
Hierarchical Plausibility-Graphs for Symbol Spotting
in Graphical Documents

Klaus Broelemann
Dept. of Maths. and Comp. Sc.

University of Münster
Münster, Germany

broele@uni-muenster.de

Anjan Dutta
Computer Vision Center

Univ. Autònoma de Barcelona
Barcelona, Spain

adutta@cvc.uab.es

Xiaoyi Jiang
Dept. of Maths. and Comp. Sc.

University of Münster
Münster, Germany

xjiang@uni-muenster.de

Josep Lladós
Computer Vision Center

Univ. Autònoma de Barcelona
Barcelona, Spain
josep@cvc.uab.es

Abstract—Graph representation of graphical documents often
suffers from noise viz. spurious nodes and spurios edges of graph
and their discontinuity etc. In general these errors occur during
the low-level image processing viz. binarization, skeletonization,
vectorization etc. Hierarchical graph representation is a nice and
efficient way to solve this kind of problem by hierarchically
merging node-node and node-edge depending on the distance.
But the creation of hierarchical graph representing the graphical
information often uses hard thresholds on the distance to create
the hierarchical nodes (next state) of the lower nodes (or states)
of a graph. As a result the representation often loses useful
information. This paper introduces plausibilities to the nodes
of hierarchical graph as a function of distance and proposes a
modified algorithm for matching subgraphs of the hierarchical
graphs. The plausibility-annotated nodes help to improve the
performance of the matching algorithm on two hierarchical
structures. To show the potential of this approach, we conduct
an experiment with the SESYD dataset.

I. INTRODUCTION

Graphs are an efficient way of representing graphical
documents specially for line drawings. Since documents often
suffer from noise, the representation with graphs also results
in distorted graphs, for example with spurious nodes, spurious
edges and discontinuity in them (see Fig. 1). Hierarchical
graph representation is a way of solving this kind of structural
errors hierarchically where the node-node and node-edge are
merged hierarchically depending on the node-node or node-
edge distance [1].

The main motivation of the work comes from [2], where the
authors used the hierarchical representation of the segmented
image regions and later used an approximated maximal clique
finding algorithm on the association graph of the two hierar-
chical graphs to match the two hierarchical representations [3],
[4]. In particular, the aforementioned work was applied to
match two different natural images for classification.

The construction of graph representation of documents is
followed by some inter-dependent pre-processing steps viz.
binarization, skeletonization, polygonal approximation. These
low level pre-processing steps result in the vectorized doc-
uments which often contain some structural errors. In this
work our graph representation considers the critical points
as the nodes and the lines joining them as the edges. So
often the graph representation contains spurious nodes, edges,
disconnection between nodes etc (see Fig. 1). Our present
work is an extension of the work in [1] where we dealt

(a)

(b)

(c)

Fig. 1: Examples of the structural distortions (spurious nodes,
edges, discontinuous edges) for a graphical symbol: (a) A
graphical symbol called table1, (b), (c) Graph representations
of two different instances of the symbol table1 when appeared
in floorplans, these instances are cropped from bigger graphs
representing floorplans. Graph representation of documents
involves low level image processing viz. binarization, skele-
tonization, vectorization etc. which further add structural noise
such as spurious nodes, edges etc. The example shows how
even a undistorted symbol can become distorted after repre-
sented with graph (note the spurious nodes and edges near the
junction and corners.).

with this kind of distortions in the graph level, to do that
we proposed hierarchical representation of graphs because
the hierarchical representation of graphs allows to incorporate
the various segmentation errors hierarchically. But the node-
node or node-edge merging was performed depending on a
hard threshold which resulted in some loss of information.
In this work we are assigning plausibilities to the nodes as a
function of the distance and use them for matching. The work
is still in progress and the results show some methodological
improvement.

The rest of the paper is organized into four sections. In
Section II we present the methodology of sub graph matching.
Section III contains the detailed experimental results. After
that, in Section IV, we conclude the paper and discuss future
work.

