-LDA25 0.6656 0.0570 0.0418 0.0026 80.0 0
cQR-ILDA25 0.7200 0.0269 0.2690 0.0022 80.0 0
GDCV5 0.9281 0.0093 0.1535 0.0145 322.2 1.0328
IGDCV5 0.9266 0.0142 0.0441 0.0011 357.8 1.8738
Dual-GDCV 0.9266 0.0142 0.0470 0.0020 357.8 1.8738

FERET

LDA23 0.6835 0.0299 0.1446 0.0080 356.5 1.4337
LDA-MS23 0.6240 0.0307 0.1175 0.0022 404.9 1.2867
GSVD-LDA32 0.6265 0.0336 0.3520 0.0118 549.2 0.4216
GSVD-ILDA32 0.4530 0.0242 0.2444 0.0091 510.9 0.3162
QR-LDA25 0.7500 0.0318 0.1004 0.0034 200.0 0
cQR-ILDA25 0.7140 0.0290 0.0803 0.0067 200.0 0
GDCV5 0.7705 0.0281 0.1506 0.0051 261.9 1.4491
IGDCV5 0.7750 0.0253 0.0567 0.0024 256.6 1.4298
Dual-GDCV 0.7750 0.0253 0.0572 0.0027 256.6 1.4298

Table 8: Performance at the last update step for incremental-training at class level.

Method
AR

Acc Std TR time Std Rank Std

LDA23 0.9579 0.0119 0.0436 0.0024 266.3 1.4181
LDA-MS23 0.9629 0.0125 0.0425 0.0019 298.4 1.8974
GDCV5 0.9771 0.0100 0.0378 0.0011 119.2 1.1353
Dual-GDCV 0.9764 0.0107 0.0137 0.0006 115.2 2.0976

BANCA

LDA23 0.8234 0.0301 0.0298 0.0015 224.3 1.7029
LDA-MS23 0.7991 0.0368 0.0378 0.0014 241.9 1.7288
GDCV5 0.8559 0.0321 0.0275 0.0006 27.0 0.4714
Dual-GDCV 0.8333 0.0385 0.0055 0.0001 15.2 0.9189

Altkom

LDA23 0.8647 0.0197 0.1279 0.0117 481.5 1.4337
LDA-MS23 0.8268 0.0153 0.0841 0.0162 543.9 1.4491
GDCV5 0.9562 0.0136 0.0838 0.0047 269.9 0.9944
Dual-GDCV 0.9540 0.0115 0.0468 0.0048 267.6 1.4298

FERET

LDA23 0.7500 0.0367 0.0727 0.0038 291.0 1.3333
LDA-MS23 0.6664 0.0196 0.0688 0.0072 350.2 1.9322
GDCV5 0.8429 0.0216 0.0901 0.0035 204.5 0.8498
Dual-GDCV 0.8421 0.0186 0.0386 0.0026 190.5 1.5092

Table 9: Performance at the last update step for decremental-training at class level.
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Fig. 7: Accuracy and CPU time comparison for dual training at sample level when using alexnet’s features on Coil-20 (left)
and CMU-PIE (right) datasets.

small improvement is mostly due to having more samples
for the classifier rather than for providing new information.

Similar conclusions can be extracted for the dual setting
in Figure 11b. By increasingly adding more relevant sam-
ples and removing the least relevant ones, the performance
mostly improves consistently. The exact opposite effect is
achieved by reverting the process. In conclusion, this exper-
iment proves the potential of our technique for applications
where time and order are important on the updating process.
It also underlines the importance for the user to provide rel-
evant updating samples during the learning process.

4.6 On the stability of the method

In order to validate the stability of our methodology over
thousands of updating steps, two experiments are presented
in this section.

First, a model is generated using the full CMU-PIE dataset
as initial training set. On this model, two samples per class
are first removed and then added in two consecutive decre-
mental and incremental steps. This process is repeated 10000
times. Results in Figure 12 shows that our approximation is
stable over large amounts of steps.

