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Abstract 
Despite the promising results of numemus appli- 

cations, the hitherto proposed snake techniques share 
some common problems: snake attraction by spurious 
edge points, snake degeneration (shrinking and flat- 
iening), convergence and stabiliiy of ihe deformation 
process, snake initialization and local determination 
of the pammeters of elasticity. We argue here ihaf 
these problems can be solved only when all the snake 
aspects are considered. The snakes proposed here im- 
plement a new potential field and eztemal force in or- 
der to provide a defownation convergence, attmction 
by both near and far edges as well as snake behaviour 
selective according io  the edge orientation. Further- 
more, we conclude that in the case of model-based seg- 
mentation, the intemal force shoarld include structural 
information about the ezpected snake shape. Ezperi- 
ments using this kind of snakes for segmenting bones 
in complez hand mdiogmphs show a significant im- 
provement. 

Keywords: snakes; elastic matching; model-based 
segment at  ion 

1 Introduction 
Snakes, introduced by Kass et al. in 81 provide 

a global solution to the segmentation pro i! lem. The 
main advantage is that they allow to integrate an ini- 
tial contour estimation and to overcome several pho- 
tometric abnormalities (contour gaps, hidden contours 
or edge points due to noise and texture). Matching us- 
ing elastic curves has a very important aspect regard- 
ing model-based segmentation: they are able to locate 
and recognize objects from approximate models. 

A snake is an elastic curve placed on an image that 
begins to deformate itself from an initial shape in order 
to adjust to the image features. The deformation is a 
result of the action of external forces that attract the 
snake towards image features and internal forces that 
keep smooth the shape of the curve. The solution is 
given by a minimum of the snake total energy. 

A common problem in the different snakes tech- 
niques is how to avoid local minima of the energy 
functional [I, 4, 5, 8, lo]. Related to this problem 
different hierarchical frameworks are proposed based 
on scale space [lo , on different image resolutions [2,6] 

[14]. The snakes we consider [14] deform in a multi- 
threaholding deformation scheme similarly to a mould 
of a plasticine figure. Firstly, the snake is deformed 

and on different t b resholdings of the image edge map 
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in accordance with the more salient image featurea 
and afterwards, it is tuned according to the remaining 
image features. Thus, many insignificant edge points 
normally due to noise or other artefacts are avoided. 

The local minima are due to the snake attraction 
by edge points that do not correspond with the object 
contour. The coarse-tefine approach allows the snake 
to ignore the weak edge points, but still a need for 
more information appears in order to distinguish the 
spurious ed e8 in the image. Therefore the potential 
of these sn a! e8 is function of both the magnitude and 
direction of the image gradient. This potential allows 
the snake to foresee the characteristics of the closest 
edge point and to manifest selective behaviour. The 
importance of contour direction information was also 
observed by h a  et al. (5 , who used it in order to 

ence is that the snake considered here does not begin 
to deform towards non suitable edge points. This is 
an important aspect because of the irreversible nature 
of the snake deformation. The external force that we 
propose undertakes to attract the snake only to suit- 
able edge points. Besides, it distinguishes close and 
far edges and assurea conver ence and stability of the 

ment an object even in case of other close objects and 
initialization not very close to the solution, a situa- 
tion in which most of the known snake techniques fail, 
attracted by contours of different objects. 

Another property of the snakes we propose is that 
they can cope with the problem of the snake initid- 
ization. The multithresholding scheme of deformation 
allows the snake to see strong edges behind weaker 
ones [14 . The internal force of our snakes which p r e  

snake able to do some displacement when only some 
part of the snake is attracted. 

The degeneration of the original snake is another 
important problem. In its attempt to smooth the 
curve, it is easy for the internal force to shrink the 
snake in a point. Another kind of degeneration, less 
mentioned in the bibliography, is the snake flattening 
in case of scarce edge segments. A well-known way to 
avoid the shrinking effect is to use Cohen's pressure 
force that simulates a balloon inflation. This gives rise 
to the problem of how to determine the parameters 
that m u r e  the tolerance between the pressure force 
and the internal force. In [lo, 171 the authors come 
back to the snake precursors, the deformable models 

verify the result of the sn aL e deformation. The differ- 

deformation process. Thus, t t e snakes are able to seg- 

serves t h e structure of the object model makes the 
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[15]. There the internal energy contains the "natural" 
arc-length and curvature of the object in its natural 
state, used to prescribe the " desirable" spatial-step 
and curvature between the snaxels lo]. The snakes 

shape features of the object model avoiding in this way 
the degeneration effect. 

