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Abstract. In this work, we introduce the Global Planar Convolution
module as a building-block for fully-convolutional networks that aggre-
gates global information and, therefore, enhances the context perception
capabilities of segmentation networks in the context of brain tumor seg-
mentation. We implement two baseline architectures (3D UNet and a
residual version of 3D UNet, ResUNet) and present a novel architecture
based on these two architectures, ContextNet, that includes the proposed
Global Planar Convolution module. We show that the addition of such
module eliminates the need of building networks with several represen-
tation levels, which tend to be over-parametrized and to showcase slow
rates of convergence. Furthermore, we provide a visual demonstration of
the behavior of GPC modules via visualization of intermediate represen-
tations. We finally participate in the 2018 edition of the BraTS challenge
with our best performing models, that are based on ContextNet, and re-
port the evaluation scores on the validation and the test sets of the
challenge.

Keywords: Brain Tumors · 3D fully-convolutional CNN · Magnetic
Resonance Imaging · Global Planar Convolution

1 Introduction

It is estimated that, as of today, 700.000 people in the United States are living
with a primary brain tumor, from which 80% are benign and 20% are malig-
nant tumors[14]. Of all malignant brain tumors, 81% are gliomas, which are
tumors that originate in glial cells[15]. Glioblastomas are the most common
type of glioma, representing 45% of all gliomas; they are one of the most ag-
gressive types of brain tumors, having an estimated 5-year relative survival rate
of approximately 5%, which means that only 5% of people diagnosed with a
glioblastoma will still be alive 5 years after being diagnosed [15].
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It is clear that such dismal prognosis requires proper treatment planning
and follow-up, which can be greatly improved if proper in-vivo, non-invasive
delineation and identification of glioma structures is in place. However, this
poses a significant burden on the radiologist: multiple imaging modalities have
to be assessed in parallel, as each highlights different regions of the tumor, and
the process of delineation in a 3D acquisition is tedious and prone to errors. As a
consequence, inter-observer variability has been reported to be a major — if not
the largest — factor of inaccuracy in radiation therapy, constituting the weakest
link in the radiotherapy chain that goes from diagnosis and consultation, going
through 3D imaging and target volume delineation, to treatment delivery [19].

Therefore, automating the delineation and identification process on MR im-
ages would accelerate treatment planning and improve treatment follow-up.
However, the problem of tumor segmentation poses several challenges, such as
blurry or smoothed boundaries, variability of shape, location and extension or
heterogeneity of appearance of brain tumors on MR images.

The research community has concentrated efforts in order to address the
brain tumor segmentation task, and to this end initiatives like the Brain Tu-
mor Segmentation (BraTS) challenge[12] have made the problem accessible to
a larger audience. As a result, a large variety of computational methods have
been proposed to automate the delineation of brain tumors. These methods can
be broadly categorized in two groups: generative models, which rely on prior
knowledge about tissue appearance and distribution; and discriminative models,
which directly learn the relationship between the image features and the seg-
mentation labels. Deep Learning approaches, especially Convolutional Neural
Networks (CNNs), cover a large portion of the recently proposed discriminative
methods. The majority of these works have based their methods in well-known
semantic segmentation networks, either using a 2D variant on one or more planes
of the brain, or implementing a 3D architecture that takes spatial information
in all directions into account. In all these works, several training strategies are
leveraged, such as dense training with patches combined with patch sampling
schemes, and a distinction between local, refined features and global, coarse
features is accomplished via multiresolution approaches or skip connections.

