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Abstract—Dimensionality reduction is key to alleviate ma-
chine learning artifacts in clinical applications with Small
Sample Size (SSS) unbalanced datasets. Existing methods rely
on either the probabilistic distribution of training data or
the discriminant power of the reduced space, disregarding the
impact of repeatability and uncertainty in features.

In the present study is proposed the use of reproducibility
of radiomics features to select features with high inter-class
correlation coefficient (ICC). The reproducibility includes the
variability introduced in the image acquisition, like medical
scans acquisition parameters and convolution kernels, that
affects intensity-based features and tumor annotations made
by physicians, that influences morphological descriptors of the
lesion.

For the reproducibility of radiomics features three studies
were conducted on cases collected at Vall Hebron Oncology
Institute (VHIO) on responders to oncology treatment. The
studies focused on the variability due to the convolution kernel,
image acquisition parameters, and the inter-observer lesion
identification. The features selected were those features with
a ICC higher than 0.7 in the three studies.

The selected features based on reproducibility were evaluated
for lesion malignancy classification using a different database.
Results show better performance compared to several state-
of-the-art methods including Principal Component Analysis
(PCA), Kernel Discriminant Analysis via QR decomposition
(KDAQR), LASSO, and an own built Convolutional Neural
Network.

Index Terms—Feature Selection, Reproducibility, Radiomics

I. INTRODUCTION

Radiomics is a recent discipline that uses sophisticated
image analysis and machine learning tools to obtain quan-
titative image-based features (signatures) that correlate to
final diagnosis and treatment outcome [1]. Like most clinical
applications, radiomics must deal with Small Sample Size
(SSS) and minority classes in possibly unbalanced settings.
Most matching learning methods are ill-posed under such
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conditions and might drop their performance [2]. Dimen-
sionality reduction and automatic feature selection tools have
been crucial to mitigate the curse of dimensionality and SSS
inherent to classification.

Principal Component Analysis (PCA) is an unsupervised
method that uses a linear orthogonal transformation to project
features into a dimensionally reduced set of uncorrelated
variables called principal components. This technique trans-
forms the data in a reduced dimension but does not perform
feature selection. The main problem of this technique is
the loss of interpretation of the variables [3]. Partial Least
Square - Discriminant Analysis (PLS-DA) PLS-DA is a su-
pervised classification method based on Partial Least Squares
Regression and Linear Discriminant Analysis. In this case
the technique performs both dimensionality reduction and
classification. The dimensionality reduction is similar to
PCA but the new components are created by projecting the
variables and the outcome into a new space based on linear
regression models. The variables of the new reduced subspace
called latent variables can predict the outcome and, unlike
PCA, there is an interpretation of the projected variables
given that the importance of the original variables in the new
subspace is quantified [4].

Kernel Trick (KT) has been widely used to extend the
above linear methods to the nonlinear case. Kernel methods
have aroused great interest in the last decade since they
are universal nonlinear approximations and facilitate solv-
ing complex problems where the samples are not linearly
separable as is the case of many machine learning and
pattern recognition application. Kernel methods use nonlinear
mapping to project samples from the original space to a
feature space where the samples are expected to be easily
separable using linear approaches [5].

A variety of subspace-based kernel methods have been
proposed, including Kernel Principal Component Analysis
(KPCA) and Kernel Discriminant Analysis (KDA) [6]. A
Kernel-Independent Component Analysis (KICA) [7] by us-
ing the KT and the Infomax algorithm has also been proposed
for enhancing classification, but its application is limited to
classes statistically independent. KDA-based approaches are
better suited for supervised classification applications since
a similar supervision process is performed during the dimen-



sionality reduction, but they require solving an expensive
optimization problem [8]. Efficient KDA approaches have
been proposed as a solution such as the Kernel Discriminant
Analysis via QR decomposition (KDAQR) [9], based on the
QR decomposition to replace the costly eigen decomposition
of the kernel matrix, and the Kernel Discriminant Analysis
by using Spectral Regression (KDASR) [8] which combines
spectral graph analysis and regularised regression. Finally, a
Discriminative Common Vector with Kernel (KDCV) was
originally proposed by Cevikalp et al. [10], [11] and ex-
tended (Kernel Generalized Discriminative Common Vectors,
KGDCV) to manage large dimensional data in [5].