II. METHODOLOGY

An essential part for graph-based symbol spotting methods
is the representation of symbols. This representation often
contains low-level vectorization errors that will affect later

graph matching methods. In this section we present a hi-
erarchical representation that overcomes these problems by
covering different possible vectorizations and estimating their
plausibilities.

First we will give a brief overview of the initial vector-
ization and some errors that can occur due to it. Afterwards
we will describe our hierarchical representation and how this
representation overcomes the vectorization errors.

A. Vectorization

Graph representation of documents follows some pre-
processing steps, vectorization is one of them. Here vector-
ization can be defined as approximating the binary images to
a polygonal representation. In our method we have used the
Rosin-West algorithm [5] which is implemented in the Qgar
package1. This algorithm works without any parameter except
one to prune the isolated components. The algorithm produces
a set of critical points and the information whether they are
connected. Our graph representation considers the critical point
as the nodes and the lines joining them as the edges.

Vectorization errors: The resulting graph can contain vec-
torization errors. Reasons for that can be inaccurate drawings,
artifacts in the binarization or errors in the vectorization
algorithm. There are different kinds of vectorization errors that
can occur. Among these, we concentrated on the following
ones:

Gaps In the drawing there can be small gaps between lines
that ought to be connected. Reasons for that can be inaccurate
drawings as well as mistakes in the binarization. The result
can either be two unconnected nodes at the border of the gap
or a node on one and an edge on the other side of the gap.
Beside caused by errors, gaps can also be drawn intentionally
to separate nearby symbols.

Split nodes On the other hand, one original node can be
split into two or more nodes. This can happen, if lines in the
drawing do not intersect exactly at one point. Another reason
are artifacts from the skeletonization step. Nearby nodes that
seem to be a split node can be the result of fine details instead
of vectorization errors.

Dispensable nodes The vectorization can create nodes of
order two that divide a straight edge into two or more parts.
One reason for these nodes are small inaccuracies in the
drawing that cause a local change in direction. For a later
symbol spotting, these nodes are often undesired and should
be removed. Nevertheless, in some cases such structures reflect
details of the symbol. Examples of these errors can be seen in
Fig. 1.

Though all these errors can be corrected in a post-
processing step, a simple post-processing causes other prob-
lems: often it is not clear for the system whether a situation
is an error or intentional. To deal with this uncertainty, we
introduce a hierarchical representation that will be described
in the next part.

1http://www.qgar.org/

(a) (b) (c)

Fig. 2: Three cases for simplification. Displayed are the
original nodes and edges (black) and the simplified nodes and
their edges (gray): (a) Merge nodes (b) Remove dispensable
node (c) Merge node and edge.

B. Hierarchical graph construction

This section describes the construction of hierarchical
graph that is able to cover different possible vectorizations.
This enables a later graph matching algorithm to deal with the
uncertainties whether a part of the graph is intentional drawn
or caused by a vectorization error.

The basic idea of our approach is to extend a given graph
G so that it contains the different possibilities of interpretation.
These possibilities are connected hierarchically and assigned
with a plausibility measure. The hierarchy allows us to embed
the constraint just to match one interpretation into the graph
matching. In section II-C we will give further details for the
graph matching, the hierarchical constraint and how to use
plausibilities for the matching.

In order to create different possible vectorizations, we
take the initial vectorization represented in G and simplify
it step by step. For this purpose, we identify three cases that
allow a simplification. These three cases will be motivated in
the following. Afterwards the plausibilites are introduced and
based on this a formal definition of our simplification steps is
given.

Nearby nodes. Both gaps in drawing as well as split nodes
result in nodes near to each other and can be solved by merging
these nodes. Since nearby nodes can also be the result of
correct vectorization, e.g. due to two nearby symbols, we store
both versions and hierarchically connect the merged node with
the basic nodes. The merged node inherits all connection of its
basic nodes. Fig. 2 (a) shows an example for such a merging
step.

Dispensable nodes. In case of dispensable nodes, the
vectorization error can be solved be removing the node. Again,
a hierarchical structure can store both versions. As described
before we only consider dispensable nodes that have two
neighbors. The simplified versions of these neighbors are
directly connected. This is shown in Fig. 2 (b). Applying this
rule multiple times allows us to remove chains of dispensable
nodes.

Nodes near to edges. The third simplification is the merging
of nodes with nearby edges. In this way the second kind of
gaps can be corrected. To merge a node with an edge, the edge
has to be divided into two edges by a copy of the node. This
can be seen for an example in Fig. 2 (c).

1) Plausibility: The major novelty of this paper is the use
of plausibilities. The aim of these plausibilities is to measure

the likelihood of a certain simplification to be correct. By
doing so, we can prioritize matching of likely structures and
still keep the ability of matching unlikely ones. To compute
the plausibility for a certain simplification we identify basic
features and describe the plausibility as function of these
features. The features are described in the following:

Merging nodes. The plausibility for merging very near
nodes is high and it decreases with increasing distance between
the nodes. Thus, the distance between the nodes is taken as
feature to measure the plausibility.

Removing nodes. Removing a node means to merge two
edges. We consider the removal as plausible if the resulting
edge is similar to the two original edges. There different
features that can be used to measure this similarity. One
possibility is the angle between bot edges. If the angle is
near to 180, the resulting edge will be near to the original
edges. Another measurement is the distance of the node to the
resulting edge, either absolute or relative to the length of the
edge. For our experiments we used the angle feature.

Merging nodes with edges Similar to merging nodes, we
take the distance of the edge to the node as feature for the
plausibility.

To measure the plausibility for the three previously men-
tioned cases, we define three functions

1) function δ1 : V × V → R to measure the plausibility
for merging two nodes.

2) function δ2 : V → R to measure the plausibility for
removing a node.

3) function δ3 : V ×E → R to measure the plausibility
for merging a node with an edge.

For the concrete implementation we used exponential func-
tions applied to the features, e.g.

δ1(u, v) = α1 exp(−β1 · d(u, v))

The functions δ2 and δ3 are defined analogous, replacing
d(u, v) by the respective features.

Our approach also allows other plausibility measurements.
Note that our previous work [1] without plausibilities can
be seen as a special case of this work by choosing binary
measurements, i.e.

δ1(u, v) =

{
1 if d(u, v) < T1
0 otherwise

The plausibilities are used to identify possible simplifica-
tions. For this purpose we define a threshold T0 and only
perform hierarchical simplifications for constellations that have
a plausibility greater than a T0.

2) Recursive definition: Based on the previous motivation
we will give a recursive definition of our hierarchical graphs
that reflects the construction algorithm based on the vectoriza-
tion outcome.

The result of the vectorization is an undirected graph G =
(VG, EG, σG) where VG it the set of nodes, EG ⊆ VG × VG
is the set of edges and σG : VG → R2 is a labeling function
that maps the nodes to their coordinates in the plane.

Fig. 3: An example for removing nodes. Note that the possibil-
ity of removing two adjacent nodes of w creates four different
possible interpretations of w, e.g. w̄1 stands for removing u
but keeping x

A hierarchical graph has two kinds of edges: undirected
neighborhood edges and directed hierarchical edges. Hierar-
chical edges represent simplification operations, i.e. they link
nodes from the original graph arising from the vectorization
to successor nodes representing simplified vectorizations. In
addition, each node is assigned with a plausibility value.
Formally, we define a hierarchical graph H as a tuple H =
(V,EN , EH , σ, p) with the neighborhood edges EN ⊆ V ×V ,
the hierarchical edges EH ⊆ V × V and plausibility values
p : V → R.

Note that there is a difference between the plausibility of
a node (given by the function p) and the plausibility of a
simplification (given by δi, i = 1, 2, 3). The reason for this
difference is, that a plausible simplification with unplausible
nodes results in unplausible nodes.