In this work, we introduce the Global Planar Convolution (GPC) module,
a fully-convolutional module that enhances the context perception capabilities
of segmentation networks in the context of brain tumor segmentation. We first
explore different 3D fully-convolutional architectures for brain tumor segmenta-
tion, starting with a 3D variation of UNet [17]. We then introduce a variation of
such network that incorporates residual elements from [7], that we call ResUNet.
We finally refine this architecture by adding GPC modules; we refer to this net-
work as ContextNet. We train these architectures on the 2018 BraTS Challenge
dataset, that consists of 210 High Grade Glioma (HGG) cases and 75 Low Grade
Glioma (LGG) cases with four MR image modalities and manual annotations of
the distinct intra-tumoral structures of interest [12] [3] [1] [2]. We compare the
behavior of the three proposed networks when trained with all the image modal-
ities and when trained only with a subset of them. Then, we show that the
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addition of Global Planar Convolution modules eliminates the need of building
networks with several representation levels (i.e. the set of operations executed
at the same spatial resolution level), which are prone to over-parametrization
and slow convergence rates. We include a visually guided interpretation of the
behavior of GPC modules via visualization of intermediate representations of
the network. We finally report the performance of our best performing model
—based on ContextNet— and a model ensemble on the BraTS validation set.
This last model ensemble is submitted to participate in the 2018 edition of the
BraTS challenge.

2 Methods

2.1 Data

The data used in this project originates in the 2018 version of the yearly Mul-
timodal Brain Tumor Segmentation Challenge dataset. This dataset consists of
285 multi-institutional clinically-acquired pre-operative scans. Each multimodal
scan is formed by T1, T1-Gd, T2 and T2-FLAIR volumes acquired with var-
ious scanners from 19 institutions. All the scans have been segmented manu-
ally by one to four raters, and approved by experienced neuroradiologists. The
ground-truth labels comprise the enhancing tumor, the peritumoral edema and
the necrotic and non-enhancing tumor when present. Each multi-modal scan in
the BraTS challenge dataset is co-registered to the same anatomical template,
skull-stripped and resampled to 1mm3 isotropic resolution. Therefore, no further
preprocessing is needed.

2.2 CNN architectures

All the Convolutional Architectures implemented and trained are 3D and fully-
convolutional by design, meaning that they can be trained using 3D patches of
data, and then they can be used for inference on whole brain volumes.

UNet This reference architecture proposed initially in [17] is based on [11], with
a similar contracting path, but in order to improve the localization capabilities
of the network a supplementary expanding path is introduced, in which high-
resolution features from the contracting path are combined with upsampled fea-
ture maps. This architecture is extended to 3D by replacing all the convolutions,
transposed convolutions and max pooling operations by their 3D alternatives,
similarly to [5].

In our experiments we use Rectified Linear Unit (ReLU) as activation func-
tion and Batch Normalization [8] after convolutions and before activations.

ResUNet The work of [7] introduced the concept of deep residual learning:
instead of stacking a series of layers and letting them learn the desired under-
lying mapping, these layers can be set to explicitly fit a residual mapping. This
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residual learning framework not only improved the performance on the image
classification task by a wide margin, but also alleviated the degradation problem
found when an excessive amount of layers was used.

The motivation of introducing residual layers originates from the fact that
the contracting path has a twofold purpose: on one hand it learns increasingly
abstract features that encode contextual information necessary to decide what,
and on the other hand it connects feature maps from lower-level representa-
tions with the expanding path to decide where. Residual elements allow for an
increased number of layers, which has been shown empirically to increase the
representational power of the network[18] [7], thus helping with the first task
(identification). They also facilitate learning of identity mappings, which enables
the possibility of passing low-level representations throughout the network, thus
easing the second task (delineation).

The architecture of ResUNet is essentially an extension of UNet with resid-
ual elements. The convolutional layers in UNet are replaced by residual layers;
concretely, 2 residual layers are used at each resolution level.

Again, as in UNet, we use Rectified Linear Unit (ReLU) as activation function
and Batch Normalization after convolutions and before activations.

ContextNet ContextNet is a novel architecture introduced in this work that
aims to enhance the context-awareness capabilities of 3D imaging segmentation
architectures. It is build upon the aforementioned ResUNet architecture and
includes the proposed Global Planar Convolution modules, inspired by [16]. An
overview of the architecture is shown in fig. 1.