Methods for dimension reduction in classification prob-
lems rely on the probabilistic distribution of samples and,
thus, might not be the best suited for SSS in unbalanced
settings. Furthermore, the features projected in the reduced
spaces are computed following probabilistic considerations
and are not easy to be clinically interpreted. In the context of
clinical applications (especially in radiomics for personalized
medicine), feature selection methods are a preferred choice.
Several methods for feature selection are applied in the field
of predictive models for personalized medicine.

Random forest selects features according to the change
in the classification error. Although it is accurate in case of
highly uncorrelated data, in radiomic multi-view problems
variables are highly correlated and their selection usually
leads to a correlated subset of variables that can produce over-
fitting [12]. Besides, the selection of the subsets is random
and there is a lot of variability when applying the technique.

To avoid correlation and over-fitting, Minimum Redun-
dancy Maximum Relevance (mRMR) algorithm [13] selects
features according to the Mutual Information (MI) between
the set of features and the class variable outcome. Features
are selected by a threshold on MI which must be carefully
adjusted to avoid inclusion of redundant variables or the
elimination of clinical relevant ones.

The least absolute shrinkage and selection operator
(LASSO) [14] uses a logistic regression model with a penalty
term to select features according to their significance in
class variable prediction. This method is quite popular for
the definition of radiomic signatures [15] and malignancy
classification [16]. However, there are some limitations like
the low repeatability and reproducibility of textural features
in the clinical setting and the limitation of the method to
properly modelling SSS unbalanced problems. We consider
this could be corrected by the introduction of uncertainty
measures into predictive models and the filtering of most
unstable data in the training stage.

None of the above methods considers feature reproducibil-
ity for their selection. In the process of clinical data collec-
tion, there are several factors prone to introduce variability
in multi-view features. Among others, the main ones are
medical scans acquisition parameters with an impact on
intensity-based values and inter-observer variability in man-
ual annotations required to identify tumors with an impact

on shape and volumetric descriptors [17]. Such sources of
variability introduce an uncertainty in models that should be
considered to issue more reliable reproducible predictions,
while avoiding over-fitting.

A recent work [15] adds scan acquisition parameters as
fixed factors in a regression model for the development of
a radiomic signature that predicts immunotherapy response.
However, being unable to select which radiomic features
were most affected, the signature reproducibility was low
due to over fitting. In [17] it is reported that method re-
producibility increases if features are selected based on their
stability and reproducibility. Latest methods [18] based on
fully connected convolutional networks use dropout as boost-
ing method to define a measure of uncertainty in semantic
classifiers output that it is used as post-segmentation filtering.
However, up to our knowledge a selection of features based
on reproducibility and uncertainty remains unexplored.

In this work we conduct a study with data from Vall
Hebron Oncology Institute (VHIO) that analyzes the re-
producibility of radiomics features against different image
acquisition conditions and inter-observer variability in le-
sion identification. Our reproducibility study bases on the
correlation of feature values obtained from data collected
using different conditions and settings. In this study, features
were selected as reproducible if they had high inter-class
correlation coefficient (ICC) for all sources of variability.
The performance of the selected features was compared to
state-of-art methods on a different public data base. Results
obtained for the classification of lesion malignancy show the
better performance of our selection based on reproducibility.

II. REPRODUCIBILITY OF RADIOMICS FEATURES

Based on the studies [17] that demonstrated the influence
of image acquisition parameters (specially the convolution
kernel) and inter-observer variability on radiomics features
reproducibility, three test-retest reproducibility studies were
done: 1) Identification of similar convolution kernels; 2)
identification of robust radiomics features based on image
acquisition parameters variability; and 3) identification of
robust radiomics features based on inter-observer variability.

