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Abstract

Intravascular ultrasound images represent a unique
tool to analyze the morphology of arteries and vessels
(plaques, restenosis, etc). The poor quality of these images
makes unsupervised segmentation based on traditional
segmentation algorithms (such as edge or ridge/valley
detection) fail to achieve the expected results. In this paper
we present a probabilistic flexible template to separate
different regions in the image. In particular, we use elliptic
templates to model and detect the shape of the vessel
inner wall in IVUS images. We present the results of
successful segmentation obtained from patients undergoing
stent treatment. A physician team has validated these
results.

1. Introduction

1.1. Intravascular ultrasound sequences

Intravascular Ultrasound (IVUS) imaging is a relatively
new medical tool which consists of placing a catheter, with
a sensor on its tip, inside the artery. This sensor rotates as it
emits pulses of ultrasound. When it receives the echoes the
tissues return, it generates an image like the one shown in
figure 1. Dark zones correspond to the artery lumen, light
zones to the artery wall and the brightest parts with a dark
shadow behind, to calcium plaque.The circle in the center
of the image is the catheter. The sensor can be seen in some
images as a bright spot beside the catheter followed by a
dark shadow.

1.2. Previous research

Due to the amount of information they carry ([1], [2]),
IVUS images are increasing their role in the diagnosis
and treatment of several diseases. Manual segmentation
is slow and lacks of objectivity. Consequently, automatic
segmentation and tracking of the vessel inner wall in IVUS
images has been approached in several recent works ([3],
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Figure 1. Slice of artery obtained by intravascular
ultrasound

[4]). The poor quality of the images suggests the use
of techniques such as probabilities [5] or fuzzy logic [3]
guiding an active contour to adjust the inner wall. F.
Escolano proposed in [3] the use of circular deformable
models guided by a function which had an added term to
cope with noise. The rigidity of the shape prevented the
template from being mislead by dark shadows.

In this paper, we suggest the use of elliptic templates
guided by the global statistics of the image. On one hand,
the use of probabilities is a good way of reducing the impact
of noise. On the other, using such a restricted deformable
shape makes the model more stable under the presence of
artifacts such as shadows due to calcium plaque and the
sensor. We use an elliptic shape instead of a circle to
better adjust the model to the inner wall and because this
shape also gives a direct estimation of the maximum and
minimum diameters of the lumen. The only assumption
made is that lumen and tissue appear in the image as gray-
level pixels generated by two distinct normal distributions.

2. Description of the method

An image can be thought of as a function, i(x; y), of two
variables. Let us suppose that the origin of our coordinate
system is at the center of the image. Notice that this center



coincides with the catheter’s center.
The key idea of the method is to compute a first

approximation of an elliptical model which has a high
probability of being close to the inner wall. This initial
ellipse is obtained by means of a binarized image obtained
with a fixed threshold. We, then, refine this ellipse using an
adaptive threshold computed for each image. The refining
algorithm is based on the search of a minimum of a cost
function that discriminates different tissues and uses the
simplex method [7].

2.1. The initialization problem

As in any iterative procedure we need to give an initial
ellipse for the first frame of the sequence to be analyzed. It
is well known that a bad initial point could lead the iterative
method to a wrong minimum.

For the initialization process we work with the polar
transform of the image (see figure 3), which will be also
denoted by i.

Figure 2. Frame of an IVUS sequence

Figure 3. polar transform of the IVUS of figure

We consider the image of the means im. That is, for each
pixel (x0; y0),

im(x0; y0) =
1

25

X
(x;y)2B(x0;y0)

i(x; y)

Where B(x0;y0) is a square neighborhood (of 5�5 in our
case) centered at (x0; y0).

A statistical test on the blood’s gray-level mean (�) of
the type: H0 : � � �0, shows with a significant level of
0:05 that this mean � is under a fixed threshold �0 (which
for images taken at 40 Mhz is �0 = 0:23). Notice that this
threshold depends on the frequency of the ultrasonic signal.
The higher the frequency is, the more details one gets in the
image. This means that blood is detected in the image as a
sort of texture, for instance in images at 40 Mhz. This fact
makes the threshold �0 increase. One should comment that
blood-pixels above this fixed threshold are mainly due to
blood backscatter. Since this phenomena appears near the
inner wall, the center of our initial guess is close to the inner
wall barycenter. We will see in the next section that this fact
is relevant in the refinement process, which justifies the use
of a fixed threshold in the first stage.