Furthermore, given two nodes u, v ∈ V let u v
denote that v is a hierarchical successor of u and L(u)
denote the set of all predecessors of u that belong to G:
L(u) = {v ∈ VG|v u}. Based on these functions
and formulations we can define the hierarchical simplification
H = H(G) = (V,EN , EH , σ, p) of G by the following rules:

Initial. As initialization for the recursion, G is a subgraph
of H . We define a base plausibility p(v) = 1 for all initial
nodes v ∈ VG.

Merging. For u, v ∈ V with δ1(u, v) > T0 there is a
merged node w ∈ V with

• w is a hierarchically successor of u and v:
∀s ∈ V : s w ⇔ s u ∨ s v ∨ s ∈ {u, v}

• w has all neighbors of u and v except u and v:
∀s ∈ V : (s, w) ∈ EN ⇔ ((s, u) ∈ EN ∨ (s, v) ∈
EN) ∧ s 6∈ {u, v}

• w lies in the center of its leaf nodes:
σ(w) = 1

|L(w)|
∑

s∈L(w) σ(s)

• The plausibility of w is defined by δ1 and the plausi-
bilities of u and v:
p(w) = δ1(u, v)p(u)p(v)
If there are different ways to create w, we assign the
maximal plausibility to w.

Removing. For a dispensable node u ∈ V with δ2(u) > T0
there exist two neighbor nodes v, w ∈ VG, i.e. (u, v), (u,w) ∈
EN . Since v and w can have hierarchical successors from other
simplifications, these have to be included in the definition: for
all vi : (vi, u) ∈ EN ∧v ∈ L(vi) there exists a v̄i. In the same
way a set of w̄j is defined.

• v̄i hierarchical successor of vi: (vi, v̄i), (wj , w̄j) ∈
EH

• to cover all possibilities, there is neighborhood con-
nection between all of v̄i and all w̄j . Furthermore, the
v̄i has the same connections as vi with exception of
the removed node u:
(s, v̄i) ∈ EN ⇔ ((s, vi) ∈ EN ∧s 6= u)∨∃j : s = wj .
(analogous for wj)

• The coordinates do not change: σ(vi) = σ(v̄i),
σ(wj) = σ(w̄j)

• p(v̄i) = δ2(u)p(vi)

In this definition the successors of u and w have to be included.
The reason for this can be seen in the example in Fig. 3: if
the removing is done iteratively, removing u will lead to v̄ and
w̄1. A subsequent removal of x has to create w̄2 and w̄12 in
order to cover both possibilities: just remove x and remove u
and x. This will give a plausibility of:

p(w̄12) = δ2(x)p(w̄1) = δ2(x)δ2(u)p(w)

Node/Edge merging. For u ∈ V, e = (v, w) ∈ E with
δ3(u, e) > T0 there exist simplifications ū, v̄, w̄ with

• ū, v̄, w̄ are hierarchically above u, v, w:
∀s ∈ V : s ū⇔ s u ∨ s = u (analog for v,w)

• ū intersects the edge between v̄ and w̄:
∀s ∈ V : (s, ū) ∈ EN ⇔ ((s, u) ∈ EN ∨ s ∈ {v̄, w̄}

• The coordinates do not change: σ(u) = σ(ū), σ(v) =
σ(v̄) and σ(w) = σ(w̄)

• p(ū) = δ3(u, e)p(u) (analog for v,w)

Based on these recursive rules, we construct the smallest
hierarchical graph that satisfies these rules, i.e. no additional
nodes are added. Here it is to be noted that the hierarchical
simplification H(G) of the graph G always contains the graph
G.

C. Graph matching

In this section we will describe how to make use of the
hierarchical graph representation described in the previous
section for subgraph matching in order to spot symbols for
vectorial drawings. Graph matching has a long history in
pattern recognition and there exist several algorithms for this
problem [6]. Our approach is based on solving maximal
weighted clique problem in association graphs [4]. In this
section we will first give a brief overview over the graph
matching algorithm. This method relies on similarities between
nodes. Hence, we will present a geometric node similarity for
hierarchical graphs afterwards.