The selection of radiomics features based on their repro-
ducibility was conducted on cases acquired at Vall Hebron
Oncology Institute (VHIO) collected for a study on respon-
ders to oncologic treatments. Contrast-enhanced CT scans
were acquired on 16- or 64-channel CT scanner during a
clinical trial performed at Hospital Quironsalud Barcelona.
Given the nature of the retrospective study, images were
obtained from different scanners (SIEMENS, GE Systems
and Philips) with different convolution kernels according
to the manufacturer. CT scans of the same patient were
acquired 2 months apart, from a population set of 32 pa-
tients, 17 (mixed population) of whom presented changes
in convolution kernels and 15 of whom (control population)
presented standardized image acquisition parameters. Table I
summarizes the image acquisition parameters and number of
cases of VHIO-Quironsalud database.



TABLE 1
DESCRIPTION OF THE VHIO-QUIRONSALUD DATABASE USED FOR THE
REPRODUCIBILITY STUDY.

Image Acquisition Parameters
Manufacturer Convolutional kVp
Kernels

Control

population SIEMENS B20f/B20s 120
n=15
B20f/B20s o
Mixed SIEMENS B30f/B30s 120
population B31s, B41s, I31s 130
n=17 PHILIPS B/IMRI 120
GE Systems STANDARD/ LUNG 120
B20f/B20s o
Standardized SIEMENS B30f/B30s

. 120
population B31s/B41s 130
n=23 PHILIPS B 120

For each scan, 105 radiomics features were extracted
using PyRadiomics [19], an open-source python package for
the extraction of Radiomics features from medical imaging
volumes. PyRadiomics features include shape features, first
order features, and textural features describing several aspects
of the lesion. The lesion was defined by a volume mask
manually delineated by experts. Shape features were com-
puted to obtain morphological measures of the lesion mask.
First order features were calculated to obtain a description
of the distribution of voxel intensities of within the image
region defined by the mask. Finally, textural features were
computed to obtain 3D patterns of voxel intensity to describe
the interrelationships of gray-levels values within image
region constrained by the mask. PyRadiomics texture features
include Gray Level Co-ocurrence Matrix (GLCM), Gray
Level Size Zone (GLSZM), Gray Level Run Length Matrix
(GLRLM)and Gray Level Dependency Matrix (GLDM) [20].

To conduct the first two studies related to scanner pa-
rameters, a solid organ not affected by the disease, the
spleen, was segmented. To avoid inter-observer variability the
whole spleen was segmented. To standardize the population
based on convolution kernels, Bland Altman and ICC were
performed on different pairs of convolution kernels to find
those kernels with significant changes in radiomics features.
Determining 0.7 as a cutoff for high correlation on inter-
class correlation coefficient (ICC), the control population
showed that 62 features from 105 presented high corre-
lation vs the non-standardized mixed population that only
presented one feature. The difference in ICC between the
two populations was substantial with inter quartile ranges
equal to [0.48,0.88] for control population and [0.18,0.42]
for the mixed one. Convolution kernels B from Philips and
B20f/B20s, B30f/B30s, B41f and B31f from SIEMENS pre-
sented higher interclass correlation coefficient between them
than with convolution kernels of 131f, B26f from SIEMENS
and LUNG, STANDARD from GE Systems. The latter group
presented significant differences after applying Wilcoxon test

and those patients containing these convolution kernels were
removed from the population set.

From the first reproducibility study, some convolution
kernels (CK) were identified as comparable. In the second
study, a standardized population of 23 patients was selected,
15 of which had two images with exact same image acqui-
sition parameters (Identical CK population) and 8 of which
had comparable image acquisition parameters (Similar CK
population). Each radiomic feature was compared separately
from the Identical CK population and Similar CK population.
Therefore, two ICC were obtained for each radiomic feature.
The values for the minimum of the two ICC was comparable
to the ICC for the control population with an inter quartile
range equal to [0.43,0.74]. A cut-off 0.7 applied to this
minimum ICC for the standardized population selected 29
features of 105.

The third reproducibility study was done with the tumor
ROIs delineated by two experienced radiologist from a
randomly selected population of 83 patients (inter-observer
population) obtained using the comparable CKs selected in
the first study. As in the previous studies the radiomics
features from the ROI were extracted and compared among
radiologists’ segmentations using ICC score.