Another effect is that such internal energy frees us 
from the local control problem. Recently, thw problem 
was approached by using finite elements method with 
variable number and/or distance between the control 
points [7, 111. In our case, as object's structure in- 
formation is incorporated, the internal energy allows 
corners, more pronounced concavities and convexities 
in the neighbourhood where they are expected. Thus 
the parameters of the elasticity and rigidity remain 
global and the computational cost of the implementa- 
tion keeps low. Finally, we show here that the use of 
this kind of internal force conserves all the properties 
of the numerical solution of the classical snake, which 
is an item reported as one of the main implementation 
difficulties for the local parameters of elasticity [lo]. 

The article is organized as following: in section 2 we 
expose the fundamentals of 2D snakes, in section 3 and 
4 the potential field of our snake and the snake exter- 
nal energy are discussed. Section 5 is dedicated to the 
internal energy. The results of applying the snakes to 
hand radiographs segmentation are discussed in sec- 
tion 6. Finally, conclusions are reported. 

2 Snake Model: F'undamentals 
A snake is a continuous curve that, from an ini- 

tial state, tries to position itself dynamically on image 
features (f.e. edge points). It is deformed as a re- 
sult of the influence of local forces derived from edge 
points, while this deformation remains smooth due to 
the effect of internal forces. The sum of the mem- 
brane energy, expressing the snake stretching, and of 
the thin-plate energy, expressing the snake bending, 
gives the internal snake energy: 

we consider use an internal energy t h at preserves the 

where u(8) = (z(s),y s)) is the snake curve and s is 
the curve arc-length [ B 1. The parameters of elasticity 
(Y and p control the smoothness of the snake curve. 

External forces help to push the snake towards the 
image features we are looking for. These forces are 
associated to a potential P(z,y) which, in general, 
is defined in terms of gradient module of the image 
convolved by a Gaussian function [8]: 

P ( Z l  Y) = -I v (G(z1 Y) * I(Z1 Y))l 

P(., Y) = 4 2 ,  Y), q . 1  Y) = -e -d(=,yY 

or as a distance map of the edge points [3]: 

where d(z,y) denotes the distance between the pixel 
(2, y) and its closest edge point. The snake is moved 
by potential forces and tries to fall in a valley as if it 
was under the effect of gravity. 

The total snake energy is given by the functional of 
the energies sum: 

1 

EJnake = 1 Eint + Eeztds = 

Jo  

The minimum of the snake energy satisfies Euler- 
Lagrange equation [8]: 

{ -"(auJ(8)) + &(@uJS(8)) + Vp(.(.)) = (1) + %oundary conditions. 

One of the techniques to solve this e uation is the 
Method of Finite Differences (MFD) 981. Discretiz- 
ing the snake curve ui = (zi,yi) and approximating 
derivatives with finite differences, the equation (1) is 
solved iteratively: 

Z t  = (A +7l)-'(7zt-1 - pz(zt-1,yt-1)) 

yt = (A + 71)-'(7Yt-l - Py(zt-1, yt-1)) 

The damping parameter 7 determines the process con- 
vergence rate. The system of equations (2) can be con- 
sidered as a composition of snake attraction to the po- 
tential minimum and shape smoothing in accordance 
to the internal energy requirements imposed by the 
stiffness matrix A. 

3 Potential of the Snake 
3.1 Potential as a logarithmic function of 

distances 
The potential of our snakes is constructed as a func- 

tion of the distance map because in this way they are 
able to be attracted both by close and far ed e points 

the potential construction is stron ly related to the 

towards its valleys the snake should achieve the edge 
points without oscilation around them. The simpler 
way is to directly use the distance map as a potential 
field. Since the snaxel step is proportional to the po- 
tential gradient magnitude, the snake will move due 
to the external force with constant jumps towards the 
potential valleys independently from the edges prox- 
imity. Another possibility is to smooth the distance 
map by a Gaussian [4]. The slope is steeper far from 
the valleys and the snake will jump faster, while ap- 
proaching the valley the step is reduced in order to 
not surpass the edge. This approach is useful when 
the scene does not contain much noise, object texture 
or different objects' contours. Otherwise, the snake 
could be more attracted by far edges that often do 
not correspond to the correct contour, and the close 
edge points, usually more likely to belong to the cor- 
rect contour, are i nored. Therefore we generate the 

[3], Besides the problem of the attraction by P ar edges, 

convergence problem. Sliding on t eh e potential field 

potential field for t % e snake as follows: 

P(z, Y) = loga(1+ d ( z ,  Y)) (2) 
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Figure 1: Generation of two kinds of potential fields 
(see text) 

where a is a constant dependent on the application and 
df, y) is the distance of pixel (z, y) until the closest 
e ge point. 