The localization aspect of semantic segmentation networks is addressed by
skip-connections and residual elements, as these components let low level rep-
resentations pass through the network and inform the latest layers about fine-
grained spatial details. However, the classification aspect of semantic segmenta-
tion networks, that deals with proper identification of the delineated structures,
is hindered by the fact that these networks are focused on proper boundary align-
ment. State-of-the-art classification architectures rely on layers that are globally
connected, which in the most extreme case (all the nodes are connected with
each other) corresponds to a fully-connected layer. It is clear that such type of
operation is not feasible in a fully-convolutional architecture, however we can
approximate global connectivity by increasing kernel size in convolutions: in the
limit, the kernel is as big as the input feature map, which can be interpreted
again as a fully-connected layer. The problem with increasing the kernel size is
the computational and memory requirements associated with it, and it is not
feasible in the case of 3D CNNs with current accelerated computing hardware.

However, global connectivity can be approximated by constraining the kernel
parameters’ subspace. Specifically, we can constrain the convolutional kernels
to have one dimension less than they would normally have, which in practice
is implemented by having kernels with size 1 in one of the dimensions. This
reduction of parameters in one of the three dimensions allows the growth of
kernel sizes in the other dimensions, thus providing improved global connectivity.
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On the basis of this reasoning, we introduce in this work a new module named
Global Planar Convolution, abbreviated GPC. A GPC convolves planar filters
(i.e. filters in which one of the three dimensions has size 1) in each of the three
orthogonal directions, and then combines the resulting planar feature maps via
summation. We introduce these modules in between skip-connections, similarly
to bottleneck modules in [7]. We further improve the localization capabilities by
including an extra residual layer after each GPC module, however these residual
layers do not include an activation in the end. The resulting feature maps from
each of this altered skip-connections are then summed with the feature maps
outputted by the upsampling layers in the expanding path, and the summed
feature maps are then passed through an Exponential Linear Unit (ELU) [6]. In
our experiments we set the filter size of GPC modules to 15.

2.3 Experimental design

Local dataset split In order to evaluate the segmentation performance of
the proposed architectures, the dataset is split into train and validation sets.
We use a split ratio of 70%-30% for training and validation, respectively. This
results in 199 subjects for training and 86 subjects for evaluation on the tumor
segmentation task. As we do not perform any hyper-parameter search procedure,
we use the validation set to evaluate if the model is behaving and converging as
expected during training, as well as to compare the performance among different
models. Thus, we eliminate the need of an additional test set.

CNN training details We use categorical cross-entropy as the loss function
to be minimized during training. The complete loss function includes L1 and
L2 penalization of the weights (for regularization purposes), with penalization
ratios of 1E-6 and 1E-4, respectively.

All the models are trained using the ADAM optimizer [10]. The initial learn-
ing is set to 1E-3 in all experiments, and a learning rate decay policy is integrated
in order to stabilize training as the training procedure progressed. Concretely,
we use an exponential decay of the learning rate every 1000 training steps with
a decay rate of 0.9. The number of training steps is set to 35000. The train-
ing procedure alternates 1000 training steps with 1 complete evaluation of the
model. Batch size is set to 6, which maximizes the memory consumption in the
most memory demanding architectures.

During training, the data ingestion pipeline is configured to extract patches
of size 80×80×80 with 50% probability of being centered on a background voxel
and 50% on a tumor voxel (50% background, 20% edema, 15% enhancing tumor
and 15% necrosis and non-enhancing tumor). Whole brain volumes are used
during evaluation in order to provide a realistic value of performance in a real-
world scenario. The CNNs are trained on two different hardware configurations,
depending on the availability of computing resources: 1) AWS p2.xlarge instance
with a single NVIDIA K80 with 12 GiB of GPU memory; 2) on-premises server
with two NVIDIA GeFore GTX 1080 Ti with 11GiB of GPU memory.
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Restriction of availability of input modalities We perform data ablation
experiments by restricting the available input modalities at training time, but
always maintaining the minimum required modalities to properly identify all
structures, namely T1-Gd and FLAIR. The motivation for such experiments is
twofold. First, we want to assess the relative contribution of each modality to
the overall segmentation, and inspect if some modalities are redundant or indeed
provide useful information. Second, it is convenient and even necessary to have
models that can work with a restricted number of modalities (as in some clinical
cases not all MR sequences are included in the protocol) even if such models with
restricted input information do not perform as well as models trained without
data restrictions.