Given two hierarchical graphs Hi =
(V i, Ei

N , E
i
H , σ

i), i = 1, 2, we construct the association

A. Each node of A consists of a pair of nodes of H1 and
H2, representing the matching between these nodes. Two
nodes (u1, u2), (v1, v2) ∈ H1 × H2 are connected in A, if
the matching is consistent with each other. For hierarchical
graphs we define the constraints for edges in A: ui and vi
are different, not hierarchically connected and if u1 and v1
are neighbor, this also holds for u2 and v2. By forbidding
the matching of hierarchically connected nodes, we force the
matching algorithm to select one version of the vectorization.
The first and the third constraint keep the structure between
both subgraphs same.

We use replicator dynamics [4] to find the maximal
weighted clique of the association graph and, hence, the best
matching subgraphs of H1 and H2. Based on the results of
this, we perform the following steps to spot symbols. Let us
consider H1 be the query graph or the model graph and H2

be the input graph where we want to spot the instances of H1.
First of all we perform n iterations and in each iteration we
perform the replicator dynamics to find the correspondences
of the H1 to H2. Since the replicator dynamics only provide
a one-to-one matching, in each iteration we obtain the corre-
spondences from the nodes of H1 to the nodes of H2. So for
m nodes in H1 we get m nodes in H2. But it is not constrained
that these m nodes in H2 will belong to the same instance of
H1. So to obtain the different instances of the H1 we consider
each of the m nodes in the H2 and all the neighborhood
nodes of a node which can be reached within a k graph
path distance. The graph path distance between two nodes is
calculated as the minimum total number of nodes between the
two nodes. Let us denote this set of nodes as V 1

s and consider
all the hierarchical and normal edges connecting the nodes in
V 1
s as in H1, this forms a subgraph which we can denote

as H1
s = (V 1

s , E
1
sN , E

1
sH , σ

1
s). We again apply the replicator

dynamics to get the best matching subgraph and compute
the bounding box around the nodes of best correspondences.
The bounding box gives the best matching region of interest
expected to contain instance of a query symbol.

The complexity of replicator dynamics is O(|A|2) (see [2]).
Since we perform n iterations, we get a complexity of O(n ·
|A|2). In order to reduce the computation time we use the fact
that the symbols are much smaller than floorplans. We create
overlapping parts of the floorplan and perform the matching
between the symbol and the parts. These parts have to be big
enough to ensure that the symbols are completely included
in at least one part. The the construction of the hierarchical
graph takes about 2 or 3 seconds for an average floorplan, the
matching takes several minutes.

Node attributes: The graph matching algorithm operates
on the association graph with similarity labels for the nodes.
To use this algorithm, we have to define the similarity between
two nodes of the hierarchical graph. Since the matching
reflects geometric structures, we use geometric attributes for
the similarity.

In a non-hierarchical planar graph, a single node can be
labeled by the sequence of adjacent angles which sum up
to 360◦. Fig. 4 (a) gives an example for such a labeling.
This naive approach will cause some problems for hierarchical
graph since nodes can have several hierarchically connected
neighbors. Thus, the number of possible vectorizations has a
strong influence on the node description. Because the number

(a) (b)

Fig. 4: Example for node labels for graphs based on angles
between edges: (a) for planar graphs and (b) for hierarchical
graphs. Both will be labeled with (90, 210, 60).

of possibilities is also affected by the level of distortion of the
original image, such an approach is not robust to distortion.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: Model symbols in the SESYD dataset: (a) armchair,
(b) bed, (c) sink1, (d) sofa1, (e) sofa2, (f) table1, (g) table2.

To reduce the influence of the hierarchical structure and the
distortion on the node labeling, we use only edges to nodes
that have no predecessor connected with the central node. An
example for that can be seen in Fig. 4 (b): though the central
node is connected to four nodes, only three edges are used to
compute the node label.