We consider the binary image, I , associated to the
threshold �0, that is

I(x; y) =

�
1 ; if i(x; y) � �0

0 ; otherwise

Figure 4. Edges of the binary image

We then apply ASF (Alternative Sequential Filter) on I

with a 3�3 square structural element and compute its edges
(figure 4). Afterwards, we take, for each angle, the edge of
minimum radius (figure 5) . And finally, we eliminate those
points lying on the sensor and discontinuities (see figure 6)
.

Figure 5. Set of points selected by minimum radius



Figure 6. Final set of points to be approximated by a circle

Then, the circle approximating the set of points obtained
gives us an ellipse close enough to the inner wall as to use
it as initial point for the iterative algorithm.

For the rest of the sequence, we take as initial ellipse the
one segmenting the lumen of the previous frame.

2.2. Improvement of the initial ellipse

The method we propose is based on the assumption that
lumen and tissue appear in the image as gray-level pixels
generated by two distinct normal distributions. Let � be the
value that best separates both distributions. We compute
it automatically by means of the method described in [6].
Notice that since the outer part of any IVUS is completely
dark, dealing with the whole of the image may induce some
errors. Thus, the first step is to select a region of interest in
the image. We do it automatically as follows. Denote by D r

the disk of radius r centered at the initial ellipse and by P

the probability of having a dark gray-level inside D r . To be
precise, we consider the function g(r) = P (i(x; y) < 0:2).
If one takes disks of increasing radius, the global minimum
of g indicates the point we stop having significant echoes.
This minimum is highly dependent on the center of the
disks D r , especially in images with an eccentric catheter
position. From now on, whenever we talk about the image
we will be thinking of this selected part.

Once this parameter � has been fixed, we proceed to the
deformation of the ellipse.

Let Eint denote the interior of the deformable ellipse
and Eext its complement in the image. Then, the ellipse
segmenting the lumen is the global maximum of the
function:

F =

R
Eint

I(x; y)dxdy

Area of Eint
+ (1�

R
Eext

I(x; y)dxdy

Area of Eext
) (1)

where

I(x; y) =

�
1 ; if i(x; y) � �

0 ; otherwise

The first term represents the probability that the gray
level of the inner points of the ellipse belong to the
probabilistic distribution corresponding to the lumen. The
second one represents the probability of having an outside

gray level belonging to the distribution which corresponds
to the tissue.

Since an ellipse is defined by 5 parameters (a; b; �; x0; y0)
(see figure 7),the problem reduces to maximize a function,
F = F (a; b; �; x0; y0), of 5 variables. Its maximum is
obtained by the simplex method.

Figure 7. representation of the five parameters of an ellipse

3. Results

The method has been used to segment and track the
inner wall of coronary arteries extracted from IVUS made
to patients undergoing stent treatment. The sequences
were obtained by pull-back at a speed of 0:5 mm/sec and
acquisition rate of 25 frames/sec. The digitalized images
were 384�288. We have tested the method on a total set of
1600 frames extracted from 8 different patients (sequences
of 200 frames per pacient).The initialization process was
run every 50 frames.

We use the standard L2-norm for functions to estimate
the relative error of our approach. That is, if E is our
ellipse and  (computed by manual segmentation) is the
curve segmenting the inner wall, and both curves are
parameterized by the angle, then the relative error made is

E2 = Error(E ; ) =

R 2�
0
kE � k2dtR 2�

0
kk2dt

That means that the real curve is within (1 � E2)E as it
illustrates figure 8

Figure 8. Inner wall lies somewhere inside the stripped area

We have also computed the relative error of the cross-
sectional area:

EA =
Alumen �AE

Alumen



The results obtained have been validated by a medical
team. According to experts, if the lumen is not completely
obstructed by proliferation, the L2-relative error made in
77; 4% of the total number of frames is less than 0.1. The
mean L2-error is 0:0571 � 0:98 and the mean area error
of the lumen is 0:15 � 0:1. The failures were due to the
initialization process. The main source of errors in the
successful detections were mainly due to blood backscatter
(2/3 of the errors approx.) and to bad detection of soft
plaque.

In the case of severe restenosis, the final ellipse adapts to
the stent. This is due to the way we compute the particular
threshold for each image ([6]).

Figure 9. Error in %

Figure 10. First approach and final ellipse

4. Conclusions and future developments

The method presented in this paper introduces a simple
global probabilistic model which behaves well in low
quality images. The method detects the inner wall in 80% of
the frames when severe restenosis is not observed. We are
studying if the problem can be overcome considering gray-
level pixels generated by three normal distributions instead
of two and taking into account other features such as spatial
and temporal coherence in the sequence.

Tracking the inner wall in IVUS sequences is one of
the first steps to obtain a faithful 3-D reconstruction of
the coronary tree. Furthermore, if one succeeded in
distinguishing between blood, tissue and proliferation, one
would have a way of determining the grade of occlusion
the artery suffers and, thus, the volume of blood that flows
through it. All this would help to decide whether it is
worthy placing an stent or not.

Besides, modeling the inner and outer wall of vessels by
ellipses can help to estimate the vessel movement. On a
first approach one models this movement as the best affine
transformation that takes one frame to the next one. An
ellipse contains all the parameters involved in an affine
transformation, that is, the scaling terms a, b, the translation
(x0; y0) and the angle of rotation �. Therefore, comparing
2 consecutive ellipses segmenting the outer wall would give
us a rough approximation of the affine transformation. The
movement appreciated in an IVUS sequence is directly
related to the heart movement and there is the hypothesis
that heart and artery dynamics may be a way of evaluating
heart tissue damage after a coronary stroke.

Our immediate work will be aimed at improving the
segmenting algorithm. Further on we will focus on both
3-D artery reconstruction and estimation of heart dynamics.

References

[1] F. De Man, I. De Scheerder, M.C. Herregods, J. Piessens and
H. De Geest Role of Intravascular Ultrasound in Coronary
Artery Disease: A new gold standart? Beyond Angiography.
Intravascular Ultrasound: State-Of-The-Art XX Congres of
the ESC, Vol 1 (August 1998)

[2] D. Hausmann, Andre J.S. Lundkvist, Guy Friedrich,
Krishnankutty Sudhir, Peter J. Fitzgerald and Paul G.
Yock Lumen and Plaque Shape in Atherosclerotic Coronary
Arteries Assesed by In Vivo Intracoronary Ultrasound
Beyond Angiography. Intravascular Ultrasound: State-Of-
The-Art XX Congres of the ESC, Vol 1 (August 1998)

[3] F. Escolano, M. Cazorla, D. Gallardo and R. Rizo
Deformable Templates for Plaque Thickness Estimation of
Intravascular Ultrasound Sequences Pattern Recognition
and Image Analysis. Preprints of the VII National Symp. on
Patt. Recog. and Im. An.Vol 1 (April 1997)

[4] B. Solaiman, R. Debon, F. Pipelier, J.-M. Cauvin and C.
Roux Information Fusion:Application to Data and Model
Fusion for Ultrasound Image Segmentation. IEEE Trans. on
Bio. Eng., Vol. 46, No 10, pp 1171-1175 (October 1999)

[5] Song Chun Zhu, Alan Yuille, Region Competition:Unifying
Snakes, Region Growing, and Bayes/MDL for Multiband
Image Segmentation. IEEE Trans. Pattern An. Mach.
Intelligence, Vol. 18, No 9 , ( September 1996).

[6] Nobuyuki Otsu A Threshold Selection Method from
Gray-Level Histograms. IEEE Trans. on Sys. Man and
Cybernetics, Vol. SMC-9,No 1, pp 62-65, (January 1979)

[7] R. Fletcher Practical Methods of Optimization John Wiley
and Sons

Address for correspondence:

Debora Gil
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