Restriction of number of representation levels We hypothesize that the
inclusion of GPC modules enables the network to perceive greater context with-
out the need of having several representation levels. By representation levels we
mean the set of operations and feature maps that operate at the same spatial
resolution. In order to validate this hypothesis, we train two variations of the
ContextNet architecture with as little as 2 or 3 representation levels. The first
model, with just 2 representation levels, has 32 and 64 kernels at each convo-
lutional layer before the GPC modules, while the GPC modules still have 15
kernels with the same kernel size as in section 2.2. The second model has 3 rep-
resentation levels with 16, 32 and 64 kernels at each convolutional layer before
the GPC modules, maintaining again the same number of kernels and kernel
sizes at the GPC modules and subsequent layers.

Visualization of GPC feature maps We extract intermediate representa-
tions from the residual layers around the GPC modules and from the GPC
modules themselves on all the representation-level variations of ContextNet. The
intent of such experiment is to provide insight about the behavior of the GPC
modules, and to link such behavior to the performance of these models, despite
being aware of the limitations of this method for network interpretability.

2.4 Evaluation

The primary evaluation score for the segmentation task is the Sørensen-Dice
coefficient, usually abbreviated as DICE. In this context, the DICE coefficient
compares the similarity between the set of true examples and the set of positive
examples:

DICE =
2TP

2TP + FP + FN
(1)

The Hausdorff distance is used to evaluate the distance between segmentation
boundaries. Results are reported using the 95% quantile of the maximal surface
distance between the ground truth P1 and the predicted segmentation T1 [13]:

Haus(P, T ) = max( sup
p∈∂P1

inf
t∈∂T1

d(p, t), sup
t∈∂T1

inf
p∈∂P1

d(t, p)) (2)
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The targets of these evaluation scores are the following tumoral structures:

– Whole Tumor: comprises all tumoral structures, i.e. edema, enhancing
tumor, non-enhancing tumor and necrosis.

– Enhancing Tumor: comprises only the enhancing tumor class.
– Tumor Core: encompasses the enhancing tumor, necrosis and non-enhancing

tumor, thus excluding edema.

3 Results

Table 1 shows the DICE coefficients on the local validation set for all target
structures of all baseline architectures, trained with different data configura-
tions. The best model for whole tumor segmentation is ContextNet trained with
all modalities (0.897 DICE score), while the best model for enhancing tumor
and tumor core segmentation is ResUNet trained only with T1-Gd, FLAIR and
T1, achieving 0.752 and 0.799 DICE scores, respectively. It is particularly re-
markable that excluding the T2 from training enables the ResUNet model to
better segment the tumor core structures; such behavior can be explained if we
consider that the network is encouraged to focus more on structures more no-
ticeable on T1-related modalities (enhancing tumor and tumor core) thanks to
the exclusion of redundant information about edema provided by the T2 image
(which is clearly visible in FLAIR images).