To evaluate the influence of relevant/irrelevant samples
on the stability of our method, a second test is performed
using a larger dataset than the ones in previous sections, the
CASPEAL-29 dataset with α = 0.82. This dataset is com-
posed of facial images with yaw angle between −45 to 45
with steps of 15 degrees to has 7 classes, where each class
has 2816 images of 939 subjects with frontal view and pitch
angle of −30, 0 and 30 degrees. This allows us to perform
more than 3500 updating iterations on different samples ran-
domly selected. Figure 13 depicts the results of this experi-
ment where a diverge and drop in accuracy is observed after
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Fig. 8: Accuracy comparison for dual training at class level by using alexnet’s features on AR, BANCA, Altkom and FERET
datasets

15000 steps. This effect is due to the accumulation of mul-
tiple updating steps where the random allocation of samples
produce small reduction of the subspace rank in the decre-
mental functionality. As conclusion, we will recommend a
every thousand steps for large-scale updating operations in
order to mitigate the problem.

5 Conclusions

A dual online subspace-based learning method called Dual-
Generalized Discriminative Common Vectors method (Dual-
GDCV) is presented in this paper. By making use of both in-
cremental and decremental learning, Dual-GDCV allows ef-
ficiently and simultaneously adding new data and/or remov-
ing unnecessary data to a knowledge base. Our methodology

is able to update a feature-space without recalculating the
full projection or accessing the previously processed train-
ing data, while retaining the previously acquired knowledge.
Moreover, the presented approach does not only allow to add
new data to existing classes but also to add new classes into
the classification problem.

The proposed method has been validated in six stan-
dard datasets, in two scenarios -adding/removing samples
and adding/removing classes- and six experiments - incre-
mental, decremental and dual -. Dual-GDCV shows the same
discriminant properties than its batch version but exhibiting
a significant reduction on computational cost in all experi-
ments and datasets. Dual-GDCV also outperforms almost all
other incremental-only and dual methodologies in the state
of the art, being only slightly slower than a incremental-
only QR-ILDA, but with the important advantage of being
able to remove samples and/or classes. This improvement



18 Katerine Diaz-Chito et al.

0 2 4 6 8 10 12 14 16

Remove/Add classes

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

T
R

 ti
m

e

ratio = 0.085449

GDCV
Dual-GDCV
LDA
LDA-MS

(a) AR

0 2 4 6 8 10 12 14 16

Remove/Add classes

0

0.1

0.2

0.3

0.4

0.5

0.6

T
R

 ti
m

e

ratio = 0.063232

GDCV
Dual-GDCV
LDA
LDA-MS

(b) BANCA

0 5 10 15 20 25

Remove/Add classes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
R

 ti
m

e

ratio = 0.15039

GDCV
Dual-GDCV
LDA
LDA-MS

(c) Altkom

0 10 20 30 40 50 60

Remove/Add classes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
T

R
 ti

m
e ratio = 0.10254

GDCV
Dual-GDCV
LDA
LDA-MS

(d) FERET

Fig. 9: CPU training time comparison for dual training at class level by using alexnet’s features on AR, BANCA, Altkom
and FERET datasets
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Fig. 11: Accuracy of the dual-learning on Coil-20 dataset with ordered samples on the training set with an ascend and
decrease ordered.
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learning buy adding and removing the same sample from
the training set, to 10000 iterations.

regarding the state of the art is even more obvious when
new classes are added and/or removed from the classifica-
tion space. Since our DGDCV formulation includes IGDCV
as a particular case, it provides the same good performance
than IGDCV in the incremental case only, but with the added
ability to remove classes and samples at the same time.
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Appendix

A Decomposition of SX̃
w

The within-class scatter matrix of each training set is defined as

SD
w =

c

∑
j=1

mD j

∑
i=1

(xi
j−uD j )(x

i
j−uD j )

T = DcDT
c ,

SI
w =

c
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j=1

mI j

∑
i=1

(xi
j−uI j )(x

i
j−uI j )

T = IcIT
c ,

such that
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From the above expressions,

SX̃
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w +SI
w +AX AT

X +AIAT
I −SD

w −ADAT
D

with

AX = [aX1 . . .aXc ] aX j =
√

mX j (uX j −uX̃ j
)

AI = [aI1 . . .aIc ] aI j =
√

mI j (uI j −uX̃ j
)

AD = [aD1 . . .aDc ] aD j =
√

mD j (uD j −uX̃ j
)

If the classes in I are different from the classes in X ,

SX̃
w = SX

w +SI
w +AX AT
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