Finally, our reproducibility feature selection chose those
features that present ICC higher than 0.7 in the three studies:
comparable CKs, image acquisition parameters and inter-
observer variability in lesion delineation. The 26 features
selected by our reproducibility criteria together with the 3
ICC measures obtained for each study are reported in Table
II.

III. EXPERIMENTS

The goal of our experiments is to validate the generaliza-
tion capability of our selection based on reproducibility. We
address to what extend our selection also provides: 1) the
most informative features for radiomics issues; 2) features
with high potential to perform independently of the data base.

To assess the above points, we have used the features in
Table II to classify the malignancy of pulmonary nodules on
cases selected from the Lung Image Database Consortium
(LIDC) and Image Database Resource Initiative (IDRI) pub-
lic databases [21]. The LIDC/IDRI Database contains 1018
cases/patients, each of which includes images from a clinical
thoracic CT scan and an associated XML file that records
the results of a two-phase image annotation (including lesion
delineation) process performed by four experienced thoracic
radiologists. From these patients 7371 lesions were marked as
“nodule”. We chose a subset of 86 patients with unambiguous
diagnosis available for some of their nodules along with
patient final diagnosis (malign or benign). Since for patients
with multiple nodules, there is not a correspondence between
nodule diagnosis and experts’ lesion delineation, data was
split to ensure unambiguous labels for training and test.
A total number of 52 patients with only one nodule were
selected as training set, whereas the remaining 36 cases with
more than one nodule were selected as test set for patient



TABLE II
FEATURES SELECTED ACCORDING TO REPRODUCIBILITY

Variable ICC1 | ICC2 | ICC3
Firstorder Entropy 0.898 0.760 0.726
Firstorder TotalEnergy 0.884 0.847 0.999
Firstorder Uniformity 0.893 0.762 0.852
GLCM Id 0.835 0.830 0.839
GLCM Idm 0.840 0.853 0.835
GLCM JointEnergy 0.878 0.745 0.931
GLCM JointEntropy 0.886 0.813 0.788
GLCM
MaximumProbability | 0732 | 0815 | 0933
GLDM Dependence
Non Uniformity 0.719 0.822 0.719
Normalized
GLDM Dependence | 576 | 809 | 0.990
Variance
GLDM Large
Dependence Emphasis 0.810 0.787 0.986
GLRLM Gray Level
Non Uniformity 0.899 0.709 0.788
Normalized
GLRLM Run Length
Non Uniformity 0.830 0.846 0.922
Normalized
G}];RLM Run 0.808 | 0.825 | 0.963
ercentage
GLRIM Short Run 1 715 | 0752 | 0.946
Emphasis
Shape Elongation 0.965 0.801 0.944
Shape Flatness 0.886 0.772 0.963
Shape Least Axis 0.948 0.921 0.997
Shape Major Axis 0.964 0.718 0.997
Shape Max 2D
Diameter Column 0.843 0.725 0.991
Shape Max 2D 0967 | 0973 | 0998
Diameter Slice
Shape Minor Axis 0.980 0.872 0.997
Shape Sphericity 0.861 0.907 0.834
Shape Surface Area 0.969 0.816 0.989
Shape Surface
Volume Ratio 0.943 0.830 0.982
Shape Volume 0.961 0.759 0.999

diagnosis. The classification metrics were precision, recall
and AUC over nodule diagnosis for the training set and
patient diagnosis for testing.

Our feature selection based on reproducibility was com-
pared to unsupervised (PCA and KPCA) and supervised
(LDA and its kernel variants) methods for dimensionality
reduction, as well as, to LASSO feature selection. We also
implemented our own CNN architecture to obtain a new and
best representation of the original PyRadiomics features by
using the generalization power of the CNN layers. Our CNN
architecture is composed of 4 convolutional blocks -each one
containing a convolution layer followed by a ReLU and a
Max Pooling- and the last layer being a fully connection
with features ranging from 2 to 10. In all cases, we used a
12 batch size and 20 epochs to train the models with dropout
in all convolutional blocks. All these methods were trained
on the 52 patients from LIDC/IDRI Database having only
one nodule, while our approach used the 26 features learned
from VHIO database.

TABLE III
CLASSIFICATION METRICS FOR PATIENT DIAGNOSIS
Precision Recall AUC
Malign | Benign | Malign | Benign

ICC 81.8 100 100 33.3 0.80
LASSO 74.3 0 96.3 0 0.77
PCA 75 0 100 0 0.74
KDAQR 75 0 100 0 0.61
CNN 74.3 0 96.3 0 0.75

The reduced sub-space of features provided by each
method was the input of a logistic regression model trained to
classify between benign and malign nodules on the 52 cases
having a single nodule. Taking into account that the test set
contains more than one nodule per patient we chose the most
pessimistic diagnosis as final patient diagnosis. This way a
test patient was considered to have cancer (malign class) if
one of its nodules was classified as malign by the model.
Regarding the patient-sensitive probability required for AUC
computation, we took the average probability for all patient
nodules.

Table III reports results for the proposed method (labelled
ICC) and best performers from the other methods considered.
These methods, selected as the ones with higher AUC in
training data, were the following: PCA, KDAQR, LASSO and
CNN with 3 features (labelled CNN). Except the proposed
ICC, all methods have O recall and precision for benign
cases. This is due to the fact that their diagnosis was malign
for all cases. It follows that their accuracy remains equal to
the number of malign cases (75%) in contrast to ICC 84%
accuracy. The proposed method had also the highest AUC,
obtained from the ROC curves shown in figure 1.

Fig. 1 shows different ROC curves. The upper-left plot
shows ROC curves on the test data for all methods. The re-
maining plots compare, for each of the methods, ROC curves
between training and test to assess over-fitting. For these
last plots, methods are grouped into supervised (LASSO,
KDAQR and CNN) an unsupervised (PCA, ICC). Visual
inspection of the plot comparing the performance in test
data shows that, except for KDAQR, all methods perform
similarly on test data. Comparison between training and test,
indicates that supervised methods (LASSO and, especially,
KDAQR) are prone to present over-fitting. Meanwhile, un-
supervised methods and CNN present a comparable perfor-
mance between training and test.

IV. CONCLUSIONS

This paper presents a feature selection strategy based
on a reproducibility study conducted on an own database
for prediction of cancer treatment outcome. Selection is
exclusively based on the variability of features under different
acquisition conditions. An interesting point of our approach
is that, unlike existing methods, selection takes into account
neither the distribution of training population features nor the
outcome variable (treatment outcome).
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Fig. 1. ROC curves for all methods on test data (upper-left plot) and for each method on training and test.

In order to test the validity and repeatability of such a
criterion, our selected features were used to classify the
malignancy of pulmonary nodules on cases from LIDC/IDRI
public data base. Results were compared to state-of-art meth-
ods for dimensionality reduction trained on the same cases.
The proposed method is the only one presenting sensitivity
to benign cases. In terms of generalization capability, com-
parison between training and test (ROC curves in fig.1) show
that the proposed method, the unsupervised PCA and CNN
are comparable and outperform supervised techniques. Since
these techniques could be the ones with higher generalization
power, we have, in particular, that features selected on the
basis of their stability and reproducibility can also be the
most informative ones.

However, it is important to remark that, unlike ICC, PCA
and CNN selection was learned from LIDC/IDRI data. A
main concern is whether the performance of PCA/CNN
reduced set of features would be comparable applied to a
different dataset and machine learning problem. We con-
sider that our method could be a good alternative, since
selection was performed on an independent data-set and,
its mechanisms did not take into account neither population
distribution nor any specific machine learning problem.

These promising results encourage further research to
incorporate uncertainty into the training process to obtain,
by their own definition, classifiers with a selection of repro-
ducible features minimizing over-fitting. Given that CNNs
provide a framework with high generalization power allowing
the optimization of complex loss functions, we plan to
incorporate the presented measure of repeatability into a
multi-task deep learning approach.
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