Enhancing Tumor Whole Tumor Tumor Core

UNet - all modalities 0.698 ± 0.229 0.847 ± 0.095 0.694 ± 0.235

ResUNet - all modalities 0.739 ± 0.207 0.892 ± 0.064 0.785 ± 0.200

ResUNet - T1-Gd, FLAIR, T1 0.752 ± 0.193 0.882 ± 0.080 0.799 ± 0.171

ResUNet - T1-Gd, FLAIR 0.723 ± 0.218 0.884 ± 0.070 0.790 ± 0.184

ContextNet - all 0.752 ± 0.207 0.897 ± 0.059 0.797 ± 0.195

ContextNet - T1-Gd, FLAIR, T1 0.743 ± 0.216 0.881 ± 0.071 0.770 ± 0.211

ContextNet - T1-Gd, FLAIR 0.734 ± 0.231 0.878 ± 0.080 0.770 ± 0.216

Table 1: DICE coefficients (avg ± std) of baseline architectures trained with
different data configurations. Scores are computed on the local validation set.

We show in table 2 a comparison of the performance (according to the DICE
score) of the different representation level variations of ContextNet, as detailed
in section 2.3. We include the scores of ResUNet trained with all modalities,
as it is the most valid non-GPC model to be used for comparison. Both Con-
textNet models with reduced number of representation levels match or even
surpass the performance of the ResUNet model at whole tumor and enhancing
tumor segmentation. We hypothesize that GPC modules enable the aggregation
of contextual information without the need of obtaining a deep representation
via several pooling operations, which permits the proper segmentation of large
structures such as the whole tumor. At the same time, by reducing the number of
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coarse features associated with increased representation levels the network can
focus on fine details, such as the enhancing tumor. Furthermore, a reduction of
representation levels entails a reduction of the number of trainable parameters,
as can be seen in table 2. The downside is that the depth of the network is
severely reduced, and much more complex structures such as the necrotic and
non-enhancing tissue are harder to segment for such networks.

Enhancing Tumor Whole Tumor Tumor Core # parameters

ResUNet 0.739 ± 0.207 0.892 ± 0.064 0.785 ± 0.200 2M

ContextNet 0.752 ± 0.207 0.897 ± 0.059 0.797 ± 0.195 1.7M

ContextNet - 3 RL 0.746 ± 0.217 0.894 ± 0.062 0.763 ± 0.225 1.6M

ContextNet - 2 RL 0.751 ± 0.208 0.892 ± 0.064 0.750 ± 0.229 1.3M

Table 2: DICE coefficients (avg ± std) of baseline ResUNet and variations of
ContextNet with different number of representation levels. All MRI modalities
are used to train these networks. Scores are computed on the local validation
set.

Figure 2 depicts the feature maps extracted from the residual layers and
GPC modules on the ContextNet models with reduced representation levels, as
explained in section 2.3. We show only the first 4 feature maps with the highest
mean absolute value at each representation level and stage, and we organize the
information in a grid in which each row corresponds to a representation level and
each column corresponds to a module type in the network (pre-GPC residual
layer, GPC, and post-GPC residual layer).

Overall it is clear that the deeper the representation level, the coarser the
features the network is able to extract. It can also be seen that, as we move from
the pre-GPC residual layer to the GPC module and then the post-GPC residual
layer, the features that the network extracts are increasingly abstract, even at
the first representation levels. For instance, on the first level of both models
the pre-GPC residual layer is enhancing fine-details of the images, such as the
enhancing tumor ring; then the GPC module aggregates contextual information
and captures global features such as the healthy part of the brain (the activation
around whole tumor region is close to 0); finally the post-GPC residual layer
combines the global features extracted by the GPC modules and refines their
boundaries.

Predictions obtained from ResUNet, ContextNet constrained to three rep-
resentation levels and full ContextNet are shown in fig. 3. On one hand, the
ContextNet variant with three representation levels is shown to perform simi-
larly to other networks on the first subject. On the other hand, it can be noticed
that the depth reduction in this ContextNet variant affects the segmentation
of the necrotic tissue on the second subject, in which both the full ContextNet
and ResUnet are able to produce a more refined representation than the limited
representation-level ContextNet.
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Fig. 2: Feature map visualization for GPC module interpretability. Top figure
shows the activations of the ContextNet variant with 3 representation levels,
while the bottom figure shows the activations of the ContextNet variant with 2
representation levels.
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Fig. 3: From top to bottom, left to right: FLAIR and T1-Gd MR modali-
ties, ground-truth labels and segmentations produced by ResUNet, ContextNet
trained with 3 representation levels and ContextNet with all (4) representation
levels of 2 subjects from the local validation split of the BraTS 2018 dataset.

