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Abstract

The objective of this work is to segment the human left
ventricle myocardium (LVM) in contrast echocardiography
imaging and thus track it along a cardiac cycle in order to
extract quantitative data about heart function.
Ultrasound images are hard to work with due to their

speckle appearance. To overcome this we report the
combination of active contour models (ACM) or snakes and
active shape models (ASM). The ability of ACM in giving
closed and smooth curves in addition to the power of the
ASM in producing shapes similar to the ones learned, evoke
to a robust algorithm. Meanwhile the snake is attracted
towards image main features, ASM acts as a correction
factor.
The algorithm was tested independently on 180 frames

and satisfying results were obtained: in 95% the maximum
difference between automatic and experts segmentation was
less than 12 pixels.

1. Introduction

Heart diseases are one of the most common death causes
of the last decades. For this reason, after myocardial
infarction, it is important to have tools that allow to evaluate
the heart function. Left ventricular wall movement can be
used to this end but it is not accurate enough. Additional
information about the myocardial perfusion (blood flow)
should be obtained in order to determine if we have a
reversible or an irreversible heart disfunction.
The most widespread image techniques for myocardial

perfusion analysis are SPECT, PET andMR. Although they
give high quality information about myocardial perfusion
they are not widely available in most hospitals because of
their cost. Moreover, the use of ionizing radiation makes
them invasive to the patient. The availability, low cost
and non-invasiveness of echocardiography, in addition to
great progresses in microbubble contrast agents during last
decade, have projected the contrast echocardiography [?]
as a powerful tool in the myocardial assessment. However,
it is difficult to get conclusions directly from images.

Figure 1. Frame of Contrast Echocardiography. The U-
shaped structure is the myocardium to be segmented.

Quantitative parameters must be extracted to interpret the
sequence of perfusion images. This is done by tracking
myocardial points along the cardiac cycle meanwhile the
process of destroying the microbubbles (using a high
energy pulse) and reperfusing again is repeated. Some
approaches have been done in the framework of tracking
myocardial points but they are reduced to some ROIs which
are actualized taking into account the optical flow of the
sequence [?],[?]. In [?], it is proposed to segment the
ventricle walls by using ACM and ASM. The authors model
the shape with the firstM coefficients of its discrete cosine
transform instead of the raw coordinates. The present work
has similarities to them. We segment the full myocardium
in order to track the whole contour. To achieve it we also
combineACM andASM, this allows us to take advantage of
the experts knowledge and it is motivated because manual
segmentation of the myocardium in the whole cardiac cycle
(100 frames approximately) is highly time consuming and
suffers from inter- and intra-observer variability.



2. Background

2.1. Active Contour Models (ACM) or
Snakes

A snake [?] can be thought as a set of nodes S t =
{(xs,t, ys,t)

M
s=1} which represent an elastic discrete curve.

It evolves in time with the objective of minimizing the sum
of its internal and external energies:

E(u) = Eint(St) + Eext(St)

Eint imposes the smoothness of the curve and Eext attracts
it towards image main features (edges in case of contour
segmentation). Given a node in the snake (xt, yt) it will
evolve according to

{
xt+1 = (A + γId)−1(γxt + Fx(xt, yt))
yt+1 = (A+ γId)−1(γyt + Fy(xt, yt))

(1)

where A (the scatter matrix) codifies the smoothness
constraints, γ affects to the speed convergence and F =
(Fx, Fy) are the external forces that make the nodes move.
Depending on the F that we synthesize, snakes behavior
will vary. In this text we propose external forces that give
a certain coherence between the normal directions of the
snake in its nodes and the gradient directions of contours
where each node should be attracted. These forces are:

F (x, y) = −〈−→vc ,−→vs〉∇D(x, y) (2)

whereD is a distancemap,−→vc(x, y) is the gradient direction
of I in the nearest edge point to (x, y) (in distance D) and
−→vs(x, y) is the normal vector to the snake, fixed one of the
two possible, at the point (x, y). Notice that the same way
we previously have created the distance map D, we have
to create an angle map DΨ so that, at each point (x, y) we
know the distance to the nearest edge point and the gradient
direction of it [?].
Let −→vc and −→vs be unitary vectors,

〈−→vc ,−→vs〉︸ ︷︷ ︸
K

=






(0,1] if angle(−→vc ,−→vs) < π/2
0 if angle(−→vc ,−→vs) = 0
[-1,0) if angle(−→vc ,−→vs) > π/2

The termK makes the snake be attracted by contours that
have similar orientation (angle between −→vc and −→vs < π/2)
and rejects it from contours which have opposite directions
(angle > π/2). In case thatK = 0, the only forces that act
in these points are internal forces.
Using these forces we obtain quite good results but they

are not enough to reach our objective. ACM are, in their
nature, local methods, the support of a global method is
needed.

2.2. Active Shape Models (ASM)

This technique allows us to build compact models of
shape by capturing the statistics of sets of labelled points
in a set of training images. Once the model is built, only
plausible shapes (similar to the ones in the training set)
can be obtained [?]. Having N training images, manual
segmentation is performed in every image Ij . Let s̃j =

{(x̃j
i , ỹ

j
i )}Mi=1 be the ordered set of landmark coordinates.

We align s̃j to a reference shape s0 (s0 = s̃1, for instance)
by applying a transformation sj = Lr,θ,T (s̃j) that scales
(r), rotates (θ) and translates (T = (Tx, Ty)) s̃j . This
allow us to capture the intrinsic variation between shapes
(avoiding similarities) [?].
Let {(xj

i , y
j
i )}Mi=1 be the aligned coordinates of the j-th

training image (j = 1, . . . , N). For every j we construct
the vector

Xj = (xj
1,y

j
1,x

j
2,y

j
2, . . . ,x

j
M,yj

M)

by concatenating the coordinates of the points so we get
N observations in the R2M space. Applying a PCA to
the data, we reduce the dimensionality while maintaining
relevant information. Any shape in the training set can now
be approximated using the mean shapeX = 1/N

∑N
j=1 Xj

and a linear combination of the first m < M modes of
variation

X = X + Pb (3)

where P = (P1 P2 . . . Pm) is the matrix of the first
m modes with P TP = Id and b = (b1, b2, . . . , bm) is the
shape parameter.
If we have an aligned shape X̃ and want to find the most

similar plausible shape, we just have to project it into the
space to get the parameter b

b = PT (X̃ −X) (4)

and ensure that b live into a certain valid m-dimensional
hyperbox. Then the plausible shape is exactly are (??).

3. LVM Segmentation

As we told before, our purpose is to segment the LVM
(Figure ??) by combining methods exposed in sections 2.1
and 2.3. The procedure is divided in three parts: First
of all the model is trained. Then we initialize the snake
paying special attention to the case of the first image of the
sequence. Finally we explain how the snake evolves.

3.1. Training the model

To train the model, we took a training set of 50 images
extracted from 4 different cardiac cycles which covered



Figure 2. 2nd and 3rd modes of variation of the shape
model.

a wide range of shape variation and asked an expert to
segment them. 100 landmarks were marked at every image
and, after having applied the PCA on the aligned data, we
got a shape model (??) with 9 principal variation modes
that explained the 98% of the shape variation. Figure
?? shows the effects of varying second and third modes.
Notice, for instance, how the second and third modes model
the thickness of the myocardium in different locations.
ASM also controls that never downside contour surpass the
upside one.

3.2. Initialization of the snake

In order to get good results, a first step of preprocessing
must be done to smooth the speckle appearance (typical
in ultrasound images) but preserving as much as possible
the image contours. For this reason we used an anisotropic
diffusion filter [?]. An example is shown in Figure ??.(a)
To avoid the snake falling into a local minimum, the

initial one must be placed next to the desired result. As
initial snake S0 we take the mean shape X of the model in
which we have marked 4 special landmarks (Figure ??.(b)).
Then we warp X &−→ S0 so that these points can fit 4 key
points found in the target image I(x, y). Basically these are
the two corners (CL and CR) and the top (internal TI and
external TE) of the myocardium as shown in Figure ??.(c).
To find the corners we use the Harris Corner Detector. Once
found, we look for the most significant gradient of I(x, y)
along the line defined by points C = (CL + CR)/2 and T ,
where T is the top point of the sectorial ROI that contains
the echocardiogram, this gives us TI . As we could observe
in most of the frames, the point TE remains almost fixed,
so we consider it fix. Now that we have placed S0 (Figure
??.(d)), it is ready to evolve according to equation (??).
Notice that when instead of working with a single frame we
are performing LVM tracking, this can be used to segment
the first frame I0 and, for the other frames In+1 we use
Sn+1
0 = Sn

k as initial snake (where Sn
k is the result of the

previous frame).

a) b)

c) d)

Figure 3. Filtered image a). Mean shapeX b). Key points
found in the target frame c). Initial Snake: mean shape
warped to fit the key points d).

3.3. Controlled evolution of the snake

Given the snake at time t, St = {(xs,t, ys,t)
M
s=1}

we predict the new position of the snake nodes S̃t+1 by
applying eq. (??). We correct S̃t+1 looking for the most
similar valid image given by our shape model. First of
all, we have to align S̃t+1 and then project it into the
shape space to get the parameters b as in (??). Then we
get the plausible shape by (??) and finally, to get the next
snake St+1, we dis-align X . This can be condensed by the
following equations:
{

S̃t+1 = (A+ γId)−1(γSt + F )

St+1 = L−1
r,θ,T [X + PPT (Lr,θ,T (S̃t+1)−X)]

(5)

If we iterate the process, once evolving followed by
correcting, we realize that the shape constraints given by the
shape model are too strong and hardly lets the snake search
for new positions. To solve this we apply the corrections
every P steps. In our case we used P = 2, but this depends
on each application.

4. Results

Our images were acquired with an Agilent Sonos 5500
(Andover, MASS) scanner and the contrast used was
Sonovue!. Visualization was performed by the Power-
Angio technique.
To test our algorithm, we took 180 images of dimension

(480 x 385), from 4 cardiac cycles, different from the 50
used to create the training set and applied (??) to each of



them independently. When we compared the results to the
experts segmentations we found that in 95% of the cases the
maximum difference reached was less than 12 pixels and
the mean difference less than 4 pixels (Figure ??). Errors in
segmentation are caused basically by a wrong initialization
of the snake. In some frames, myocardium corners are not
well defined (because of the image noise) and Harris corner
detector can not deal with this. Another reason could be
that the shape we are trying to segment do not belong to the
learned shapes. In Figure ?? we show the evolution of the
initial Snake under the correction effects of the ASM.
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Figure 4. Maximum difference a) and mean difference b).

5. Conclusions

Finding a concrete shape in an image when all
information is not available or the present is corrupted can
be extremely difficult for a snake. This is precisely our
case and is due to the fact that it is a local method of
segmentation. Each node evolves according to an external
force and some smoothness constraints in its neighborhood,
but it does not take into account information about distant
nodes. Despite the external forces we have introduced can
guide each node more coherently, some global information
must be used. This is the contribution of the ASM. They
take into account information about all nodes to act over
them. So we conclude by pointing that meanwhile snakes
predict the position of the nodes, ASM is able to rearrange
them so that only plausible shapes can be retrieved and thus
the target structure is recovered.
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