To compute the similarity between two node labels, we de-
fine an editing distance on these labels. The editing operations
are rotating one edge, i.e. lowering one angle and rising another
one, removing one edge, i.e. merging two angles, and rotating
the whole description. The last operation is cost-free and makes
the similarity rotation-invariant. The cost for rotating an edge
is set to the angle of rotation. The cost for removing an edge
is set to a fixed value.

Using this editing distance, we can define the similarity
between nodes. This similarity is based on the nodes and their
direct neighborhood, but do not take into account the plau-
sibilities of the nodes. In order to prefer matchings between
plausible nodes, we multiply the similarity between two nodes
with their plausibilities to get the weight for the corresponding
node in the association graph.

III. EXPERIMENTAL RESULTS

Since the work still is in progress, we have conducted a
short experiment to check the performance of the algorithm.
Our experiments were conducted on the images taken from the
SESYD dataset [8]2. Originally, this dataset contains 10 dif-
ferent subsets and 16 query symbols. These query symbols are
available to evaluate our method with the ground truth. Each of
the subsets contains 100 synthetically generated floorplans. All
the floorplans in a subset are created from the same floorplan
template by putting different model symbols in different places
in random orientation and scale. For this short experiment we

2http://mathieu.delalandre.free.fr/projects/sesyd/symbols/floorplans.html

(a) (b) (c)

Fig. 6: Results of detecting table1, note that all the instances
of the symbol table1 are correctly detected even the ones
attached with the walls. In reality these walls are thin and
hence less distorted during the vectorization, (b) Results of
spotting table1 by the previous version of the method [1], (c)
Results of spotting table1 by Dutta et al. [7].

(a) (b) (c)

Fig. 7: Results of detecting table1, except one all the instances
of the symbol table1 are correctly detected. The one which is
not detected is attached with the thick black pixels, (b) Results
of spotting table1 by the previous version of the method [1],
(c) Results of spotting table1 by Dutta et al. [7].

(a) (b) (c)

Fig. 8: Results of detecting table1, note that all the instances of
the symbol table1 are correctly detected even the one which
is connected with thick black pixels, (b) Results of spotting
table1 by the previous version of the method [1], (c) Results
of spotting table1 by Dutta et al. [7].

(a) (b) (c)

Fig. 9: Results of detecting table1, here two of the symbols are
not detected and one of them are isolated but heavily distorted
by the vectorization algorithm, (b) Results of spotting table1 by
the previous version of the method [1], (c) Results of spotting
table1 by Dutta et al. [7].

have taken the first twenty images from the subset floorplan16-
01 and three model symbols: bed, sofa2 and table1. Some

(a) (b) (c)

Fig. 10: Results of detecting bed, here the single instance of
bed is correctly detected, note that in this case the instance
is also attached with thin black pixel, (b) Results of spotting
bed by the previous version of the method [1], (c) Results of
spotting bed by Dutta et al. [7].

(a) (b) (c)

Fig. 11: (a) Results of detecting sofa2, here both the instances
are correctly detected among which one of them was partially
attached with thick wall, (b) Results of spotting sofa2 by the
previous version of the method [1], (c) Results of spotting
sofa2 by Dutta et al. [7].

qualitative results of spotting the symbols bed, sofa2 and table1
are shown in Fig. 6 to Fig. 11. The results of the present
method is also compared with the previous version [1] and also
with a previously proposed symbol spotting method by Dutta
et al. [7]. In Fig. 6 to Fig. 11, the sub figures with label (a)
show the results obtained by the current method, the sub figures
with label (b) show the results obtained by the previous version
of the method [1] and those with label (c) show the results
obtained by the Dutta et al. [7]. For all the cases we have
only considered the same smaller subset of images and query
symbols. The quantitative results are listed in the Table I where
the first row shows that for current version of the method, the
second row shows that for previous version of the method [1],
the third row shows graph-matching with a planar graph (with
the preprocessing of this paper) and the last row shows the
quantitative results by the method proposed by Dutta et al. [7].
The present version of the method has obtained a precision of
100% and recall of 88.75%. High precision proves that all the
spotted instances of the symbol is correct. The obtained recall
value indicates that the system loses some of the instances
and from our investigation we can say that this kind of mis-
detections often occur when the symbol is attached to a thick
portion of black pixel. Vectorization methods specially perform
worse with black thick pixels and creates lot of distortion
in the vectorized information. The previous version of the
method had obtained the precision and recall respectively as
32.99% and 77.55%, clearly the present version has gained an
improvement.