In Fig.1 a comparison between a potential gener- 
ated as a distance map smoothed by a Gaussian and 
as a logarithmic function of the pixel distance to the 
closest edge point is shown. In the first case the poten- 
tial gradient in the neighbourhood of the edge point 
is small, the snake often stops there without falling 
exactly on the edges. Defining the potential in the 
second way, the large potential gradient in the neigh- 
bourhood of the edge point causes the close snaxel to 
converge to the edge point. Another property of the so 
defined potential is the possibility to introduce high- 
level knowledge by the parameter a. It is referring to 
what is considered of being close and far edges. This is 
because the parameter a determines where the slope of 
the potential function changes significantly, reducing 
its influence on the snake curve. 
3.2 Potential with attributed signs 

Though there exist different techniques to gener- 
ate potentials, in all of them we have information in a 
point only about the distance and eventually about the 
gradient magnitude of the closest edge point. Often 
this information results insufficient. We would save 
many incorrect displacements if in a certain distance 
we could obtain some more information about the clos- 
est edge in order to decide whether or not to deform 
the snake towards it. In this sense, such valuable in- 
formation concerns the edge segment orientation. The 
potential field of our snake explicitly incorporates in- 
formation about the gradient direction of the edge 
points. 

The construction of the potential as a distance map 
is carried out by a modification of the raster scan al- 
gorithm [9] exposed in details in [12]. The advantage 
of this algorithm is its reduced complexity: the num- 
ber of iteration depends only on the mask size (in our 
case, 3x3) used to calculate the minimal distance. In 
order to take into account the gradient direction of 
the edge points we consider two kinds of potentials: 
in the first one, the radient direction is propagated 
at the same time as t 8, e distance. In this case the pcr 
tential consists of an image with the pixel distances 
to the closest edge point and an image with the gra- 
dient direction of these edge points. The second kind 

r' ++ 
+ 
3 2 1  

+ +  
+ 

+ +  + + 

G - gradlent vector- - contour 
v -wadlentangle 

Figure 2: Construction of Signed Distance Potential 

of potential called Signed Distance Potential (SDP) 
is an image composed by propagated distances, where 
each distance has attributed si . We adopted the fol- 

positive when the distance propagation is in opposite 
direction of the gradient of the closest edge point and 
negative, otherwise (Fig.2). One early and restricted 
version of our study on the signed distance potential 
is reported in [14]. The properties of the potential of 
the snakes we propose are the following: a) it makes 
the snake converge to cloee edges, b) the influence of 
far edge points is available c) it explicitly incorporates 
information about the edge orientation and d) there is 
a possibility to introduce high-level knowledge about 
what is considered as close and far contours. 

The use of the raster scan algorithm h a  another 
advantage; it allows the creation in parallel of a family 
of potentials in accordance to different thresholdings of 

lowing rule to aasign the attri r uted sign: the sign is 

the computational cost of the snake technique. 

4 External Force of the Snake 
Usually, the image force is defined by the gradient 

of the potential field: FeSt(u) = - v P(u& However, 
such an external force does not provide su ciently dy- 
namic behaviour to the snakes [4]. Different versions 
of modified external forces appeared in the bibliogra- 
phy claiming to solve some snake problems as snake 
attraction by far edgea and snake shrinking 141. 

Our main goal is to design the external force so that 
correct edge points are the only considered items (i.e. 
the force is capable of ignoring spurious edge points, 
e.g. that do not have suitable gradient direction). By 
a specially defined external force we claim to achieve 
the following snake properties: 

- only edge points with suitable gradient direction 
should attract the snake, and 

- the more similar the normal vector of the snake 
curve in a given snaxel directed towards the snake in- 
terior to the orientation of the radient vector of the 

tract the snake point. 
Let UB consider the snake as a closed curve r e p  

resenting the object model contour 80 that, for each 
point of the curve we can determine the normal vec- 
tor n' directed towards the snake interior. Let # be the 

closest edge point is, the more t % e edge point will at- 
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Figure 3: Two examples of pairs of edge points and 
snaxels with suitable directions (p1, pz) and with non- 
suitable directions (p3,  p4) 

angle formed by this vector with the axis z, and 41, the 
radient angle of the closest edge point. The external 

force defined by the potential gradient - v P makes 
the snake to be attracted to the 0 pixels of the poten- 
tial (i.e. the edge points). We consider the following 
external force: 

