|
Esmitt Ramirez, Carles Sanchez, & Debora Gil. (2019). "Localizing Pulmonary Lesions Using Fuzzy Deep Learning " In 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 290–294).
Abstract: The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.
|
|
|
Debora Gil, Jaume Garcia, Aura Hernandez-Sabate, & Enric Marti. (2010). "Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy " In 8th Medical Imaging (Vol. 7623, 304). SPIE.
Abstract: Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
|
|
|
Debora Gil, Agnes Borras, Sergio Vera, & Miguel Angel Gonzalez Ballester. (2013). "A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 334–343). Springer Berlin Heidelberg.
Abstract: Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.
Keywords: Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation
|
|
|
Carles Sanchez, Miguel Viñas, Coen Antens, Agnes Borras, & Debora Gil. (2018). "Back to Front Architecture for Diagnosis as a Service " In 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 343–346).
Abstract: Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.
|
|
|
Patricia Marquez, Debora Gil, Aura Hernandez-Sabate, & Daniel Kondermann. (2013). "When Is A Confidence Measure Good Enough? " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 344–353). Springer Link.
Abstract: Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
Keywords: Optical flow, confidence measure, performance evaluation
|
|
|
C. Santa-Marta, Jaume Garcia, A. Bajo, J.J. Vaquero, M. Ledesma-Carbayo, & Debora Gil. (2008)." Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images" In S. A. Roberto hornero (Ed.), XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica (352–353).
Abstract: It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.
|
|
|
Debora Gil, Petia Radeva, Jordi Saludes, & J. Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach " In International Conference on Pattern Recognition (Vol. 4, pp. 352–355).
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Carles Sanchez, Antonio Esteban Lansaque, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2017). "Towards a Videobronchoscopy Localization System from Airway Centre Tracking " In 12th International Conference on Computer Vision Theory and Applications (pp. 352–359).
Abstract: Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Keywords: Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
|
|
|
Marta Ligero, Guillermo Torres, Carles Sanchez, Katerine Diaz, Raquel Perez, & Debora Gil. (2019). "Selection of Radiomics Features based on their Reproducibility " In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 403–408).
Abstract: Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.
|
|
|
Francesco Brughi, Debora Gil, Llorenç Badiella, Eva Jove Casabella, & Oriol Ramos Terrades. (2014). "Exploring the impact of inter-query variability on the performance of retrieval systems " In 11th International Conference on Image Analysis and Recognition (Vol. 8814, 413–420). Springer International Publishing.
Abstract: This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.
|
|