IV. CONCLUSION AND FUTURE WORKS

In this paper we have proposed an extension of the pre-
viously proposed hierarchical graph representation. We have

TABLE I: Results obtained by the proposed method and the
comparison with the previous version [1] and a previously
proposed symbol spotting method [7].

Method P R F
Current version 88.75 100.00 94.04

Previous version [1] 32.99 77.55 46.29
Without Hierarchy 54.55 90.00 67.92

Dutta et al. [7] 69.19 67.28 68.22

introduced plausibilities to the nodes of the hierarchical graph,
these plausibilities help to better match the hierarchical sub-
structures through the computation of the association graph.
The present method still has some scope of improvement,
as we have shown in the experimental results that all kind
distortions particularly heavy distortions viz. connected to
thick black walls and etc still can not be solved. So the future
work will address the further improvement of the method
regarding noise. With the improvement, the construction of
the hierarchical graph for this kind of graph representation is
becoming complex and time taking. So another direction of
future work will also concern about constructing hierarchical
graph for different kind of graph representation. We have
investigated that the hierarchical matching algorithm used
by us sometime fails to find local optima and hence the
solution is erroneous. We further investigated that a little
modification of the matching algorithm provides much better
results. Therefore improvement of the hierarchical matching
will also be considered as a future work.

ACKNOWLEDGEMENT

This work has been partially supported by the Spanish
projects TIN2009-14633-C03-03, TIN2011-24631, TIN2012-
37475-C02-02 and the PhD scholarship 2013FI B2 00074.

REFERENCES

[1] K. Broelemann, A. Dutta, X. Jiang, and J. Lladós, “Hierarchical graph
representation for symbol spotting in graphical document images,” in
Proceedings of S+SSPR, ser. LNCS, G. Gimelfarb, E. Hancock, A. Imiya,
A. Kuijper, M. Kudo, S. Omachi, T. Windeatt, and K. Yamada, Eds.
Springer Berlin Heidelberg, 2012, vol. 7626, pp. 529–538.

[2] N. Ahuja and S. Todorovic, “From region based image representation
to object discovery and recognition,” in Proceedings of S+SSPR, ser.
LNCS, E. Hancock, R. Wilson, T. Windeatt, I. Ulusoy, and F. Escolano,
Eds. Springer Berlin, Heidelberg, 2010, vol. 6218, pp. 1–19.

[3] M. Pelillo, K. Siddiqi, and S. Zucker, “Matching hierarchical structures
using association graphs,” IEEE TPAMI, vol. 21, no. 11, pp. 1105 –1120,
nov 1999.

[4] I. Bomze, M. Pelillo, and V. Stix, “Approximating the maximum weight
clique using replicator dynamics,” IEEE TNN, vol. 11, no. 6, pp. 1228
– 1241, nov 2000.

[5] P. L. Rosin and G. A. W. West, “Segmentation of edges into lines and
arcs,” Image and Vision Computing, vol. 7, no. 2, pp. 109–114, 1989.

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” IJPRAI, vol. 18, no. 3, pp. 265–298,
2004.

[7] A. Dutta, J. Lladós, and U. Pal, “A symbol spotting approach in graphical
documents by hashing serialized graphs,” Pattern Recognition, vol. 46,
no. 3, pp. 752–768, 2013.

[8] M. Delalandre, T. Pridmore, E. Valveny, H. Locteau, and E. Trupin,
Building Synthetic Graphical Documents for Performance Evaluation.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 288–298.