Fezt = --(cos # cos $p(z ,  Y)=, sin # sin $P(z, ~ ) y )  (3) 

The effect of the trigonometric functions is to reduce 
the snake jump determined by the gradient of the po- 
tential. It is easy to see that the imagestepsize is 
maximal when the angles coincide and vice versa: the 
maximum reducing is achieved when the directions 
and $ are perpendicular. Then the snake is not af- 
fected by the external force. For example, in Fig. 3 
the vector 5 of the snake pixel pz forms angle # simi- 
lar to the angle $ formed by the gradient vector G of 
the closest edge point p1. Thus, the snake point is at- 
tracted by the edge. This is not the case for the pair of 
snaxel p4 and its closest edge point ps. Furthermore, 
the more similar the angles 4 and $ are, the larger the 
external force module is. 

Simplifying the computation of the snake deforma- 
tion based only on the SDP is useful when we want 
to accelerate snake calculation process. The external 
force (3) can be approximated as follows [14]: 

Feot(Z, Y) M sgnP(z, Y)(Cos 4Pz(z, Y), sin 4P&, Y)) (4) 

Defined in this way the external force attracts the 
snaxels only to edge points with suitable gradient di- 
rection. Otherwise, the external force has effect of 
repulsion. So, we refine the external force to exert 
only attractive action on the snake: 

sgn(P(z, Y)) cos 4 Pdz, Y), 

sgn(P(z1 Y)) sin # P&l Y), 

if cos # cos (1, M -P,(z, y) cos # > 0 
0, elsewhere. 

{ 0, eLwhere. 
if sin 4 sin (1, M -P (2, y) sin 4 > O 

From the definition of the external force it follows 
that when the closest edge point for a given snake 

{ Fl(2,Y) = 

F 2 ( 2 , Y )  = 

Figure 4: Original ima e and initial snake (left), result 

result of segmentation by the snakes considered here 
(right). Edge points are depicted in white. 

of the classical snake ! eformation (center), improved 

pixel has not the suitable direction the snake is not 
affected by the external force. The physical sense of 
non-attraction corresponds to the cases of hidden con- 
tours or non exact snake initialization (the sne? is 
closer to other objects). According to the definition, 
this part of the snake is affected only by the internal 
force. If another part of the snake is moved to the 
correct contour and since the internal force conserves 
the structure of the object, the former part could be 
displaced falling in a zone of a correct contour (Fig. 

To sum up, the external force enables the snake 
attraction only by suitable edge points, assures the 
influence of far edge points and the convergence of 
the snake by approximating the edges. The external 
force definition allows to estimate the range of PO% 
sible values for the snaxel step caused by the image 
force (something important for the snake convergence 
and stability) and does not flatten the snake as it h a p  
pens with the classical snakea in case of e.g. isolated 
contour segments. The last observation we would like 
to point out is that the avoidance of spurious edge 
points does not change the potential with respect to 
the snake in contrast to other works [13], as the selec- 
tive snake behaviour makes it independent on certain 
false edges. 

5 

internal force as follows: 

4)- 

Internal Force of the Snake 
The model availability suggests us to determine the 

Fint = a(us(s) - + p ( U ~ ( s )  - u,"8(s))2 (5) 

where uo 8 )  and uts 8 are the derivatives regarding 

explicitly incorporated about the desirable shape. The 
internal force of the snake we consider attempts to 
compensate the changes caused by the external force 
and to preserve the object model controlled by the 
parameters of elasticity a and rigidity p. 

Let us develop the mcvement equations of the 
snake. We obtain: 

the mode I contour. L! us a structural information is 

Comparing to equations (2) we can see that the differ- 
ence in the linear equation system for our snakes is in 
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the presence of the members Azo and Ay'. Hence, we 
can think about the movement equations of the clas- 
sic snakes but adding a new force called compensaiing 
force Fcmpenr = (Ad', Ay') aiming to compensate de- 
viations from the initial snake shape. The important 
property of this force is that it depends only on the 
initial snake uO(s). Given a constant stiffness matrix 
A, the force Fe-pen. is constant and calculated only 
once. The solution of the linear system (6) is deter- 
mined by the matrix A + 71 that is positive definite. 
This means that the numerical solution has the same 
properties as those of the classical snake. 