Finally we evaluate the best performing ContextNet and ResUNet models
and an ensemble of these two models on the BraTS 2018 validation data. As
discussed in [9], model ensembling yields more robust segmentation maps by
reducing the influence of the hyper-parameters and configurations of individual
models. Specifically, we compute the average confidence score per class for each
voxel across the models in the ensemble, and we obtain the final segmentation
by assigning to each voxel the class with the highest average confidence score.
As a consequence of model ensembling, we observe improved DICE scores and
Hausdorff 95% quantile distances in practically all structures (shown in table 3).
Therefore, we submit this model ensemble to the BraTS 2018 challenge[4] and
we report the resulting scores on the test set in table 4.

Dice Hausdorff 95
ET WT TC ET WT TC

ResUNet 0.729 ± 0.279 0.882 ± 0.071 0.741 ± 0.256 5.578 ± 11.249 9.896 ± 16.803 9.532 ± 12.407

ContextNet 0.735 ± 0.281 0.883 ± 0.112 0.753 ± 0.269 7.004 ± 13.944 7.594 ± 12.453 9.505 ± 11.557

Ensemble 0.758 ± 0.264 0.895 ± 0.07 0.774 ± 0.253 4.502 ± 8.227 10.656 ± 19.286 7.103 ± 7.084

Table 3: Evaluation scores (avg ± std) obtained on the BraTS 2018 validation
set. The evaluated models are ContextNet trained on all MR image modalities,
ResUNet trained on T1-Gd, T1 and FLAIR, and an ensemble of both models.
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Dice Hausdorff 95
ET WT TC ET WT TC

Ensemble 0.694 ± 0.289 0.856 ± 0.147 0.754 ± 0.283 6.872 ± 13.21 9.676 ± 15.947 8.123 ± 12.713

Table 4: Evaluation scores (avg ± std) of the submitted segmentation model on
the BraTS 2018 test set.

4 Conclusion

In this work, we present several 3D fully-convolutional CNNs to address the task
of automatic tumor segmentation from magnetic resonance images, with the ob-
jective of accelerating and improving radiotherapy planning and monitoring of
patients with gliomas of varied grades. We start with a baseline architecture
(UNet) and gradually improve its performance by adding residual elements (Re-
sUNet) and enlarging the receptive field of its components via GPC modules
(ContextNet).

We further investigate the behavior of the GPC modules by training networks
with a limited number of representation levels and visualizing their intermediate
representations, and show that equivalent performance can be achieved using
GPC modules even when the number of representation levels (and consequently
the depth and number of trainable parameters) of the network is considerably
reduced.

Future work includes improving the performance of individual models by
means of hyper-parameter optimization, uncertainty estimation via Monte-Carlo
Dropout or related techniques, in-depth investigation of intermediate represen-
tations and use of other deep learning interpretability methods to better under-
stand the behavior of the proposed GPC modules.

References

1. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann,
J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the
pre-operative scans of the tcga-gbm collection. The Cancer Imaging Archive 286
(2017)

2. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann,
J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the
pre-operative scans of the tcga-lgg collection. The Cancer Imaging Archive 286
(2017)

3. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann,
J.B., Farahani, K., Davatzikos, C.: Advancing The Cancer Genome Atlas glioma
MRI collections with expert segmentation labels and radiomic features. Sci Data
4, 170117 (September 2017)

4. Bakas, S., Reyes, M., et int., Menze, B.: Identifying the Best Machine Learning
Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall
Survival Prediction in the BRATS Challenge. arXiv preprint arXiv:1811.02629
(2018)



Global Planar Convolutions in Brain Tumor Segmentation 13
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