toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) L. Rothacker; Marçal Rusiñol; G.A. Fink edit   pdf
doi  openurl
  Title Bag-of-Features HMMs for segmentation-free word spotting in handwritten documents Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1305 - 1309  
  Keywords  
  Abstract Recent HMM-based approaches to handwritten word spotting require large amounts of learning samples and mostly rely on a prior segmentation of the document. We propose to use Bag-of-Features HMMs in a patch-based segmentation-free framework that are estimated by a single sample. Bag-of-Features HMMs use statistics of local image feature representatives. Therefore they can be considered as a variant of discrete HMMs allowing to model the observation of a number of features at a point in time. The discrete nature enables us to estimate a query model with only a single example of the query provided by the user. This makes our method very flexible with respect to the availability of training data. Furthermore, we are able to outperform state-of-the-art results on the George Washington dataset.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ RRF2013 Serial 2344  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: