
A Performance Prediction Methodology for
Data-dependent Parallel Applications ∗

P. Fritzsche, C. Roig, A. Ripoll, E. Luque
Computer Science Department

University Autonoma of Barcelona
Barcelona, Spain

paula@aomail.uab.es

A. Hernández
Computer Vision Center

University Autonoma of Barcelona
Barcelona, Spain
aura@cvc.uab.es

Abstract

The increase in the use of parallel distributed architec-
tures in order to solve large-scale scientific problems has
generated the need for performance prediction for both
deterministic applications and non-deterministic applica-
tions. In particular, the performance prediction of data-
dependent programs is an extremely challenging problem
because for a specific issue the input datasets may cause
different execution times. Generally, a parallel application
is characterized as a collection of tasks and their interrela-
tions. If the application is time-critical it is not enough to
work with only one value per task, and consequently knowl-
edge of the distribution of task execution times is crucial.

The development of a new prediction methodology to
estimate the performance of data-dependent parallel ap-
plications is the primary target of this study. This ap-
proach makes it possible to evaluate the parallel perfor-
mance of an application without the need of implementa-
tion. A real data-dependent arterial structure detection ap-
plication model is used to apply the methodology proposed.
The predicted times obtained using the new methodology
for genuine datasets are compared with predicted times that
arise from using only one execution value per task. Fi-
nally, the experimental study shows that the new method-
ology generates more precise predictions.

1. Introduction

The increase in the use, development, and investigation
of parallel distributed architectures in order to solve large-
scale scientific problems, called Grand Challenge problems,
has generated the need for performance prediction for both
deterministic applications and non-deterministic applica-
tions. The performance prediction of an application is sig-

∗This work was supported by the MEyC-Spain under contract TIN
2004-03388.

nificant at every stage of its life-cycle (definition of prob-
lem, specification of requirements, design, coding, testing,
and implementation). This is because it is possible to ob-
tain better knowledge of the application, predict its behav-
ior under different parameters, and exploit its computational
power better. Therefore, computer designers, programmers
and end-users are interested in obtaining realistic figures for
the expected performance.

The parallel performance prediction of data-dependent
programs is an extremely challenging problem because for
a specific issue the input datasets may cause variability in
task execution times. Generally, a parallel application is
characterized as being a collection of tasks and their interre-
lations. If the application is time-critical, it is not enough to
work with only one value per task, and consequently knowl-
edge of the distribution of task execution times is crucial.

The development of a new prediction methodology to es-
timate the performance of data-dependent parallel applica-
tions, from a particular task graph, is the primary target of
this work. This approach can be used to provide an esti-
mation of the total execution time of an application using
only one processor, to obtain an optimal number of pro-
cessors considering both computation and communication
time, to predict the performance impact of parallelizing a
given application on a system configuration, and also to es-
timate the performance impact of parallel program design
changes without the need of implementation. The overall
life-cycle time is improved because it does not have to reach
the execution final phase with the consequent saving of time
and resources that this involves.

A real data-dependent arterial structure detection appli-
cation [9] model is used to apply the methodology pro-
posed. Intravascular Ultrasound (IVUS) images feed de-
velopment of image processing techniques addressing de-
tection of arterial structures. Vascular disease is the lead-
ing cause of death and a primary cause of heart attacks
and strokes in many countries. Therefore, tissue charac-

1-4244-0328-6/06/$20.00 c©2006 IEEE.

terization is a fundamental tool for studying and diagnosing
the pathologies and lesions associated to the vascular tree.
Due to time consumption and the subjectivity of the clas-
sification depending on the specialist, there is an increas-
ing interest among the medical community in using auto-
matic tissue characterization procedures which should pro-
vide answers in a reasonably useful time. In particular, the
analyzed application is being used by the medical team at
the Hospital Universitari Germans Trias i Pujol (HUGTIP)
1 for investigation purposes. The predicted times obtained
using the methodology for genuine datasets are compared
with predicted times that arise from using only one execu-
tion time per task, the arithmetic mean. The experimental
study shows that the methodology generates more precise
predictions.

The organization of the paper is as follows. Subsec-
tion 1.1 reviews the related work. Section 2 overviews
the proposed performance prediction methodology for data-
dependent parallel applications. Section 3 analyzes a real
data-dependent application. Section 4 presents the experi-
mentation process carried out with the application. Finally,
Section 5 summarizes the main conclusions.

1.1 Related work

Several deterministic performance prediction techniques
are reported in the literature for parallel applications [7, 1,
10, 15, 20]. Also, there are many approaches to the non-
deterministic performance prediction of parallel programs.
The election of underlying modelling formalism depends on
the desired trade-off between prediction cost and accuracy.
The non-deterministic prediction approaches can be clas-
sified as static or dynamic depending on whether the pre-
diction is carried out off line or during program execution
respectively.

Static parallel techniques use source code or pseudo code
as their main input. They produce analytical information
about how some parameters, such as the input data size,
the number of processors, the computation / communica-
tion bandwidths, affect the sensitivity of application per-
formance. Static techniques take many forms from nu-
meric analytic techniques to symbolic techniques. Petri nets
[16, 12], process algebras [3, 4], task graphs [18, 21], queu-
ing networks [11], hybrids (combination of task graphs and
queuing networks) [13], and automata networks [2] belong
to the first group. Stochastic Petri nets (SPNs) and process
algebras formalisms are unattractive due to the cost of expo-
nential solution. Queuing networks have less modelling ca-
pacity than SPNs [22]. Task graphs and hybrids formalisms
are considerably costly for very large problems. On the
other hand, symbolic techniques [8] predict execution time
in terms of a closed-form expression that retains all program

1HUGTIP is a hospital located in Badalona (Barcelona, Spain).

parameters of interest. However, the aforementioned tech-
niques can partially model dynamic behavior, making the
prediction less accurate.

Dynamic approaches [14] rely on a restricted set of per-
formance metrics to characterize the runtime behavior of
applications. They predict performance by capturing the
costs specific to a particular runtime environment and ma-
chine used. Their main difficulty is efficiently and reliably
forming inferences from performance metrics.

Template approaches [6] subsume the static analysis task
by selecting a template and the dynamism taking measure-
ments to parameterize it. Unfortunately, the use of tem-
plates restricts the range of implementation available to the
programmer and also considerable effort is required to de-
velop the programming models.

This work presents a new static performance prediction
methodology that models important sources of dynamic be-
havior such as distribution of execution times per computa-
tion phase of one task and non-determinism introduced by
dynamically scheduling tasks onto a limited number of pro-
cessors. This methodology is general, applicable for any
problem, does not limit the approach to specific distribu-
tions, and tries to combine the positive elements of such
static approaches as the dynamic one. To our knowledge,
there has been no previous attempt to study the effect of
the distribution of execution times inside a task combined
with the mapping problem. There is a study that focuses on
symbolic performance where workload distribution is rep-
resented in terms of a number of statistical moments. It ac-
counts for the effects of scheduling and resource contention
by assigning an execution time distribution to each task but
only considers (recursive) fork-join programs [8].

2 Prediction methodology

This section introduces the new performance predic-
tion methodology. The proposed method starts with the
high-level characterization of the application with its non-
deterministic behavior in the execution times due to data de-
pendencies. It then proceeds through different steps aimed
at identifying the most representative values of behavior in
order to find a suitable prediction for the most probable ex-
ecution time.

2.1 Modeling the application by means of
a graph

The application is modeled using a Non-deterministic
Temporal Flow Graph (NDTFG)2, where each node is a

2The NDTFG model is a generalization of the Temporal Flow Graph
(TFG) model. This latter model records the global behavior of a program,
reflecting deterministic computation phases and communication events
[18].

(a) (b)

Figure 1. (a) NDTFG graph. b) Reductions of
the degree of non-determinism.

task, where a task is an indivisible unit of computation to
be executed on one processor. In general, the activity of
each of the tasks can be characterized as a set of periods
of time called computation phases, during which the task
executes a set of instructions in sequential form. The re-
quired time to execute these instructions can differ depend-
ing on the input data. Consequently, there is a distribution
of execution times (et) per computation phase. Communi-
cation primitives are inserted between computation phases
to carry out message transference between tasks in order
to interchange information or to create synchronization be-
tween tasks. Thus, the set of computation phases of a pro-
gram form a directed acyclic graph (DAG) with a partial
order between them. In this way, we are able to charac-
terize message-passing programs with any task interaction
pattern.

Table 1. Distribution execution times for com-
putation phases of task T0.

(a) Phase A

Value Frequency
80 45

150 5
220 5
312 45

(b) Phase B

Value Frequency
430 95
433 5

(c) Phase C

Value Frequency
180 80
181 20

(d) Phase D

Value Frequency
62 100

Fig. 1(a) shows the NDTFG graph of a program with
three tasks: T0, T1, and T2. Analyzing task T0, it has four
computation phases A, B, C, and D where each one follows
the distribution of execution times shown in Table 1(a), Ta-

ble 1(b), Table 1(c), and Table 1(d) respectively. There are
two send communications of volume 40 and 200 to tasks
T1 and T2 respectively, and two receive communications
of volume 40 and 200 from tasks T1 and T2 respectively.
The remaining tasks with their computation phases can be
analyzed in a similar way.

2.2 Reducing of the degree of non-
determinism

In order to reduce the degree of non-determinism in each
computation phase of a given NDTFG, a tolerance parame-
ter α is established for each distribution of execution times
(et1, ..., etn). The execution times belonging to a compu-
tation phase, p(etj), are said to be almost identical if they
satisfy the following condition:

| n
max
j=1

p(etj) −
n

min
j=1

p(etj)| ≤ α

If the execution times belonging to a computation phase
turn out to be almost identical, the arithmetic mean is com-
puted so that the phase becomes deterministic.

Following the previous example, if the tolerance param-
eter for execution times α has the value of 5 units, every
computation phase with the exception of A becomes deter-
ministic. Fig. 1(b) shows the reductions of the degree of
non-determinism for the NDTFG of Fig. 1(a).

2.3 Obtaining a minimum graph

To select the representative times of computation phases
that are still non-deterministic, the execution times are
grouped into classes or categories. As far as possible, the
classes should be of equal length, so that the numbers falling
into different classes are comparable [19]. The number of
classes (nc) that are used to classify raw data depends on
the total number of observations in this one. If the number
of observations is relatively small (less than 500), the num-
ber of classes for use will be near to five. If a substantial
amount of data exists, the number of classes must be be-
tween eight and twelve [5]. In order to create the classes
with their boundaries, the lower and the higher execution
times (etl and eth respectively) for each non-deterministic
computation phase are computed. After that, p[etl, eth] is
divided into a logical number of classes:

p[etl, eth] = ∪nc
i=1pci

= ∪nc−1
i=1 p[etli , ethi

)∪p[etlnc
, ethnc

]

where pci
denotes the i-class of the p-computation phase,

etli the lower execution time of pci
, ethi

the higher execu-
tion time of pci

, etlnc
the lower execution time of pcnc

, and
ethnc

the higher execution time of pcnc
.

In order to obtain the grouped frequency distribution, ev-
ery execution time (et1, ..., etn) belonging to the analyzed

phase is assigned to one class according to the following
expression
{

etj ∈ pci
iff 1 ≤ i ≤ nc − 1 ∧ etli ≤ etj < ethi

etj ∈ pcnc
iff etlnc

≤ etj ≤ ethnc

The number of times bearing a variate value falling into
a given class divided by the total frequency is the rela-
tive frequency (rf gives the percentage of values falling
into that class). The class with the greatest relative fre-
quency (rf max) and the class or classes whose relative fre-
quency (rf i) differs by less than (100/nc)% with respect to
the one with the greatest relative frequency, are chosen to
conform the representative execution times [rf max−rf i <
(100/nc)%]. Therefore, the least probable cases are set
aside.

If there are selected classes that have a common bound,
these are reorganized into a bigger class. Then, the arith-
metic mean is calculated for each chosen class. This
value(s) represent(s) the execution time(s) of the computa-
tion phase analyzed.

Once the process for all the non-deterministic compu-
tation phases has been performed, the task graph with the
representative values is the minimum NDTFG. This can be
a deterministic or a non-deterministic graph depending on
the amount of representative values per phase.

Following the above example, it is assumed that the non-
deterministic computation phase A of task T0 has 100 exe-
cution times in accordance with Table 1(a). A logical num-
ber of classes to manage is 4 due to the number of obser-
vations. Once the classes are defined, every execution time
is assigned to its corresponding class, and then the relative
frequency for each class is computed.

pc1 = [80, 138) rfpc1
= 45/100

pc2 = [138, 196) rfpc2
= 5/100

pc3 = [196, 254) rfpc3
= 5/100

pc4 = [254, 312] rfpc4
= 45/100

Classes pc1 and pc4 have the greatest relative frequen-
cies (rf pc1

= 45/100, rf pc4
= 45/100). The represen-

tative execution times of the analyzed computation phases
are the arithmetic mean of pc1 and pc4 , that is 80 and 312
respectively. After that, phase A continues to be a non-
deterministic phase because two values represent the raw
data. Thus, the two TFGs with these two computation times
for phase A will be generated in order to carry out subse-
quent predictions, see Fig. 2(a) and Fig. 2(b).

2.4 Obtaining Gantt charts and predict-
ing execution time

For each obtained TFG, their corresponding Gantt chart
is derived with its final execution time (both associated to

(a) (b)

Figure 2. TFGs where the computation phase
A has (a) 80 and (b) 312 time units.

an occurrence probability3), based on a specific mapping of
tasks to processors. The task mapping process and the sub-
sequent execution to compute the corresponding runtime is
carried out with the simulation tool pMAP (predicting the
best Mapping of Parallel Applications). This is a generic
tool that simulates the execution of message-passing pro-
grams on distributed systems. The evaluation of pMAP and
the implementation details of their internal modules are out
of the scope of this paper and they can be found in [10].

To carry out the mapping process inside pMAP, it is ne-
cessary to deduce the task graph model that captures the
following characteristics of application’s behavior: (a) the
computation time associated to each task, (b) the commu-
nication volume of the data to be transferred between adja-
cent tasks and, (c) the maximum percentage of parallel ex-
ecution that adjacent tasks can achieve in accordance with
their dependencies. This percentage of parallelism is cal-
culated without taking communication costs into account.
Starting from the TFG graph of the application, this infor-
mation is captured in a task graph model called TTIG (Tem-
poral Task Interaction Graph), that is a directed graph where
nodes represent the tasks with their computation time and
arcs indicate directed communications established between
neighboring tasks with the communication volume and the
degree of parallelism. The degree of parallelism is a nor-
malized index belonging to the [0,1] interval.

The TTIG models corresponding to the TFG graphs of
Fig. 2(a) and Fig. 2(b) are those shown in Fig. 3(a) and
Fig. 3(b) respectively. It can be observed in both TTIG’s
that the computation times of task T0 are different due to
the difference in the computation time of computation phase
A. These different computation times also affect the degree

3The probability is the proportion of values in each class, also called
relative frequency.

of parallelism of task T0 with their adjacent tasks that be-
come different. According to the degree of parallelism task
T2 has to be executed sequentially with T1 (the degree of
parallelism is 0), but it exhibits a great ability of concur-
rency with T0 (the degree of parallelism is 0.97 and 1 re-
spectively).

(a) (b)

Figure 3. TTIGs considering the phase A with
(a) 80 and (b) 312 time units.

The mapping strategy developed for the TTIG model is
called MATE (Mapping Algorithm based on Task dEpen-
dencies) [18]. The objective of MATE is the minimization
of the expected execution time by properly exploiting task
parallelism. For this purpose, the algorithm gives priority to
the allocation of the most dependent tasks (i.e. those with
less parallelism and more communication) to the same pro-
cessor, while the least dependent tasks are assigned to dis-
tinct processors, in an attempt to exploit their parallelism
and, at the same time, to balance load.

The mapping generated by MATE using two proces-
sors (P0, P1) will be P0:(T0) and P1:(T1, T2) for both
TTIGs. Fig. 4(a) and Fig. 4(b) show the runtime simulation
generated by pMAP for both TTIGs with their correspond-
ing mapping. This gives a predicted execution time for the
first case of 2542 time units with a probability of 0.45 while
for the second case is 2748 time units, also with a probabil-
ity of 0.45.

Figure 4. Gantt chart considering phase A
with (a) 80 and (b) 312 time units.

3 A case study

This section analyses, step by step, a data-dependent ar-
terial structure detection application. Intravascular Ultra-
sound (IVUS) images, Fig. 5(a), feed development of im-
age processing techniques by addressing the detection of
such arterial structures as tunica adventitia, tunica media,
tunica intima, and lumen, Fig. 5(b). Tissue characteriza-
tion in IVUS images is a crucial problem for physicians
in the study of vascular diseases. It is an also an arduous
job that requires specialists to manually identify tissues and
properly visualise tissue. IVUS imaging is a well-suited
visualization technique for such tasks as it provides a cross-
sectional cut of the coronary vessel, revealing its histologi-
cal properties and tissue organization [17].

(a) (b)

Figure 5. (a) Intravascular Ultrasound image.
(b) Tissue characterization.

Due to time consumption and the subjectivity of the clas-
sification depending on each specialist, there is an increas-
ing interest among the medical community in using auto-
matic tissue characterization procedures. These automatic
procedures are time-critical, and consequently should pro-
vide answers in a minimum time.

The main stages involved in the process are briefly de-
scribed below, Table 3 summarizes the different functions
that are performed during each of these stages (each func-
tion conforms a different task), and their dependencies are
shown in the task graph model of Fig. 6.

Characterization of the zone of interest Due to the fact
that the original image of adventitia is circular, it is
transformed to polar coordinates. By means of a dif-
fusion method, the image is denoised and the target
structure is enhanced.

Characterization of adventitia The three following filters
are applied to the image: horizontal edges, radial stan-
dard deviation and accumulative radial mean. The
three filtered images provide the necessary information
to discriminate between four different sets: adventitia,
calcium, fibrous structures, and the remaining pixels.

Anisotropic contour closing (ACC) The previous step
characterizes the adventitia with a collection of

Table 2. Task execution times for ten input datasets (in sec.).
Task Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 Pat7 Pat8 Pat9 Pat10
1.a 40.32 39.74 39.74 42.43 39.13 38.25 41.42 40.68 34.80 42.18
1.b 82.89 119.78 71.91 81.20 65.35 41.52 86.74 64.15 38.97 65.84
1.c 22.20 22.53 22.18 23.66 25.68 21.44 22.64 22.70 20.82 23.70
1.d 507.03 537.03 517.08 628.86 586.17 664.61 467.02 3078.59 3562.78 633.52

2.a.1 518.10 526.65 523.30 511.00 509.60 515.10 508.20 527.00 507.90 511.50
2.a.2 514.45 515.35 513.05 517.50 522.15 527.55 517.20 516.60 516.75 518.85
2.a.3 519.95 510.65 515.90 514.55 505.55 522.10 504.00 510.60 513.90 517.05
2.b.1 517.20 511.00 503.45 510.90 502.70 505.90 519.75 515.90 516.30 510.90
2.b.2 523.70 512.80 519.60 504.95 516.80 514.40 519.45 515.65 517.35 514.85
2.c 523.90 518.20 518.15 518.05 506.25 515.75 516.75 517.25 511.75 513.85
3 196.38 144.18 106.57 145.92 146.63 150.12 124.67 117.07 136.41 116.00
4 165.34 174.63 154.98 173.54 169.88 176.88 176.38 171.90 165.67 170.93

Total 4131.45 4132.54 4005.90 4172.56 4095.90 4193.63 4004.23 5058.80 5262.00 4139.17

fragmented curve segments. These segments are
interpolated using ACC to join them.

Snake Since the above interpolation process still presents
gaps in the side branches and calcium sectors, a para-
metric B-snake is used toward the ACC closure in or-
der to close it and obtain a compact explicit represen-
tation. Finally, the identified adventitia is returned to
cartesian coordinates to visualize its original circular
shape.

Table 3. Main steps of the application.
1. Characterization of the interest zone

1.a. Image center of masses (CM) computation
1.b. CM recalculation for straightening the adventitia
1.c. Band computation
1.d. Diffusion of a band of interest

2. Characterization of adventitia
2.a.1. Edge features
2.a.2. Variance features
2.a.3. Mean features
2.b.1. Adventitia mask
2.b.2. Calcium mask
2.c. 3D continuity selection (area) of the final mask

3. ACC & 3D continuity selection of ACC surface
4. Snake

1.a 1.b 1.c 1.d

2.a.1

2.a.2

2.a.3

3

2.b.1

2.b.2 2.c

4

Figure 6. Task graph model.

4 Experimental results

The arterial structure detection application over 100 in-
put datasets of 200 frames each extracted from 10 different
patients has been evaluated. The sizes are representative
of automatic tissue characterization procedures. One item
of input data per patient (Pat) was randomly selected and
Table 2 shows its tasks execution times expressed in sec-
onds. Execution times were obtained using a Pentium IV,
3.2 GHz., 1 GB RAM. In order to present results, these ten
datasets were considered ten times conforming a total of
100 input datasets.

Following the method described in Section 2, the degree
of non-determinism of the NDTFG arterial structure detec-
tion application has to be reduced. In order to do that, a set
of tolerance parameters (10, 20 sec.) is established for some
phases of calculation. Table 4 shows the tasks that have be-
come deterministic along with their arithmetic mean.

Table 4. Tasks becoming deterministic.
Task Tolerance Became Arithmetic

parameter deterministic? mean (sec.)
1.a 10 Y 40
1.b 10 N –
1.c 10 Y 23
1.d 20 N –

2.a.1 20 Y 516
2.a.2 20 Y 518
2.a.3 20 Y 518
2.b.1 20 Y 513
2.b.2 20 Y 511
2.c 20 Y 516
3 10 N –
4 10 N –

Table 5. Values for non-deterministic tasks (in sec.).
Task LBound HBound Frequency class Methodology

p[etl, eth] pc1 pc2 pc3 pc4 mean
1.b 38.97 119.78 � 20 � 40 � 30 10 67
1.d 467.02 3562.78 � 80 0 0 20 568
3 106.57 196.38 � 40 � 50 0 10 132
4 154.98 176.88 10 20 20 � 50 175

For each non-deterministic task, the lower and higher
execution times were calculated. Due to the amount of
input data, each set of execution times was divided into
four classes (nc = 4) in order to reduce the number of
empty classes and, at the same time, have enough sam-
ples per class, see Table 5. Once each execution time has
been assigned to one class, the class with the greatest rel-
ative frequency and also the following class whose relative
frequency differs by less than 25% from the one with the
greatest relative frequency, were chosen to conform the rep-
resentative execution time. The chosen classes per phase
(labelled with (�) in Table 5) were reorganized into bigger
classes, the arithmetic mean was then calculated and thus
a minimum NDTFG was obtained. In particular, this mini-
mum NDTFG turned out to be a deterministic TFG.

From the TFG, a TTIG with degree of parallelism 0 be-
tween tasks was obtained. Then, a Gantt chart was derived
along with the final execution time using the pMAP sim-
ulation tool for one, two, and three processors. No more
that three processors were considered, because the maxi-
mum number of task that are able to run in parallel are three
(tasks 2.a.1, 2.a.2, and 2.a.3). The predicted execution time
values were 4095, 3066, and 2555 seconds, respectively.
For this experiment, the system was modelled in pMAP as
a set of homogeneous nodes connected by a 100 Mbps fast
Ethernet. Additionally, a round-robin scheme with a quan-
tum of 200 ms was applied for the internal CPU scheduling
in the simulation process. In these conditions, the execution
behavior in a current PC cluster was simulated.

It is important to note the impact of parallelizing the ar-
terial structure detection application. Using one processor,
the application requires 4095 seconds whereas using three
processors it would take 2555 seconds (approx. 38% less).
Also, work with more processors would not be useful in this
case. These analysis were made without the need of imple-
mentation.

On the other hand, the arithmetic mean was computed
for non-deterministic tasks 1.b, 1.d, 3, and 4 to conform a
determinist TFG (72, 1118, 138, and 170 seconds respec-
tively). A Gantt chart and the final execution time using
pMAP simulation tool for one, two, and three processors
were obtained. The predicted execution time values were
4651, 3622, and 3111 seconds, respectively.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Patients (10 dataset per patient)
E

rr
or

 (
%

)

Arithmetic mean
Methodology mean

Figure 7. Error using one processor.

4.1 Evaluation analysis

Fig. 7 shows a comparison between the obtained error
in predicted execution time for one processor using the pre-
sented methodology and the arithmetic mean. The follow-
ing expressions were used to compute the errors

%Err =

∣∣∣ TT able 2∗100
TMethodology

− 100
∣∣∣

∣∣∣ TT able 2∗100
TArithmeticMean

− 100
∣∣∣

where T denotes the total execution time.
Analyzing the picture, the error in predicted execution

time is near 0% in the presented methodology (for 80% of
cases) while the error is around 10% using the arithmetic
mean. In 20% of the remaining cases, the error grows con-
siderably as much in terms of the methodology mean as for
the arithmetic mean. This behavior is expected because the
execution times of task 1.d for patients 8 and 9 are not sim-
ilar to the execution times of the other patients, as high-
lighted in Table 2. Notice that the presented methodology
only chooses the most representative values and ignores the
rest.

5 Conclusions

This paper introduces a new prediction methodology that
estimates the performance of data-dependent parallel appli-
cations. It is important to understand that the parallel per-
formance achieved depends on several factors, including the
application, the multiprocessor architecture, the data distri-
bution, and also the methods used for partitioning the appli-
cation and mapping its components onto the architecture.

The proposed approach starts with the high-level char-
acterization of the data-dependent application. It then pro-
ceeds through different steps aimed at identifying the most
representative values of behavior in order to find a suitable
prediction for the most probable execution time. Also, this
makes it possible to evaluate an application without the need
of implementation.

A real data-dependent application together with a set of
genuine input data is used to apply the methodology and
also to understand the suitability or otherwise of paralleling
before implementation.

The results show that it is unreasonable to ignore the
variability in execution times. Using a simple approach, a
non-deterministic model could be worked as a set of deter-
ministic models in order to predict the performance of an
application. The most representative values are identified in
order to make better predictions.

This study has raised certain issues that it would be in-
teresting to address. Developing an extension of NDTFG to
handle variability in communication events is the subject of
our current work. It would also be interesting to analyze a
parallel-pipeline model of the presented application.

References

[1] V. S. Adve and M. K. Vernon. Parallel program performance
prediction using deterministic task graph analysis. ACM
Transactions on Computer Systems., 22 N. 1:94–136, 2004.

[2] K. Atif and B. Plateau. Stochastic automata networks for
modelling parallel systems. IEEE Transactions on Software
Engineering, 17:1093–1108, 1991.

[3] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluating
the performance of skeleton-based high level parallel pro-
grams. LNCS, 3038:289–296, 2004.

[4] J. Bergstra. Handbook of process algebra. Amsterdam: El-
sevier Science Ltd., 2001.

[5] G. Canavos. Probabilidad y Estadı́stica. McGraw Hill,
1991.

[6] E. Cesar, J. Sorribes, and E. Luque. Modeling pipeline ap-
plications in poetries. LNCS, 3648:83–92, 2005.

[7] P. Fritzsche, J. Fernández, A. Ripoll, I. Garcı́a, and
E. Luque. A performance prediction for iterative reconstruc-
tion techniques on tomography. 13th Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing
(PDP 2005), Lugano, Switzerland. IEEE Computer Society,
pages 92–99, 2005.

[8] H. Gautama. A probabilistic approach to symbolic perfor-
mance modeling of parallel systems. PhD thesis, Technische
Universiteit Delft, The Netherlands., 2004.

[9] D. Gil, A. Hernandez, A. Carol, O. Rodriguez, and
P. Radeva. A deterministic-statistic adventitia detection in
ivus images. Springer-Verlag Berlin Heidelberg. LNCS.,
3504:65–74, 2005.

[10] F. Guirado, A. Ripoll, C. Roig, and E. Luque. Perfor-
mance prediction using an application-oriented mapping
tool. 12th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP 2004), A Coruna,
Spain. IEEE Computer Society, pages 184–191, 2004.

[11] P. Heidelberger and K. Trivedi. Analytic queueing models
for programs with internal concurrency. IEEE Transaction
on Computers, 32:73–82, 1983.

[12] K. Jensen. Coloured petri nets: A high-level language for
system design and analysis. High level Petri Nets: The-
ory and Application (K. Jensen and G. Rozenberg, eds.),
Springer Verlag:44–122, 1991.

[13] H. Jonkers. Performance analysis of parallel systems: A hy-
brid approach. PhD thesis, Delft University of Technology,
1995.

[14] A. Morajko, E. Cesar, P. Caymes-Scutari, T. Margalef, and
E. Luque. Automatic tuning of master-worker applications.
LNCS, 3648:95–103, 2005.

[15] M. Parashar and S. Hariri. Interpretive performance predic-
tion for parallel application development. Journal of Paral-
lel and Distributed Computing, 60:17–47, 2004.

[16] L. Peterson. Petri net theory and the modelling of systems.
Prentice-Hall, Englewood Cli s, NJ, USA., 1981.

[17] O. Pujol and P. Radeva. Supervised texture classification for
intravascular tissue characterization. Handbook of Medical
Imaging. Kluwer Academic/Plenum Publishers, 2004.

[18] C. Roig, A. Ripoll, M. Senar, F. Guirado, and E. Luque. A
new model for static mapping of parallel applications with
task and data parallelism. IEEE Proc. of IPDPS-2002 Conf.,
0-7695-1573-8, 2002.

[19] A. Stuart and J. Ord. Kendall’s Advanced Theory of Statis-
tics. Vol. 1. New York: Halsted Press, 6th ed., 1994.

[20] M. Uysal, T. Kurc, A. Sussman, and J. Saltz. A perfor-
mance prediction framework for data intensive applications
on large scale parallel machines. LNCS, 1511:243–258,
1998.

[21] A. van Gemund. Performance modeling of parallel systems.
PhD thesis, Delft University Press, 1996.

[22] M. Vernon, J. Zahorjan, and E. D. Lazowska. A compari-
son of performance petri nets and queueing network models.
Performance Evaluation, 7:1–135, 1987.