One important consequence of the internal force 
definition is that the force which tries to keep the 
model shape, never shrinks the snake. In the case 
of constant potential field, the shape is not changed, 
something more natural than the shrinking in the case 
of the classical snake. One similar case to the shrink- 
ing effect is the accumulation ability of the original 
snake observed in case of scarce edge segments. Then 
some parts are accumulated on these segments and the 
other parts lose their elasticity necessary to expand to- 
wards edge points. The accumulation effect is avoided 
by the use of internal energy to keep the object model. 

Using the internal force (6) can be considered as 
an alternative solution to the problem of the deter- 
mination of the elasticity parameters. The local de- 
pendence of the parameters is necessary when some 
discontinuities should be allowed in certain parts of 
the snake. In the case of model-based segmentation, 
the proximal neigbourhood and the expected kind of 
discontinuity are available by the structural features 
of the model. The compensating force explicitly incor- 
porates this information in the snake movement equa- 
tions. The result is that there is no additional fac- 
torization of the stiffness matrix, it is symmetric and 
positive definite and the computational cost remains 
low. 

6 Application and Results 
We have applied our snakes to bone segmentation in 

hand radiographs. A set of bone models are presented 
in an atlas [16] that describes the growth process of 
each bone by means of several maturity stages. Each 
bone stage is characterized by a typical 2-D shape. 
Having classified each bone into a maturity stage, it 
is possible to assess the overall skeletal maturity for 
an individual. This method is one of the most ex- 
act for the skeletal maturity assessment and used in 
paediatrics to diagnose growth abnormalities. Snakes 
are very helpful in radiographs se mentation because 

menting objects out of discontinuous contours, even 
in case of absent or hidden parts of the contours, and 
spurious edge points due to bone texture, noise and 
near bones. 

Our experiments prove the improvement of the 
snake technique. The behaviour of our snakes has 
been tested on 20 different bones in 46 images. For 
each bone we used the models of the two more likely 
states of maturity as initial models. In 94% the snake 
we consider detected the correct contour of the bone. 
For the remaining 6 % the snake solution has only 

they are model-directed and offer t % e possibility of seg- 

Figure 5: Hand bona segmented by snakes. 

some part attracted by some spurious contours (in- 
ternal borders, internal texture, noise) but no snake 
result is not satisfactory (most of the bone contour 
is detected). Segmentin by the ori inal Kass' snakes 

position) the rate of total success was 30%, in 22% a 
satisfactory result is obtained (most of the snake curve 
corresponds to the correct contour) and in 49% no sat- 
isfactory result of the snake is observed (most of the 
snake is attracted by spurious edges). 

We explain the difference between the behaviour 
of both the snakes with the difficult segmentation of 
the hand bone images (low image contrast, high noise, 
hidden and absent bone contours, internal borders and 
texture of the bones, bones overlapping, bones fu- 
sion, thickened bone parts, close bones, etc. 
with somewhat "smarter" behaviour had to e imple- 
mented in order to achieve satisfactory result. In Fig. 

in the same conditions $ m e  initia k snake and initial 

k snakes 
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5 we can see a hand radiograph where the bones con- 
sidered by the TW2 atlas are correctly segmented. 

7 Conclusions 
Due to current high interest, many variations of 

snakes were proposed and frequently, the better choice 
of a specific snake depends on the considered problem. 
As our goal is to achieve good results they do not 
exclusively depend on designing new properties of the 
snakes but also on selecting an optimal combination of 
different aspects of the available snakes. In our study, 
we have investigated the different aspects of the snake 
in order to obtain an optimal behaviour for the case 
of model-based segmentation. 

The snakes we propose implement a new definition 
of potential field and external energy that solves some 
problems which affect to all snakes. In many cases, 
this change avoids snake degeneration, e.g. an oval 
snake cannot turn into a flat snake. An additional 
effect is that the snake is not attracted by certain 
edge points caused by noise or texture. The impor- 
tance of this technique lies in preventing the deforma- 
tion towards spurious edge points since the snake can 
not backtrack. Besides, it is done without eliminat- 
ing these edge points from the potential image. We 
show that in the model-based segmentation one good 
choice is to use internal force that explicitly incorpe 
rates structural information about the object we are 
looking for. This force keeps the properties of the nu- 
merical solution of the snake and frees us from the 
problem of determining local parameters of elasticity 
and rigidity. Another effect is the prevention of the 
shrinking, flattening and accumulating effects. The 
good experimental results obtained foster our investi- 
gations and applications in radiograph segmentation. 
Our present application of snakes is also related to 
the segmentation of facial features in snapshots, part 
of our future work on recognition of facial expressions. 
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