toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alicia Fornes; Anjan Dutta; Albert Gordo; Josep Llados edit   pdf
doi  openurl
  Title CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue 3 Pages 243-251  
  Keywords Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths  
  Abstract 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FDG2012 Serial (down) 2129  
Permanent link to this record
 

 
Author Josep Llados; Marçal Rusiñol; Alicia Fornes; David Fernandez; Anjan Dutta edit   pdf
doi  openurl
  Title On the Influence of Word Representations for Handwritten Word Spotting in Historical Documents Type Journal Article
  Year 2012 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 26 Issue 5 Pages 1263002-126027  
  Keywords Handwriting recognition; word spotting; historical documents; feature representation; shape descriptors Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218001412630025  
  Abstract 0,624 JCR
Word spotting is the process of retrieving all instances of a queried keyword from a digital library of document images. In this paper we evaluate the performance of different word descriptors to assess the advantages and disadvantages of statistical and structural models in a framework of query-by-example word spotting in historical documents. We compare four word representation models, namely sequence alignment using DTW as a baseline reference, a bag of visual words approach as statistical model, a pseudo-structural model based on a Loci features representation, and a structural approach where words are represented by graphs. The four approaches have been tested with two collections of historical data: the George Washington database and the marriage records from the Barcelona Cathedral. We experimentally demonstrate that statistical representations generally give a better performance, however it cannot be neglected that large descriptors are difficult to be implemented in a retrieval scenario where word spotting requires the indexation of data with million word images.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRF2012 Serial (down) 2128  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title A symbol spotting approach in graphical documents by hashing serialized graphs Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 3 Pages 752-768  
  Keywords Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing  
  Abstract In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203; 601.152 Approved no  
  Call Number Admin @ si @ DLP2012 Serial (down) 2127  
Permanent link to this record
 

 
Author Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Hierarchical graph representation for symbol spotting in graphical document images Type Conference Article
  Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 529-538  
  Keywords  
  Abstract Symbol spotting can be defined as locating given query symbol in a large collection of graphical documents. In this paper we present a hierarchical graph representation for symbols. This representation allows graph matching methods to deal with low-level vectorization errors and, thus, to perform a robust symbol spotting. To show the potential of this approach, we conduct an experiment with the SESYD dataset.  
  Address Miyajima-Itsukushima, Hiroshima  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ BDJ2012 Serial (down) 2126  
Permanent link to this record
 

 
Author Anjan Dutta; Jaume Gibert; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
isbn  openurl
  Title Combination of Product Graph and Random Walk Kernel for Symbol Spotting in Graphical Documents Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1663-1666  
  Keywords  
  Abstract This paper explores the utilization of product graph for spotting symbols on graphical documents. Product graph is intended to find the candidate subgraphs or components in the input graph containing the paths similar to the query graph. The acute angle between two edges and their length ratio are considered as the node labels. In a second step, each of the candidate subgraphs in the input graph is assigned with a distance measure computed by a random walk kernel. Actually it is the minimum of the distances of the component to all the components of the model graph. This distance measure is then used to eliminate dissimilar components. The remaining neighboring components are grouped and the grouped zone is considered as a retrieval zone of a symbol similar to the queried one. The entire method works online, i.e., it doesn't need any preprocessing step. The present paper reports the initial results of the method, which are very encouraging.  
  Address Tsukuba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DGL2012 Serial (down) 2125  
Permanent link to this record
 

 
Author Marçal Rusiñol; Lluis Pere de las Heras; Joan Mas; Oriol Ramos Terrades; Dimosthenis Karatzas; Anjan Dutta; Gemma Sanchez; Josep Llados edit   pdf
openurl 
  Title CVC-UAB's participation in the Flowchart Recognition Task of CLEF-IP 2012 Type Conference Article
  Year 2012 Publication Conference and Labs of the Evaluation Forum Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Roma  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLEF  
  Notes DAG Approved no  
  Call Number Admin @ si @ RHM2012 Serial (down) 2072  
Permanent link to this record
 

 
Author Ernest Valveny; Robert Benavente; Agata Lapedriza; Miquel Ferrer; Jaume Garcia; Gemma Sanchez edit   pdf
doi  openurl
  Title Adaptation of a computer programming course to the EXHE requirements: evaluation five years later Type Miscellaneous
  Year 2012 Publication European Journal of Engineering Education Abbreviated Journal  
  Volume 37 Issue 3 Pages 243-254  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; CIC; OR; invisible;MV Approved no  
  Call Number Admin @ si @ VBL2012 Serial (down) 2070  
Permanent link to this record
 

 
Author Volkmar Frinken; Alicia Fornes; Josep Llados; Jean-Marc Ogier edit   pdf
doi  isbn
openurl 
  Title Bidirectional Language Model for Handwriting Recognition Type Conference Article
  Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 611-619  
  Keywords  
  Abstract In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.  
  Address Japan  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFL2012 Serial (down) 2057  
Permanent link to this record
 

 
Author Emanuel Indermühle; Volkmar Frinken; Horst Bunke edit   pdf
doi  isbn
openurl 
  Title Mode Detection in Online Handwritten Documents using BLSTM Neural Networks Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 302-307  
  Keywords  
  Abstract Mode detection in online handwritten documents refers to the process of distinguishing different types of contents, such as text, formulas, diagrams, or tables, one from another. In this paper a new approach to mode detection is proposed that uses bidirectional long-short term memory (BLSTM) neural networks. The BLSTM neural network is a novel type of recursive neural network that has been successfully applied in speech and handwriting recognition. In this paper we show that it has the potential to significantly outperform traditional methods for mode detection, which are usually based on stroke classification. As a further advantage over previous approaches, the proposed system is trainable and does not rely on user-defined heuristics. Moreover, it can be easily adapted to new or additional types of modes by just providing the system with new training data.  
  Address Bari, italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number Admin @ si @ IFB2012 Serial (down) 2056  
Permanent link to this record
 

 
Author Volkmar Frinken; Markus Baumgartner; Andreas Fischer; Horst Bunke edit   pdf
isbn  openurl
  Title Semi-Supervised Learning for Cursive Handwriting Recognition using Keyword Spotting Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 49-54  
  Keywords  
  Abstract State-of-the-art handwriting recognition systems are learning-based systems that require large sets of training data. The creation of training data, and consequently the creation of a well-performing recognition system, requires therefore a substantial amount of human work. This can be reduced with semi-supervised learning, which uses unlabeled text lines for training as well. Current approaches estimate the correct transcription of the unlabeled data via handwriting recognition which is not only extremely demanding as far as computational costs are concerned but also requires a good model of the target language. In this paper, we propose a different approach that makes use of keyword spotting, which is significantly faster and does not need any language model. In a set of experiments we demonstrate its superiority over existing approaches.  
  Address Bari, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 10.1109/ICFHR.2012.268 ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FBF2012 Serial (down) 2055  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: