|
Petia Radeva, Joan Serrat, & Enric Marti. (1995). "A snake for model-based segmentation " In Proc. Conf. Fifth Int Computer Vision (pp. 816–821).
Abstract: Despite the promising results of numerous applications, the hitherto proposed snake techniques share some common problems: snake attraction by spurious edge points, snake degeneration (shrinking and attening), convergence and stability of the deformation process, snake initialization and local determination of the parameters of elasticity. We argue here that these problems can be solved only when all the snake aspects are considered. The snakes proposed here implement a new potential eld and external force in order to provide a deformation convergence, attraction by both near and far edges as well as snake behaviour selective according to the edge orientation. Furthermore, we conclude that in the case of model-based seg mentation, the internal force should include structural information about the expected snake shape. Experiments using this kind of snakes for segmenting bones in complex hand radiographs show a signicant improvement.
Keywords: snakes; elastic matching; model-based segmenta tion
|
|
|
Paula Fritzsche, C.Roig, Ana Ripoll, Emilio Luque, & Aura Hernandez-Sabate. (2006). "A Performance Prediction Methodology for Data-dependent Parallel Applications " In Proceedings of the IEEE International Conference on Cluster Computing (pp. 1–8).
Abstract: The increase in the use of parallel distributed architectures in order to solve large-scale scientific problems has generated the need for performance prediction for both deterministic applications and non-deterministic applications. In particular, the performance prediction of data dependent programs is an extremely challenging problem because for a specific issue the input datasets may cause different execution times. Generally, a parallel application is characterized as a collection of tasks and their interrelations. If the application is time-critical it is not enough to work with only one value per task, and consequently knowledge of the distribution of task execution times is crucial. The development of a new prediction methodology to estimate the performance of data-dependent parallel applications is the primary target of this study. This approach makes it possible to evaluate the parallel performance of an application without the need of implementation. A real data-dependent arterial structure detection application model is used to apply the methodology proposed. The predicted times obtained using the new methodology for genuine datasets are compared with predicted times that arise from using only one execution value per task. Finally, the experimental study shows that the new methodology generates more precise predictions.
|
|
|
Jaume Garcia, Debora Gil, A.Bajo, M.J.Ledesma-Carbayo, & C.SantaMarta. (2008). "Influence of the temporal resolution on the quantification of displacement fields in cardiac magnetic resonance tagged images " In Alan Murray (Ed.), Proc. Computers in Cardiology (Vol. 35, pp. 785–788).
Abstract: It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possible. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.
|
|
|
Jaume Garcia, Joel Barajas, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2005). "An intuitive validation technique to compare local versus global tagged MRI analysis " In Computers In Cardiology (Vol. 32, 29–32).
Abstract: Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account
|
|
|
Aura Hernandez-Sabate, Debora Gil, Petia Radeva, & E.N.Nofrerias. (2004). "Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images " In Proc. Computers in Cardiology (Vol. 31, pp. 229–232). Chicago (USA).
Abstract: The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles
|
|
|
Jaume Garcia, David Rotger, Francesc Carreras, R.Leta, & Petia Radeva. (2003). "Contrast echography segmentation and tracking by trained deformable models " In Proc. Computers in Cardiology (Vol. 30, pp. 173–176). Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater.
Abstract: The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.
|
|
|
Debora Gil, Agnes Borras, Sergio Vera, & Miguel Angel Gonzalez Ballester. (2013). "A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 334–343). Springer Berlin Heidelberg.
Abstract: Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.
Keywords: Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation
|
|
|
Ferran Poveda, Debora Gil, & Enric Marti. (2012). "Multi-resolution DT-MRI cardiac tractography " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 270–277). Springer Berlin Heidelberg.
Abstract: Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.
|
|
|
Debora Gil, Agnes Borras, Ruth Aris, Mariano Vazquez, Pierre Lafortune, & Guillame Houzeaux. (2012). "What a difference in biomechanics cardiac fiber makes " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 253–260). Springer Berlin Heidelberg.
Abstract: Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2012). "A Complete Confidence Framework for Optical Flow " In Rita Cucchiara V. M. Andrea Fusiello (Ed.), 12th European Conference on Computer Vision – Workshops and Demonstrations (Vol. 7584, pp. 124–133). Florence, Italy, October 7-13, 2012: Springer-Verlag.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Keywords: Optical flow, confidence measures, sparsification plots, error prediction plots
|
|